audk/IntelSiliconPkg/Feature/VTd/IntelVTdDxe/TranslationTable.c

1027 lines
40 KiB
C

/** @file
Copyright (c) 2017 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "DmaProtection.h"
/**
Create extended context entry.
@param[in] VtdIndex The index of the VTd engine.
@retval EFI_SUCCESS The extended context entry is created.
@retval EFI_OUT_OF_RESOURCE No enough resource to create extended context entry.
**/
EFI_STATUS
CreateExtContextEntry (
IN UINTN VtdIndex
);
/**
Allocate zero pages.
@param[in] Pages the number of pages.
@return the page address.
@retval NULL No resource to allocate pages.
**/
VOID *
EFIAPI
AllocateZeroPages (
IN UINTN Pages
)
{
VOID *Addr;
Addr = AllocatePages (Pages);
if (Addr == NULL) {
return NULL;
}
ZeroMem (Addr, EFI_PAGES_TO_SIZE(Pages));
return Addr;
}
/**
Set second level paging entry attribute based upon IoMmuAccess.
@param[in] PtEntry The paging entry.
@param[in] IoMmuAccess The IOMMU access.
**/
VOID
SetSecondLevelPagingEntryAttribute (
IN VTD_SECOND_LEVEL_PAGING_ENTRY *PtEntry,
IN UINT64 IoMmuAccess
)
{
PtEntry->Bits.Read = ((IoMmuAccess & EDKII_IOMMU_ACCESS_READ) != 0);
PtEntry->Bits.Write = ((IoMmuAccess & EDKII_IOMMU_ACCESS_WRITE) != 0);
}
/**
Create context entry.
@param[in] VtdIndex The index of the VTd engine.
@retval EFI_SUCCESS The context entry is created.
@retval EFI_OUT_OF_RESOURCE No enough resource to create context entry.
**/
EFI_STATUS
CreateContextEntry (
IN UINTN VtdIndex
)
{
UINTN Index;
VOID *Buffer;
UINTN RootPages;
UINTN ContextPages;
VTD_ROOT_ENTRY *RootEntry;
VTD_CONTEXT_ENTRY *ContextEntryTable;
VTD_CONTEXT_ENTRY *ContextEntry;
VTD_SOURCE_ID *PciSourceId;
VTD_SOURCE_ID SourceId;
UINTN MaxBusNumber;
UINTN EntryTablePages;
MaxBusNumber = 0;
for (Index = 0; Index < mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDeviceDataNumber; Index++) {
PciSourceId = &mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDeviceData[Index].PciSourceId;
if (PciSourceId->Bits.Bus > MaxBusNumber) {
MaxBusNumber = PciSourceId->Bits.Bus;
}
}
DEBUG ((DEBUG_INFO," MaxBusNumber - 0x%x\n", MaxBusNumber));
RootPages = EFI_SIZE_TO_PAGES (sizeof (VTD_ROOT_ENTRY) * VTD_ROOT_ENTRY_NUMBER);
ContextPages = EFI_SIZE_TO_PAGES (sizeof (VTD_CONTEXT_ENTRY) * VTD_CONTEXT_ENTRY_NUMBER);
EntryTablePages = RootPages + ContextPages * (MaxBusNumber + 1);
Buffer = AllocateZeroPages (EntryTablePages);
if (Buffer == NULL) {
DEBUG ((DEBUG_INFO,"Could not Alloc Root Entry Table.. \n"));
return EFI_OUT_OF_RESOURCES;
}
mVtdUnitInformation[VtdIndex].RootEntryTable = (VTD_ROOT_ENTRY *)Buffer;
Buffer = (UINT8 *)Buffer + EFI_PAGES_TO_SIZE (RootPages);
for (Index = 0; Index < mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDeviceDataNumber; Index++) {
PciSourceId = &mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDeviceData[Index].PciSourceId;
SourceId.Bits.Bus = PciSourceId->Bits.Bus;
SourceId.Bits.Device = PciSourceId->Bits.Device;
SourceId.Bits.Function = PciSourceId->Bits.Function;
RootEntry = &mVtdUnitInformation[VtdIndex].RootEntryTable[SourceId.Index.RootIndex];
if (RootEntry->Bits.Present == 0) {
RootEntry->Bits.ContextTablePointerLo = (UINT32) RShiftU64 ((UINT64)(UINTN)Buffer, 12);
RootEntry->Bits.ContextTablePointerHi = (UINT32) RShiftU64 ((UINT64)(UINTN)Buffer, 32);
RootEntry->Bits.Present = 1;
Buffer = (UINT8 *)Buffer + EFI_PAGES_TO_SIZE (ContextPages);
}
ContextEntryTable = (VTD_CONTEXT_ENTRY *)(UINTN)VTD_64BITS_ADDRESS(RootEntry->Bits.ContextTablePointerLo, RootEntry->Bits.ContextTablePointerHi) ;
ContextEntry = &ContextEntryTable[SourceId.Index.ContextIndex];
ContextEntry->Bits.TranslationType = 0;
ContextEntry->Bits.FaultProcessingDisable = 0;
ContextEntry->Bits.Present = 0;
DEBUG ((DEBUG_INFO,"Source: S%04x B%02x D%02x F%02x\n", mVtdUnitInformation[VtdIndex].Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
switch (mVtdUnitInformation[VtdIndex].CapReg.Bits.SAGAW) {
case BIT1:
ContextEntry->Bits.AddressWidth = 0x1;
break;
case BIT2:
ContextEntry->Bits.AddressWidth = 0x2;
break;
}
}
FlushPageTableMemory (VtdIndex, (UINTN)mVtdUnitInformation[VtdIndex].RootEntryTable, EFI_PAGES_TO_SIZE(EntryTablePages));
return EFI_SUCCESS;
}
/**
Create second level paging entry table.
@param[in] VtdIndex The index of the VTd engine.
@param[in] SecondLevelPagingEntry The second level paging entry.
@param[in] MemoryBase The base of the memory.
@param[in] MemoryLimit The limit of the memory.
@param[in] IoMmuAccess The IOMMU access.
@return The second level paging entry.
**/
VTD_SECOND_LEVEL_PAGING_ENTRY *
CreateSecondLevelPagingEntryTable (
IN UINTN VtdIndex,
IN VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry,
IN UINT64 MemoryBase,
IN UINT64 MemoryLimit,
IN UINT64 IoMmuAccess
)
{
UINTN Index4;
UINTN Index3;
UINTN Index2;
UINTN Lvl4Start;
UINTN Lvl4End;
UINTN Lvl3Start;
UINTN Lvl3End;
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl4PtEntry;
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl3PtEntry;
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl2PtEntry;
UINT64 BaseAddress;
UINT64 EndAddress;
if (MemoryLimit == 0) {
return EFI_SUCCESS;
}
BaseAddress = ALIGN_VALUE_LOW(MemoryBase, SIZE_2MB);
EndAddress = ALIGN_VALUE_UP(MemoryLimit, SIZE_2MB);
DEBUG ((DEBUG_INFO,"CreateSecondLevelPagingEntryTable: BaseAddress - 0x%016lx, EndAddress - 0x%016lx\n", BaseAddress, EndAddress));
if (SecondLevelPagingEntry == NULL) {
SecondLevelPagingEntry = AllocateZeroPages (1);
if (SecondLevelPagingEntry == NULL) {
DEBUG ((DEBUG_ERROR,"Could not Alloc LVL4 PT. \n"));
return NULL;
}
FlushPageTableMemory (VtdIndex, (UINTN)SecondLevelPagingEntry, EFI_PAGES_TO_SIZE(1));
}
//
// If no access is needed, just create not present entry.
//
if (IoMmuAccess == 0) {
return SecondLevelPagingEntry;
}
Lvl4Start = RShiftU64 (BaseAddress, 39) & 0x1FF;
Lvl4End = RShiftU64 (EndAddress - 1, 39) & 0x1FF;
DEBUG ((DEBUG_INFO," Lvl4Start - 0x%x, Lvl4End - 0x%x\n", Lvl4Start, Lvl4End));
Lvl4PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)SecondLevelPagingEntry;
for (Index4 = Lvl4Start; Index4 <= Lvl4End; Index4++) {
if (Lvl4PtEntry[Index4].Uint64 == 0) {
Lvl4PtEntry[Index4].Uint64 = (UINT64)(UINTN)AllocateZeroPages (1);
if (Lvl4PtEntry[Index4].Uint64 == 0) {
DEBUG ((DEBUG_ERROR,"!!!!!! ALLOCATE LVL4 PAGE FAIL (0x%x)!!!!!!\n", Index4));
ASSERT(FALSE);
return NULL;
}
FlushPageTableMemory (VtdIndex, (UINTN)Lvl4PtEntry[Index4].Uint64, SIZE_4KB);
SetSecondLevelPagingEntryAttribute (&Lvl4PtEntry[Index4], EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
}
Lvl3Start = RShiftU64 (BaseAddress, 30) & 0x1FF;
if (ALIGN_VALUE_LOW(BaseAddress + SIZE_1GB, SIZE_1GB) <= EndAddress) {
Lvl3End = SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY) - 1;
} else {
Lvl3End = RShiftU64 (EndAddress - 1, 30) & 0x1FF;
}
DEBUG ((DEBUG_INFO," Lvl4(0x%x): Lvl3Start - 0x%x, Lvl3End - 0x%x\n", Index4, Lvl3Start, Lvl3End));
Lvl3PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)(UINTN)VTD_64BITS_ADDRESS(Lvl4PtEntry[Index4].Bits.AddressLo, Lvl4PtEntry[Index4].Bits.AddressHi);
for (Index3 = Lvl3Start; Index3 <= Lvl3End; Index3++) {
if (Lvl3PtEntry[Index3].Uint64 == 0) {
Lvl3PtEntry[Index3].Uint64 = (UINT64)(UINTN)AllocateZeroPages (1);
if (Lvl3PtEntry[Index3].Uint64 == 0) {
DEBUG ((DEBUG_ERROR,"!!!!!! ALLOCATE LVL3 PAGE FAIL (0x%x, 0x%x)!!!!!!\n", Index4, Index3));
ASSERT(FALSE);
return NULL;
}
FlushPageTableMemory (VtdIndex, (UINTN)Lvl3PtEntry[Index3].Uint64, SIZE_4KB);
SetSecondLevelPagingEntryAttribute (&Lvl3PtEntry[Index3], EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
}
Lvl2PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)(UINTN)VTD_64BITS_ADDRESS(Lvl3PtEntry[Index3].Bits.AddressLo, Lvl3PtEntry[Index3].Bits.AddressHi);
for (Index2 = 0; Index2 < SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY); Index2++) {
Lvl2PtEntry[Index2].Uint64 = BaseAddress;
SetSecondLevelPagingEntryAttribute (&Lvl2PtEntry[Index2], IoMmuAccess);
Lvl2PtEntry[Index2].Bits.PageSize = 1;
BaseAddress += SIZE_2MB;
if (BaseAddress >= MemoryLimit) {
break;
}
}
FlushPageTableMemory (VtdIndex, (UINTN)Lvl2PtEntry, SIZE_4KB);
if (BaseAddress >= MemoryLimit) {
break;
}
}
FlushPageTableMemory (VtdIndex, (UINTN)&Lvl3PtEntry[Lvl3Start], (UINTN)&Lvl3PtEntry[Lvl3End + 1] - (UINTN)&Lvl3PtEntry[Lvl3Start]);
if (BaseAddress >= MemoryLimit) {
break;
}
}
FlushPageTableMemory (VtdIndex, (UINTN)&Lvl4PtEntry[Lvl4Start], (UINTN)&Lvl4PtEntry[Lvl4End + 1] - (UINTN)&Lvl4PtEntry[Lvl4Start]);
return SecondLevelPagingEntry;
}
/**
Create second level paging entry.
@param[in] VtdIndex The index of the VTd engine.
@param[in] IoMmuAccess The IOMMU access.
@return The second level paging entry.
**/
VTD_SECOND_LEVEL_PAGING_ENTRY *
CreateSecondLevelPagingEntry (
IN UINTN VtdIndex,
IN UINT64 IoMmuAccess
)
{
VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry;
SecondLevelPagingEntry = NULL;
SecondLevelPagingEntry = CreateSecondLevelPagingEntryTable (VtdIndex, SecondLevelPagingEntry, 0, mBelow4GMemoryLimit, IoMmuAccess);
if (SecondLevelPagingEntry == NULL) {
return NULL;
}
if (mAbove4GMemoryLimit != 0) {
ASSERT (mAbove4GMemoryLimit > BASE_4GB);
SecondLevelPagingEntry = CreateSecondLevelPagingEntryTable (VtdIndex, SecondLevelPagingEntry, SIZE_4GB, mAbove4GMemoryLimit, IoMmuAccess);
if (SecondLevelPagingEntry == NULL) {
return NULL;
}
}
return SecondLevelPagingEntry;
}
/**
Setup VTd translation table.
@retval EFI_SUCCESS Setup translation table successfully.
@retval EFI_OUT_OF_RESOURCE Setup translation table fail.
**/
EFI_STATUS
SetupTranslationTable (
VOID
)
{
EFI_STATUS Status;
UINTN Index;
for (Index = 0; Index < mVtdUnitNumber; Index++) {
DEBUG((DEBUG_INFO, "CreateContextEntry - %d\n", Index));
if (mVtdUnitInformation[Index].ECapReg.Bits.ECS) {
Status = CreateExtContextEntry (Index);
} else {
Status = CreateContextEntry (Index);
}
if (EFI_ERROR (Status)) {
return Status;
}
}
return EFI_SUCCESS;
}
/**
Dump DMAR context entry table.
@param[in] RootEntry DMAR root entry.
**/
VOID
DumpDmarContextEntryTable (
IN VTD_ROOT_ENTRY *RootEntry
)
{
UINTN Index;
UINTN Index2;
VTD_CONTEXT_ENTRY *ContextEntry;
DEBUG ((DEBUG_INFO,"=========================\n"));
DEBUG ((DEBUG_INFO,"DMAR Context Entry Table:\n"));
DEBUG ((DEBUG_INFO,"RootEntry Address - 0x%x\n", RootEntry));
for (Index = 0; Index < VTD_ROOT_ENTRY_NUMBER; Index++) {
if ((RootEntry[Index].Uint128.Uint64Lo != 0) || (RootEntry[Index].Uint128.Uint64Hi != 0)) {
DEBUG ((DEBUG_INFO," RootEntry(0x%02x) B%02x - 0x%016lx %016lx\n",
Index, Index, RootEntry[Index].Uint128.Uint64Hi, RootEntry[Index].Uint128.Uint64Lo));
}
if (RootEntry[Index].Bits.Present == 0) {
continue;
}
ContextEntry = (VTD_CONTEXT_ENTRY *)(UINTN)VTD_64BITS_ADDRESS(RootEntry[Index].Bits.ContextTablePointerLo, RootEntry[Index].Bits.ContextTablePointerHi);
for (Index2 = 0; Index2 < VTD_CONTEXT_ENTRY_NUMBER; Index2++) {
if ((ContextEntry[Index2].Uint128.Uint64Lo != 0) || (ContextEntry[Index2].Uint128.Uint64Hi != 0)) {
DEBUG ((DEBUG_INFO," ContextEntry(0x%02x) D%02xF%02x - 0x%016lx %016lx\n",
Index2, Index2 >> 3, Index2 & 0x7, ContextEntry[Index2].Uint128.Uint64Hi, ContextEntry[Index2].Uint128.Uint64Lo));
}
if (ContextEntry[Index2].Bits.Present == 0) {
continue;
}
DumpSecondLevelPagingEntry ((VOID *)(UINTN)VTD_64BITS_ADDRESS(ContextEntry[Index2].Bits.SecondLevelPageTranslationPointerLo, ContextEntry[Index2].Bits.SecondLevelPageTranslationPointerHi));
}
}
DEBUG ((DEBUG_INFO,"=========================\n"));
}
/**
Dump DMAR second level paging entry.
@param[in] SecondLevelPagingEntry The second level paging entry.
**/
VOID
DumpSecondLevelPagingEntry (
IN VOID *SecondLevelPagingEntry
)
{
UINTN Index4;
UINTN Index3;
UINTN Index2;
UINTN Index1;
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl4PtEntry;
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl3PtEntry;
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl2PtEntry;
VTD_SECOND_LEVEL_PAGING_ENTRY *Lvl1PtEntry;
DEBUG ((DEBUG_VERBOSE,"================\n"));
DEBUG ((DEBUG_VERBOSE,"DMAR Second Level Page Table:\n"));
DEBUG ((DEBUG_VERBOSE,"SecondLevelPagingEntry Base - 0x%x\n", SecondLevelPagingEntry));
Lvl4PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)SecondLevelPagingEntry;
for (Index4 = 0; Index4 < SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY); Index4++) {
if (Lvl4PtEntry[Index4].Uint64 != 0) {
DEBUG ((DEBUG_VERBOSE," Lvl4Pt Entry(0x%03x) - 0x%016lx\n", Index4, Lvl4PtEntry[Index4].Uint64));
}
if (Lvl4PtEntry[Index4].Uint64 == 0) {
continue;
}
Lvl3PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)(UINTN)VTD_64BITS_ADDRESS(Lvl4PtEntry[Index4].Bits.AddressLo, Lvl4PtEntry[Index4].Bits.AddressHi);
for (Index3 = 0; Index3 < SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY); Index3++) {
if (Lvl3PtEntry[Index3].Uint64 != 0) {
DEBUG ((DEBUG_VERBOSE," Lvl3Pt Entry(0x%03x) - 0x%016lx\n", Index3, Lvl3PtEntry[Index3].Uint64));
}
if (Lvl3PtEntry[Index3].Uint64 == 0) {
continue;
}
Lvl2PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)(UINTN)VTD_64BITS_ADDRESS(Lvl3PtEntry[Index3].Bits.AddressLo, Lvl3PtEntry[Index3].Bits.AddressHi);
for (Index2 = 0; Index2 < SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY); Index2++) {
if (Lvl2PtEntry[Index2].Uint64 != 0) {
DEBUG ((DEBUG_VERBOSE," Lvl2Pt Entry(0x%03x) - 0x%016lx\n", Index2, Lvl2PtEntry[Index2].Uint64));
}
if (Lvl2PtEntry[Index2].Uint64 == 0) {
continue;
}
if (Lvl2PtEntry[Index2].Bits.PageSize == 0) {
Lvl1PtEntry = (VTD_SECOND_LEVEL_PAGING_ENTRY *)(UINTN)VTD_64BITS_ADDRESS(Lvl2PtEntry[Index2].Bits.AddressLo, Lvl2PtEntry[Index2].Bits.AddressHi);
for (Index1 = 0; Index1 < SIZE_4KB/sizeof(VTD_SECOND_LEVEL_PAGING_ENTRY); Index1++) {
if (Lvl1PtEntry[Index1].Uint64 != 0) {
DEBUG ((DEBUG_VERBOSE," Lvl1Pt Entry(0x%03x) - 0x%016lx\n", Index1, Lvl1PtEntry[Index1].Uint64));
}
}
}
}
}
}
DEBUG ((DEBUG_VERBOSE,"================\n"));
}
/**
Invalid page entry.
@param VtdIndex The VTd engine index.
**/
VOID
InvalidatePageEntry (
IN UINTN VtdIndex
)
{
if (mVtdUnitInformation[VtdIndex].HasDirtyContext || mVtdUnitInformation[VtdIndex].HasDirtyPages) {
InvalidateVtdIOTLBGlobal (VtdIndex);
}
mVtdUnitInformation[VtdIndex].HasDirtyContext = FALSE;
mVtdUnitInformation[VtdIndex].HasDirtyPages = FALSE;
}
#define VTD_PG_R BIT0
#define VTD_PG_W BIT1
#define VTD_PG_X BIT2
#define VTD_PG_EMT (BIT3 | BIT4 | BIT5)
#define VTD_PG_TM (BIT62)
#define VTD_PG_PS BIT7
#define PAGE_PROGATE_BITS (VTD_PG_TM | VTD_PG_EMT | VTD_PG_W | VTD_PG_R)
#define PAGING_4K_MASK 0xFFF
#define PAGING_2M_MASK 0x1FFFFF
#define PAGING_1G_MASK 0x3FFFFFFF
#define PAGING_VTD_INDEX_MASK 0x1FF
#define PAGING_4K_ADDRESS_MASK_64 0x000FFFFFFFFFF000ull
#define PAGING_2M_ADDRESS_MASK_64 0x000FFFFFFFE00000ull
#define PAGING_1G_ADDRESS_MASK_64 0x000FFFFFC0000000ull
typedef enum {
PageNone,
Page4K,
Page2M,
Page1G,
} PAGE_ATTRIBUTE;
typedef struct {
PAGE_ATTRIBUTE Attribute;
UINT64 Length;
UINT64 AddressMask;
} PAGE_ATTRIBUTE_TABLE;
PAGE_ATTRIBUTE_TABLE mPageAttributeTable[] = {
{Page4K, SIZE_4KB, PAGING_4K_ADDRESS_MASK_64},
{Page2M, SIZE_2MB, PAGING_2M_ADDRESS_MASK_64},
{Page1G, SIZE_1GB, PAGING_1G_ADDRESS_MASK_64},
};
/**
Return length according to page attributes.
@param[in] PageAttributes The page attribute of the page entry.
@return The length of page entry.
**/
UINTN
PageAttributeToLength (
IN PAGE_ATTRIBUTE PageAttribute
)
{
UINTN Index;
for (Index = 0; Index < sizeof(mPageAttributeTable)/sizeof(mPageAttributeTable[0]); Index++) {
if (PageAttribute == mPageAttributeTable[Index].Attribute) {
return (UINTN)mPageAttributeTable[Index].Length;
}
}
return 0;
}
/**
Return page table entry to match the address.
@param[in] VtdIndex The index used to identify a VTd engine.
@param[in] SecondLevelPagingEntry The second level paging entry in VTd table for the device.
@param[in] Address The address to be checked.
@param[out] PageAttributes The page attribute of the page entry.
@return The page entry.
**/
VOID *
GetSecondLevelPageTableEntry (
IN UINTN VtdIndex,
IN VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry,
IN PHYSICAL_ADDRESS Address,
OUT PAGE_ATTRIBUTE *PageAttribute
)
{
UINTN Index1;
UINTN Index2;
UINTN Index3;
UINTN Index4;
UINT64 *L1PageTable;
UINT64 *L2PageTable;
UINT64 *L3PageTable;
UINT64 *L4PageTable;
Index4 = ((UINTN)RShiftU64 (Address, 39)) & PAGING_VTD_INDEX_MASK;
Index3 = ((UINTN)Address >> 30) & PAGING_VTD_INDEX_MASK;
Index2 = ((UINTN)Address >> 21) & PAGING_VTD_INDEX_MASK;
Index1 = ((UINTN)Address >> 12) & PAGING_VTD_INDEX_MASK;
L4PageTable = (UINT64 *)SecondLevelPagingEntry;
if (L4PageTable[Index4] == 0) {
L4PageTable[Index4] = (UINT64)(UINTN)AllocateZeroPages (1);
if (L4PageTable[Index4] == 0) {
DEBUG ((DEBUG_ERROR,"!!!!!! ALLOCATE LVL4 PAGE FAIL (0x%x)!!!!!!\n", Index4));
ASSERT(FALSE);
*PageAttribute = PageNone;
return NULL;
}
FlushPageTableMemory (VtdIndex, (UINTN)L4PageTable[Index4], SIZE_4KB);
SetSecondLevelPagingEntryAttribute ((VTD_SECOND_LEVEL_PAGING_ENTRY *)&L4PageTable[Index4], EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
FlushPageTableMemory (VtdIndex, (UINTN)&L4PageTable[Index4], sizeof(L4PageTable[Index4]));
}
L3PageTable = (UINT64 *)(UINTN)(L4PageTable[Index4] & PAGING_4K_ADDRESS_MASK_64);
if (L3PageTable[Index3] == 0) {
L3PageTable[Index3] = (UINT64)(UINTN)AllocateZeroPages (1);
if (L3PageTable[Index3] == 0) {
DEBUG ((DEBUG_ERROR,"!!!!!! ALLOCATE LVL3 PAGE FAIL (0x%x, 0x%x)!!!!!!\n", Index4, Index3));
ASSERT(FALSE);
*PageAttribute = PageNone;
return NULL;
}
FlushPageTableMemory (VtdIndex, (UINTN)L3PageTable[Index3], SIZE_4KB);
SetSecondLevelPagingEntryAttribute ((VTD_SECOND_LEVEL_PAGING_ENTRY *)&L3PageTable[Index3], EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
FlushPageTableMemory (VtdIndex, (UINTN)&L3PageTable[Index3], sizeof(L3PageTable[Index3]));
}
if ((L3PageTable[Index3] & VTD_PG_PS) != 0) {
// 1G
*PageAttribute = Page1G;
return &L3PageTable[Index3];
}
L2PageTable = (UINT64 *)(UINTN)(L3PageTable[Index3] & PAGING_4K_ADDRESS_MASK_64);
if (L2PageTable[Index2] == 0) {
L2PageTable[Index2] = Address & PAGING_2M_ADDRESS_MASK_64;
SetSecondLevelPagingEntryAttribute ((VTD_SECOND_LEVEL_PAGING_ENTRY *)&L2PageTable[Index2], 0);
L2PageTable[Index2] |= VTD_PG_PS;
FlushPageTableMemory (VtdIndex, (UINTN)&L2PageTable[Index2], sizeof(L2PageTable[Index2]));
}
if ((L2PageTable[Index2] & VTD_PG_PS) != 0) {
// 2M
*PageAttribute = Page2M;
return &L2PageTable[Index2];
}
// 4k
L1PageTable = (UINT64 *)(UINTN)(L2PageTable[Index2] & PAGING_4K_ADDRESS_MASK_64);
if ((L1PageTable[Index1] == 0) && (Address != 0)) {
*PageAttribute = PageNone;
return NULL;
}
*PageAttribute = Page4K;
return &L1PageTable[Index1];
}
/**
Modify memory attributes of page entry.
@param[in] VtdIndex The index used to identify a VTd engine.
@param[in] PageEntry The page entry.
@param[in] IoMmuAccess The IOMMU access.
@param[out] IsModified TRUE means page table modified. FALSE means page table not modified.
**/
VOID
ConvertSecondLevelPageEntryAttribute (
IN UINTN VtdIndex,
IN VTD_SECOND_LEVEL_PAGING_ENTRY *PageEntry,
IN UINT64 IoMmuAccess,
OUT BOOLEAN *IsModified
)
{
UINT64 CurrentPageEntry;
UINT64 NewPageEntry;
CurrentPageEntry = PageEntry->Uint64;
SetSecondLevelPagingEntryAttribute (PageEntry, IoMmuAccess);
FlushPageTableMemory (VtdIndex, (UINTN)PageEntry, sizeof(*PageEntry));
NewPageEntry = PageEntry->Uint64;
if (CurrentPageEntry != NewPageEntry) {
*IsModified = TRUE;
DEBUG ((DEBUG_VERBOSE, "ConvertSecondLevelPageEntryAttribute 0x%lx", CurrentPageEntry));
DEBUG ((DEBUG_VERBOSE, "->0x%lx\n", NewPageEntry));
} else {
*IsModified = FALSE;
}
}
/**
This function returns if there is need to split page entry.
@param[in] BaseAddress The base address to be checked.
@param[in] Length The length to be checked.
@param[in] PageAttribute The page attribute of the page entry.
@retval SplitAttributes on if there is need to split page entry.
**/
PAGE_ATTRIBUTE
NeedSplitPage (
IN PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN PAGE_ATTRIBUTE PageAttribute
)
{
UINT64 PageEntryLength;
PageEntryLength = PageAttributeToLength (PageAttribute);
if (((BaseAddress & (PageEntryLength - 1)) == 0) && (Length >= PageEntryLength)) {
return PageNone;
}
if (((BaseAddress & PAGING_2M_MASK) != 0) || (Length < SIZE_2MB)) {
return Page4K;
}
return Page2M;
}
/**
This function splits one page entry to small page entries.
@param[in] VtdIndex The index used to identify a VTd engine.
@param[in] PageEntry The page entry to be splitted.
@param[in] PageAttribute The page attribute of the page entry.
@param[in] SplitAttribute How to split the page entry.
@retval RETURN_SUCCESS The page entry is splitted.
@retval RETURN_UNSUPPORTED The page entry does not support to be splitted.
@retval RETURN_OUT_OF_RESOURCES No resource to split page entry.
**/
RETURN_STATUS
SplitSecondLevelPage (
IN UINTN VtdIndex,
IN VTD_SECOND_LEVEL_PAGING_ENTRY *PageEntry,
IN PAGE_ATTRIBUTE PageAttribute,
IN PAGE_ATTRIBUTE SplitAttribute
)
{
UINT64 BaseAddress;
UINT64 *NewPageEntry;
UINTN Index;
ASSERT (PageAttribute == Page2M || PageAttribute == Page1G);
if (PageAttribute == Page2M) {
//
// Split 2M to 4K
//
ASSERT (SplitAttribute == Page4K);
if (SplitAttribute == Page4K) {
NewPageEntry = AllocateZeroPages (1);
DEBUG ((DEBUG_VERBOSE, "Split - 0x%x\n", NewPageEntry));
if (NewPageEntry == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
BaseAddress = PageEntry->Uint64 & PAGING_2M_ADDRESS_MASK_64;
for (Index = 0; Index < SIZE_4KB / sizeof(UINT64); Index++) {
NewPageEntry[Index] = (BaseAddress + SIZE_4KB * Index) | (PageEntry->Uint64 & PAGE_PROGATE_BITS);
}
FlushPageTableMemory (VtdIndex, (UINTN)NewPageEntry, SIZE_4KB);
PageEntry->Uint64 = (UINT64)(UINTN)NewPageEntry;
SetSecondLevelPagingEntryAttribute (PageEntry, EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
FlushPageTableMemory (VtdIndex, (UINTN)PageEntry, sizeof(*PageEntry));
return RETURN_SUCCESS;
} else {
return RETURN_UNSUPPORTED;
}
} else if (PageAttribute == Page1G) {
//
// Split 1G to 2M
// No need support 1G->4K directly, we should use 1G->2M, then 2M->4K to get more compact page table.
//
ASSERT (SplitAttribute == Page2M || SplitAttribute == Page4K);
if ((SplitAttribute == Page2M || SplitAttribute == Page4K)) {
NewPageEntry = AllocateZeroPages (1);
DEBUG ((DEBUG_VERBOSE, "Split - 0x%x\n", NewPageEntry));
if (NewPageEntry == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
BaseAddress = PageEntry->Uint64 & PAGING_1G_ADDRESS_MASK_64;
for (Index = 0; Index < SIZE_4KB / sizeof(UINT64); Index++) {
NewPageEntry[Index] = (BaseAddress + SIZE_2MB * Index) | VTD_PG_PS | (PageEntry->Uint64 & PAGE_PROGATE_BITS);
}
FlushPageTableMemory (VtdIndex, (UINTN)NewPageEntry, SIZE_4KB);
PageEntry->Uint64 = (UINT64)(UINTN)NewPageEntry;
SetSecondLevelPagingEntryAttribute (PageEntry, EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
FlushPageTableMemory (VtdIndex, (UINTN)PageEntry, sizeof(*PageEntry));
return RETURN_SUCCESS;
} else {
return RETURN_UNSUPPORTED;
}
} else {
return RETURN_UNSUPPORTED;
}
}
/**
Set VTd attribute for a system memory on second level page entry
@param[in] VtdIndex The index used to identify a VTd engine.
@param[in] DomainIdentifier The domain ID of the source.
@param[in] SecondLevelPagingEntry The second level paging entry in VTd table for the device.
@param[in] BaseAddress The base of device memory address to be used as the DMA memory.
@param[in] Length The length of device memory address to be used as the DMA memory.
@param[in] IoMmuAccess The IOMMU access.
@retval EFI_SUCCESS The IoMmuAccess is set for the memory range specified by BaseAddress and Length.
@retval EFI_INVALID_PARAMETER BaseAddress is not IoMmu Page size aligned.
@retval EFI_INVALID_PARAMETER Length is not IoMmu Page size aligned.
@retval EFI_INVALID_PARAMETER Length is 0.
@retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access.
@retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported by the IOMMU.
@retval EFI_UNSUPPORTED The IOMMU does not support the memory range specified by BaseAddress and Length.
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to modify the IOMMU access.
@retval EFI_DEVICE_ERROR The IOMMU device reported an error while attempting the operation.
**/
EFI_STATUS
SetSecondLevelPagingAttribute (
IN UINTN VtdIndex,
IN UINT16 DomainIdentifier,
IN VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry,
IN UINT64 BaseAddress,
IN UINT64 Length,
IN UINT64 IoMmuAccess
)
{
VTD_SECOND_LEVEL_PAGING_ENTRY *PageEntry;
PAGE_ATTRIBUTE PageAttribute;
UINTN PageEntryLength;
PAGE_ATTRIBUTE SplitAttribute;
EFI_STATUS Status;
BOOLEAN IsEntryModified;
DEBUG ((DEBUG_VERBOSE,"SetSecondLevelPagingAttribute (%d) (0x%016lx - 0x%016lx : %x) \n", VtdIndex, BaseAddress, Length, IoMmuAccess));
DEBUG ((DEBUG_VERBOSE," SecondLevelPagingEntry Base - 0x%x\n", SecondLevelPagingEntry));
if (BaseAddress != ALIGN_VALUE(BaseAddress, SIZE_4KB)) {
DEBUG ((DEBUG_ERROR, "SetSecondLevelPagingAttribute - Invalid Alignment\n"));
return EFI_UNSUPPORTED;
}
if (Length != ALIGN_VALUE(Length, SIZE_4KB)) {
DEBUG ((DEBUG_ERROR, "SetSecondLevelPagingAttribute - Invalid Alignment\n"));
return EFI_UNSUPPORTED;
}
while (Length != 0) {
PageEntry = GetSecondLevelPageTableEntry (VtdIndex, SecondLevelPagingEntry, BaseAddress, &PageAttribute);
if (PageEntry == NULL) {
DEBUG ((DEBUG_ERROR, "PageEntry - NULL\n"));
return RETURN_UNSUPPORTED;
}
PageEntryLength = PageAttributeToLength (PageAttribute);
SplitAttribute = NeedSplitPage (BaseAddress, Length, PageAttribute);
if (SplitAttribute == PageNone) {
ConvertSecondLevelPageEntryAttribute (VtdIndex, PageEntry, IoMmuAccess, &IsEntryModified);
if (IsEntryModified) {
mVtdUnitInformation[VtdIndex].HasDirtyPages = TRUE;
}
//
// Convert success, move to next
//
BaseAddress += PageEntryLength;
Length -= PageEntryLength;
} else {
Status = SplitSecondLevelPage (VtdIndex, PageEntry, PageAttribute, SplitAttribute);
if (RETURN_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "SplitSecondLevelPage - %r\n", Status));
return RETURN_UNSUPPORTED;
}
mVtdUnitInformation[VtdIndex].HasDirtyPages = TRUE;
//
// Just split current page
// Convert success in next around
//
}
}
return EFI_SUCCESS;
}
/**
Set VTd attribute for a system memory.
@param[in] VtdIndex The index used to identify a VTd engine.
@param[in] DomainIdentifier The domain ID of the source.
@param[in] SecondLevelPagingEntry The second level paging entry in VTd table for the device.
@param[in] BaseAddress The base of device memory address to be used as the DMA memory.
@param[in] Length The length of device memory address to be used as the DMA memory.
@param[in] IoMmuAccess The IOMMU access.
@retval EFI_SUCCESS The IoMmuAccess is set for the memory range specified by BaseAddress and Length.
@retval EFI_INVALID_PARAMETER BaseAddress is not IoMmu Page size aligned.
@retval EFI_INVALID_PARAMETER Length is not IoMmu Page size aligned.
@retval EFI_INVALID_PARAMETER Length is 0.
@retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access.
@retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported by the IOMMU.
@retval EFI_UNSUPPORTED The IOMMU does not support the memory range specified by BaseAddress and Length.
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to modify the IOMMU access.
@retval EFI_DEVICE_ERROR The IOMMU device reported an error while attempting the operation.
**/
EFI_STATUS
SetPageAttribute (
IN UINTN VtdIndex,
IN UINT16 DomainIdentifier,
IN VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry,
IN UINT64 BaseAddress,
IN UINT64 Length,
IN UINT64 IoMmuAccess
)
{
EFI_STATUS Status;
Status = EFI_NOT_FOUND;
if (SecondLevelPagingEntry != NULL) {
Status = SetSecondLevelPagingAttribute (VtdIndex, DomainIdentifier, SecondLevelPagingEntry, BaseAddress, Length, IoMmuAccess);
}
return Status;
}
/**
Set VTd attribute for a system memory.
@param[in] Segment The Segment used to identify a VTd engine.
@param[in] SourceId The SourceId used to identify a VTd engine and table entry.
@param[in] BaseAddress The base of device memory address to be used as the DMA memory.
@param[in] Length The length of device memory address to be used as the DMA memory.
@param[in] IoMmuAccess The IOMMU access.
@retval EFI_SUCCESS The IoMmuAccess is set for the memory range specified by BaseAddress and Length.
@retval EFI_INVALID_PARAMETER BaseAddress is not IoMmu Page size aligned.
@retval EFI_INVALID_PARAMETER Length is not IoMmu Page size aligned.
@retval EFI_INVALID_PARAMETER Length is 0.
@retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access.
@retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported by the IOMMU.
@retval EFI_UNSUPPORTED The IOMMU does not support the memory range specified by BaseAddress and Length.
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to modify the IOMMU access.
@retval EFI_DEVICE_ERROR The IOMMU device reported an error while attempting the operation.
**/
EFI_STATUS
SetAccessAttribute (
IN UINT16 Segment,
IN VTD_SOURCE_ID SourceId,
IN UINT64 BaseAddress,
IN UINT64 Length,
IN UINT64 IoMmuAccess
)
{
UINTN VtdIndex;
EFI_STATUS Status;
VTD_EXT_CONTEXT_ENTRY *ExtContextEntry;
VTD_CONTEXT_ENTRY *ContextEntry;
VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry;
UINT64 Pt;
UINTN PciDataIndex;
UINT16 DomainIdentifier;
SecondLevelPagingEntry = NULL;
DEBUG ((DEBUG_VERBOSE,"SetAccessAttribute (S%04x B%02x D%02x F%02x) (0x%016lx - 0x%08x, %x)\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function, BaseAddress, (UINTN)Length, IoMmuAccess));
VtdIndex = FindVtdIndexByPciDevice (Segment, SourceId, &ExtContextEntry, &ContextEntry);
if (VtdIndex == (UINTN)-1) {
DEBUG ((DEBUG_ERROR,"SetAccessAttribute - Pci device (S%04x B%02x D%02x F%02x) not found!\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
return EFI_DEVICE_ERROR;
}
PciDataIndex = GetPciDataIndex (VtdIndex, Segment, SourceId);
mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDeviceData[PciDataIndex].AccessCount++;
//
// DomainId should not be 0.
//
DomainIdentifier = (UINT16)(PciDataIndex + 1);
if (ExtContextEntry != NULL) {
if (ExtContextEntry->Bits.Present == 0) {
SecondLevelPagingEntry = CreateSecondLevelPagingEntry (VtdIndex, 0);
DEBUG ((DEBUG_VERBOSE,"SecondLevelPagingEntry - 0x%x (S%04x B%02x D%02x F%02x) New\n", SecondLevelPagingEntry, Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
Pt = (UINT64)RShiftU64 ((UINT64)(UINTN)SecondLevelPagingEntry, 12);
ExtContextEntry->Bits.SecondLevelPageTranslationPointerLo = (UINT32) Pt;
ExtContextEntry->Bits.SecondLevelPageTranslationPointerHi = (UINT32) RShiftU64(Pt, 20);
ExtContextEntry->Bits.DomainIdentifier = DomainIdentifier;
ExtContextEntry->Bits.Present = 1;
FlushPageTableMemory (VtdIndex, (UINTN)ExtContextEntry, sizeof(*ExtContextEntry));
DumpDmarExtContextEntryTable (mVtdUnitInformation[VtdIndex].ExtRootEntryTable);
mVtdUnitInformation[VtdIndex].HasDirtyContext = TRUE;
} else {
SecondLevelPagingEntry = (VOID *)(UINTN)VTD_64BITS_ADDRESS(ExtContextEntry->Bits.SecondLevelPageTranslationPointerLo, ExtContextEntry->Bits.SecondLevelPageTranslationPointerHi);
DEBUG ((DEBUG_VERBOSE,"SecondLevelPagingEntry - 0x%x (S%04x B%02x D%02x F%02x)\n", SecondLevelPagingEntry, Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
}
} else if (ContextEntry != NULL) {
if (ContextEntry->Bits.Present == 0) {
SecondLevelPagingEntry = CreateSecondLevelPagingEntry (VtdIndex, 0);
DEBUG ((DEBUG_VERBOSE,"SecondLevelPagingEntry - 0x%x (S%04x B%02x D%02x F%02x) New\n", SecondLevelPagingEntry, Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
Pt = (UINT64)RShiftU64 ((UINT64)(UINTN)SecondLevelPagingEntry, 12);
ContextEntry->Bits.SecondLevelPageTranslationPointerLo = (UINT32) Pt;
ContextEntry->Bits.SecondLevelPageTranslationPointerHi = (UINT32) RShiftU64(Pt, 20);
ContextEntry->Bits.DomainIdentifier = DomainIdentifier;
ContextEntry->Bits.Present = 1;
FlushPageTableMemory (VtdIndex, (UINTN)ContextEntry, sizeof(*ContextEntry));
DumpDmarContextEntryTable (mVtdUnitInformation[VtdIndex].RootEntryTable);
mVtdUnitInformation[VtdIndex].HasDirtyContext = TRUE;
} else {
SecondLevelPagingEntry = (VOID *)(UINTN)VTD_64BITS_ADDRESS(ContextEntry->Bits.SecondLevelPageTranslationPointerLo, ContextEntry->Bits.SecondLevelPageTranslationPointerHi);
DEBUG ((DEBUG_VERBOSE,"SecondLevelPagingEntry - 0x%x (S%04x B%02x D%02x F%02x)\n", SecondLevelPagingEntry, Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
}
}
//
// Do not update FixedSecondLevelPagingEntry
//
if (SecondLevelPagingEntry != mVtdUnitInformation[VtdIndex].FixedSecondLevelPagingEntry) {
Status = SetPageAttribute (
VtdIndex,
DomainIdentifier,
SecondLevelPagingEntry,
BaseAddress,
Length,
IoMmuAccess
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR,"SetPageAttribute - %r\n", Status));
return Status;
}
}
InvalidatePageEntry (VtdIndex);
return EFI_SUCCESS;
}
/**
Always enable the VTd page attribute for the device.
@param[in] Segment The Segment used to identify a VTd engine.
@param[in] SourceId The SourceId used to identify a VTd engine and table entry.
@retval EFI_SUCCESS The VTd entry is updated to always enable all DMA access for the specific device.
**/
EFI_STATUS
AlwaysEnablePageAttribute (
IN UINT16 Segment,
IN VTD_SOURCE_ID SourceId
)
{
UINTN VtdIndex;
VTD_EXT_CONTEXT_ENTRY *ExtContextEntry;
VTD_CONTEXT_ENTRY *ContextEntry;
VTD_SECOND_LEVEL_PAGING_ENTRY *SecondLevelPagingEntry;
UINT64 Pt;
DEBUG ((DEBUG_INFO,"AlwaysEnablePageAttribute (S%04x B%02x D%02x F%02x)\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
VtdIndex = FindVtdIndexByPciDevice (Segment, SourceId, &ExtContextEntry, &ContextEntry);
if (VtdIndex == (UINTN)-1) {
DEBUG ((DEBUG_ERROR,"AlwaysEnablePageAttribute - Pci device (S%04x B%02x D%02x F%02x) not found!\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
return EFI_DEVICE_ERROR;
}
if (mVtdUnitInformation[VtdIndex].FixedSecondLevelPagingEntry == 0) {
DEBUG((DEBUG_INFO, "CreateSecondLevelPagingEntry - %d\n", VtdIndex));
mVtdUnitInformation[VtdIndex].FixedSecondLevelPagingEntry = CreateSecondLevelPagingEntry (VtdIndex, EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE);
}
SecondLevelPagingEntry = mVtdUnitInformation[VtdIndex].FixedSecondLevelPagingEntry;
Pt = (UINT64)RShiftU64 ((UINT64)(UINTN)SecondLevelPagingEntry, 12);
if (ExtContextEntry != NULL) {
ExtContextEntry->Bits.SecondLevelPageTranslationPointerLo = (UINT32) Pt;
ExtContextEntry->Bits.SecondLevelPageTranslationPointerHi = (UINT32) RShiftU64(Pt, 20);
ExtContextEntry->Bits.DomainIdentifier = ((1 << (UINT8)((UINTN)mVtdUnitInformation[VtdIndex].CapReg.Bits.ND * 2 + 4)) - 1);
ExtContextEntry->Bits.Present = 1;
FlushPageTableMemory (VtdIndex, (UINTN)ExtContextEntry, sizeof(*ExtContextEntry));
} else if (ContextEntry != NULL) {
ContextEntry->Bits.SecondLevelPageTranslationPointerLo = (UINT32) Pt;
ContextEntry->Bits.SecondLevelPageTranslationPointerHi = (UINT32) RShiftU64(Pt, 20);
ContextEntry->Bits.DomainIdentifier = ((1 << (UINT8)((UINTN)mVtdUnitInformation[VtdIndex].CapReg.Bits.ND * 2 + 4)) - 1);
ContextEntry->Bits.Present = 1;
FlushPageTableMemory (VtdIndex, (UINTN)ContextEntry, sizeof(*ContextEntry));
}
return EFI_SUCCESS;
}