audk/MdeModulePkg/Library/DxeNetLib/DxeNetLib.c

1335 lines
31 KiB
C

/** @file
Copyright (c) 2005 - 2007, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
NetLib.c
Abstract:
**/
#include <PiDxe.h>
#include <Protocol/ServiceBinding.h>
#include <Protocol/SimpleNetwork.h>
#include <Protocol/LoadedImage.h>
#include <Protocol/NicIp4Config.h>
#include <Protocol/ComponentName.h>
#include <Protocol/ComponentName2.h>
#include <Library/NetLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#include <Library/UefiLib.h>
#include <Library/MemoryAllocationLib.h>
EFI_DPC_PROTOCOL *mDpc = NULL;
//
// All the supported IP4 maskes in host byte order.
//
IP4_ADDR mIp4AllMasks[IP4_MASK_NUM] = {
0x00000000,
0x80000000,
0xC0000000,
0xE0000000,
0xF0000000,
0xF8000000,
0xFC000000,
0xFE000000,
0xFF000000,
0xFF800000,
0xFFC00000,
0xFFE00000,
0xFFF00000,
0xFFF80000,
0xFFFC0000,
0xFFFE0000,
0xFFFF0000,
0xFFFF8000,
0xFFFFC000,
0xFFFFE000,
0xFFFFF000,
0xFFFFF800,
0xFFFFFC00,
0xFFFFFE00,
0xFFFFFF00,
0xFFFFFF80,
0xFFFFFFC0,
0xFFFFFFE0,
0xFFFFFFF0,
0xFFFFFFF8,
0xFFFFFFFC,
0xFFFFFFFE,
0xFFFFFFFF,
};
EFI_IPv4_ADDRESS mZeroIp4Addr = {{0, 0, 0, 0}};
/**
Converts the low nibble of a byte to hex unicode character.
@param Nibble lower nibble of a byte.
@return Hex unicode character.
**/
CHAR16
NibbleToHexChar (
IN UINT8 Nibble
)
{
//
// Porting Guide:
// This library interface is simply obsolete.
// Include the source code to user code.
//
Nibble &= 0x0F;
if (Nibble <= 0x9) {
return (CHAR16)(Nibble + L'0');
}
return (CHAR16)(Nibble - 0xA + L'A');
}
/**
Return the length of the mask. If the mask is invalid,
return the invalid length 33, which is IP4_MASK_NUM.
NetMask is in the host byte order.
@param NetMask The netmask to get the length from
@return The length of the netmask, IP4_MASK_NUM if the mask isn't
@return supported.
**/
INTN
NetGetMaskLength (
IN IP4_ADDR NetMask
)
{
INTN Index;
for (Index = 0; Index < IP4_MASK_NUM; Index++) {
if (NetMask == mIp4AllMasks[Index]) {
break;
}
}
return Index;
}
/**
Return the class of the address, such as class a, b, c.
Addr is in host byte order.
@param Addr The address to get the class from
@return IP address class, such as IP4_ADDR_CLASSA
**/
INTN
NetGetIpClass (
IN IP4_ADDR Addr
)
{
UINT8 ByteOne;
ByteOne = (UINT8) (Addr >> 24);
if ((ByteOne & 0x80) == 0) {
return IP4_ADDR_CLASSA;
} else if ((ByteOne & 0xC0) == 0x80) {
return IP4_ADDR_CLASSB;
} else if ((ByteOne & 0xE0) == 0xC0) {
return IP4_ADDR_CLASSC;
} else if ((ByteOne & 0xF0) == 0xE0) {
return IP4_ADDR_CLASSD;
} else {
return IP4_ADDR_CLASSE;
}
}
/**
Check whether the IP is a valid unicast address according to
the netmask. If NetMask is zero, use the IP address's class to
get the default mask.
@param Ip The IP to check againist
@param NetMask The mask of the IP
@return TRUE if IP is a valid unicast address on the network, otherwise FALSE
**/
BOOLEAN
Ip4IsUnicast (
IN IP4_ADDR Ip,
IN IP4_ADDR NetMask
)
{
INTN Class;
Class = NetGetIpClass (Ip);
if ((Ip == 0) || (Class >= IP4_ADDR_CLASSD)) {
return FALSE;
}
if (NetMask == 0) {
NetMask = mIp4AllMasks[Class << 3];
}
if (((Ip &~NetMask) == ~NetMask) || ((Ip &~NetMask) == 0)) {
return FALSE;
}
return TRUE;
}
/**
Initialize a random seed using current time.
None
@return The random seed initialized with current time.
**/
UINT32
NetRandomInitSeed (
VOID
)
{
EFI_TIME Time;
UINT32 Seed;
gRT->GetTime (&Time, NULL);
Seed = (~Time.Hour << 24 | Time.Day << 16 | Time.Minute << 8 | Time.Second);
Seed ^= Time.Nanosecond;
Seed ^= Time.Year << 7;
return Seed;
}
/**
Extract a UINT32 from a byte stream, then convert it to host
byte order. Use this function to avoid alignment error.
@param Buf The buffer to extract the UINT32.
@return The UINT32 extracted.
**/
UINT32
NetGetUint32 (
IN UINT8 *Buf
)
{
UINT32 Value;
CopyMem (&Value, Buf, sizeof (UINT32));
return NTOHL (Value);
}
/**
Put a UINT32 to the byte stream. Convert it from host byte order
to network byte order before putting.
@param Buf The buffer to put the UINT32
@param Data The data to put
@return None
**/
VOID
NetPutUint32 (
IN UINT8 *Buf,
IN UINT32 Data
)
{
Data = HTONL (Data);
CopyMem (Buf, &Data, sizeof (UINT32));
}
/**
Remove the first entry on the list
@param Head The list header
@return The entry that is removed from the list, NULL if the list is empty.
**/
LIST_ENTRY *
NetListRemoveHead (
LIST_ENTRY *Head
)
{
LIST_ENTRY *First;
ASSERT (Head != NULL);
if (IsListEmpty (Head)) {
return NULL;
}
First = Head->ForwardLink;
Head->ForwardLink = First->ForwardLink;
First->ForwardLink->BackLink = Head;
DEBUG_CODE (
First->ForwardLink = (LIST_ENTRY *) NULL;
First->BackLink = (LIST_ENTRY *) NULL;
);
return First;
}
/**
Remove the last entry on the list
@param Head The list head
@return The entry that is removed from the list, NULL if the list is empty.
**/
LIST_ENTRY *
NetListRemoveTail (
LIST_ENTRY *Head
)
{
LIST_ENTRY *Last;
ASSERT (Head != NULL);
if (IsListEmpty (Head)) {
return NULL;
}
Last = Head->BackLink;
Head->BackLink = Last->BackLink;
Last->BackLink->ForwardLink = Head;
DEBUG_CODE (
Last->ForwardLink = (LIST_ENTRY *) NULL;
Last->BackLink = (LIST_ENTRY *) NULL;
);
return Last;
}
/**
Insert the NewEntry after the PrevEntry
@param PrevEntry The previous entry to insert after
@param NewEntry The new entry to insert
@return None
**/
VOID
NetListInsertAfter (
IN LIST_ENTRY *PrevEntry,
IN LIST_ENTRY *NewEntry
)
{
NewEntry->BackLink = PrevEntry;
NewEntry->ForwardLink = PrevEntry->ForwardLink;
PrevEntry->ForwardLink->BackLink = NewEntry;
PrevEntry->ForwardLink = NewEntry;
}
/**
Insert the NewEntry before the PostEntry
@param PostEntry The entry to insert before
@param NewEntry The new entry to insert
@return None
**/
VOID
NetListInsertBefore (
IN LIST_ENTRY *PostEntry,
IN LIST_ENTRY *NewEntry
)
{
NewEntry->ForwardLink = PostEntry;
NewEntry->BackLink = PostEntry->BackLink;
PostEntry->BackLink->ForwardLink = NewEntry;
PostEntry->BackLink = NewEntry;
}
/**
Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
@param Map The netmap to initialize
@return None
**/
VOID
NetMapInit (
IN NET_MAP *Map
)
{
ASSERT (Map != NULL);
InitializeListHead (&Map->Used);
InitializeListHead (&Map->Recycled);
Map->Count = 0;
}
/**
To clean up the netmap, that is, release allocated memories.
@param Map The netmap to clean up.
@return None
**/
VOID
NetMapClean (
IN NET_MAP *Map
)
{
NET_MAP_ITEM *Item;
LIST_ENTRY *Entry;
LIST_ENTRY *Next;
ASSERT (Map != NULL);
NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Used) {
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
RemoveEntryList (&Item->Link);
Map->Count--;
gBS->FreePool (Item);
}
ASSERT ((Map->Count == 0) && IsListEmpty (&Map->Used));
NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Recycled) {
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
RemoveEntryList (&Item->Link);
gBS->FreePool (Item);
}
ASSERT (IsListEmpty (&Map->Recycled));
}
/**
Test whether the netmap is empty
@param Map The net map to test
@return TRUE if the netmap is empty, otherwise FALSE.
**/
BOOLEAN
NetMapIsEmpty (
IN NET_MAP *Map
)
{
ASSERT (Map != NULL);
return (BOOLEAN) (Map->Count == 0);
}
/**
Return the number of the <Key, Value> pairs in the netmap.
@param Map The netmap to get the entry number
@return The entry number in the netmap.
**/
UINTN
NetMapGetCount (
IN NET_MAP *Map
)
{
return Map->Count;
}
/**
Allocate an item for the netmap. It will try to allocate
a batch of items and return one.
@param Map The netmap to allocate item for
@return The allocated item or NULL
**/
STATIC
NET_MAP_ITEM *
NetMapAllocItem (
IN NET_MAP *Map
)
{
NET_MAP_ITEM *Item;
LIST_ENTRY *Head;
UINTN Index;
ASSERT (Map != NULL);
Head = &Map->Recycled;
if (IsListEmpty (Head)) {
for (Index = 0; Index < NET_MAP_INCREAMENT; Index++) {
Item = AllocatePool (sizeof (NET_MAP_ITEM));
if (Item == NULL) {
if (Index == 0) {
return NULL;
}
break;
}
InsertHeadList (Head, &Item->Link);
}
}
Item = NET_LIST_HEAD (Head, NET_MAP_ITEM, Link);
NetListRemoveHead (Head);
return Item;
}
/**
Allocate an item to save the <Key, Value> pair to the head of the netmap.
@param Map The netmap to insert into
@param Key The user's key
@param Value The user's value for the key
@retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item
@retval EFI_SUCCESS The item is inserted to the head
**/
EFI_STATUS
NetMapInsertHead (
IN NET_MAP *Map,
IN VOID *Key,
IN VOID *Value OPTIONAL
)
{
NET_MAP_ITEM *Item;
ASSERT (Map != NULL);
Item = NetMapAllocItem (Map);
if (Item == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Item->Key = Key;
Item->Value = Value;
InsertHeadList (&Map->Used, &Item->Link);
Map->Count++;
return EFI_SUCCESS;
}
/**
Allocate an item to save the <Key, Value> pair to the tail of the netmap.
@param Map The netmap to insert into
@param Key The user's key
@param Value The user's value for the key
@retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item
@retval EFI_SUCCESS The item is inserted to the tail
**/
EFI_STATUS
NetMapInsertTail (
IN NET_MAP *Map,
IN VOID *Key,
IN VOID *Value OPTIONAL
)
{
NET_MAP_ITEM *Item;
ASSERT (Map != NULL);
Item = NetMapAllocItem (Map);
if (Item == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Item->Key = Key;
Item->Value = Value;
InsertTailList (&Map->Used, &Item->Link);
Map->Count++;
return EFI_SUCCESS;
}
/**
Check whther the item is in the Map
@param Map The netmap to search within
@param Item The item to search
@return TRUE if the item is in the netmap, otherwise FALSE.
**/
STATIC
BOOLEAN
NetItemInMap (
IN NET_MAP *Map,
IN NET_MAP_ITEM *Item
)
{
LIST_ENTRY *ListEntry;
NET_LIST_FOR_EACH (ListEntry, &Map->Used) {
if (ListEntry == &Item->Link) {
return TRUE;
}
}
return FALSE;
}
/**
Find the key in the netmap
@param Map The netmap to search within
@param Key The key to search
@return The point to the item contains the Key, or NULL if Key isn't in the map.
**/
NET_MAP_ITEM *
NetMapFindKey (
IN NET_MAP *Map,
IN VOID *Key
)
{
LIST_ENTRY *Entry;
NET_MAP_ITEM *Item;
ASSERT (Map != NULL);
NET_LIST_FOR_EACH (Entry, &Map->Used) {
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
if (Item->Key == Key) {
return Item;
}
}
return NULL;
}
/**
Remove the item from the netmap
@param Map The netmap to remove the item from
@param Item The item to remove
@param Value The variable to receive the value if not NULL
@return The key of the removed item.
**/
VOID *
NetMapRemoveItem (
IN NET_MAP *Map,
IN NET_MAP_ITEM *Item,
OUT VOID **Value OPTIONAL
)
{
ASSERT ((Map != NULL) && (Item != NULL));
ASSERT (NetItemInMap (Map, Item));
RemoveEntryList (&Item->Link);
Map->Count--;
InsertHeadList (&Map->Recycled, &Item->Link);
if (Value != NULL) {
*Value = Item->Value;
}
return Item->Key;
}
/**
Remove the first entry on the netmap
@param Map The netmap to remove the head from
@param Value The variable to receive the value if not NULL
@return The key of the item removed
**/
VOID *
NetMapRemoveHead (
IN NET_MAP *Map,
OUT VOID **Value OPTIONAL
)
{
NET_MAP_ITEM *Item;
//
// Often, it indicates a programming error to remove
// the first entry in an empty list
//
ASSERT (Map && !IsListEmpty (&Map->Used));
Item = NET_LIST_HEAD (&Map->Used, NET_MAP_ITEM, Link);
RemoveEntryList (&Item->Link);
Map->Count--;
InsertHeadList (&Map->Recycled, &Item->Link);
if (Value != NULL) {
*Value = Item->Value;
}
return Item->Key;
}
/**
Remove the last entry on the netmap
@param Map The netmap to remove the tail from
@param Value The variable to receive the value if not NULL
@return The key of the item removed
**/
VOID *
NetMapRemoveTail (
IN NET_MAP *Map,
OUT VOID **Value OPTIONAL
)
{
NET_MAP_ITEM *Item;
//
// Often, it indicates a programming error to remove
// the last entry in an empty list
//
ASSERT (Map && !IsListEmpty (&Map->Used));
Item = NET_LIST_TAIL (&Map->Used, NET_MAP_ITEM, Link);
RemoveEntryList (&Item->Link);
Map->Count--;
InsertHeadList (&Map->Recycled, &Item->Link);
if (Value != NULL) {
*Value = Item->Value;
}
return Item->Key;
}
/**
Iterate through the netmap and call CallBack for each item. It will
contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
from the loop. It returns the CallBack's last return value. This
function is delete safe for the current item.
@param Map The Map to iterate through
@param CallBack The callback function to call for each item.
@param Arg The opaque parameter to the callback
@return It returns the CallBack's last return value.
**/
EFI_STATUS
NetMapIterate (
IN NET_MAP *Map,
IN NET_MAP_CALLBACK CallBack,
IN VOID *Arg
)
{
LIST_ENTRY *Entry;
LIST_ENTRY *Next;
LIST_ENTRY *Head;
NET_MAP_ITEM *Item;
EFI_STATUS Result;
ASSERT ((Map != NULL) && (CallBack != NULL));
Head = &Map->Used;
if (IsListEmpty (Head)) {
return EFI_SUCCESS;
}
NET_LIST_FOR_EACH_SAFE (Entry, Next, Head) {
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
Result = CallBack (Map, Item, Arg);
if (EFI_ERROR (Result)) {
return Result;
}
}
return EFI_SUCCESS;
}
/**
This is the default unload handle for all the network drivers.
@param ImageHandle The drivers' driver image.
@retval EFI_SUCCESS The image is unloaded.
@retval Others Failed to unload the image.
**/
EFI_STATUS
EFIAPI
NetLibDefaultUnload (
IN EFI_HANDLE ImageHandle
)
{
EFI_STATUS Status;
EFI_HANDLE *DeviceHandleBuffer;
UINTN DeviceHandleCount;
UINTN Index;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
EFI_COMPONENT_NAME_PROTOCOL *ComponentName;
EFI_COMPONENT_NAME2_PROTOCOL *ComponentName2;
//
// Get the list of all the handles in the handle database.
// If there is an error getting the list, then the unload
// operation fails.
//
Status = gBS->LocateHandleBuffer (
AllHandles,
NULL,
NULL,
&DeviceHandleCount,
&DeviceHandleBuffer
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Disconnect the driver specified by ImageHandle from all
// the devices in the handle database.
//
for (Index = 0; Index < DeviceHandleCount; Index++) {
Status = gBS->DisconnectController (
DeviceHandleBuffer[Index],
ImageHandle,
NULL
);
}
//
// Uninstall all the protocols installed in the driver entry point
//
for (Index = 0; Index < DeviceHandleCount; Index++) {
Status = gBS->HandleProtocol (
DeviceHandleBuffer[Index],
&gEfiDriverBindingProtocolGuid,
(VOID **) &DriverBinding
);
if (EFI_ERROR (Status)) {
continue;
}
if (DriverBinding->ImageHandle != ImageHandle) {
continue;
}
gBS->UninstallProtocolInterface (
ImageHandle,
&gEfiDriverBindingProtocolGuid,
DriverBinding
);
Status = gBS->HandleProtocol (
DeviceHandleBuffer[Index],
&gEfiComponentNameProtocolGuid,
(VOID **) &ComponentName
);
if (!EFI_ERROR (Status)) {
gBS->UninstallProtocolInterface (
ImageHandle,
&gEfiComponentNameProtocolGuid,
ComponentName
);
}
Status = gBS->HandleProtocol (
DeviceHandleBuffer[Index],
&gEfiComponentName2ProtocolGuid,
(VOID **) &ComponentName2
);
if (!EFI_ERROR (Status)) {
gBS->UninstallProtocolInterface (
ImageHandle,
&gEfiComponentName2ProtocolGuid,
ComponentName2
);
}
}
//
// Free the buffer containing the list of handles from the handle database
//
if (DeviceHandleBuffer != NULL) {
gBS->FreePool (DeviceHandleBuffer);
}
return EFI_SUCCESS;
}
/**
Create a child of the service that is identified by ServiceBindingGuid.
@param Controller The controller which has the service installed.
@param Image The image handle used to open service.
@param ServiceBindingGuid The service's Guid.
@param ChildHandle The handle to receive the create child
@retval EFI_SUCCESS The child is successfully created.
@retval Others Failed to create the child.
**/
EFI_STATUS
NetLibCreateServiceChild (
IN EFI_HANDLE Controller,
IN EFI_HANDLE Image,
IN EFI_GUID *ServiceBindingGuid,
OUT EFI_HANDLE *ChildHandle
)
{
EFI_STATUS Status;
EFI_SERVICE_BINDING_PROTOCOL *Service;
ASSERT ((ServiceBindingGuid != NULL) && (ChildHandle != NULL));
//
// Get the ServiceBinding Protocol
//
Status = gBS->OpenProtocol (
Controller,
ServiceBindingGuid,
(VOID **) &Service,
Image,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Create a child
//
Status = Service->CreateChild (Service, ChildHandle);
return Status;
}
/**
Destory a child of the service that is identified by ServiceBindingGuid.
@param Controller The controller which has the service installed.
@param Image The image handle used to open service.
@param ServiceBindingGuid The service's Guid.
@param ChildHandle The child to destory
@retval EFI_SUCCESS The child is successfully destoried.
@retval Others Failed to destory the child.
**/
EFI_STATUS
NetLibDestroyServiceChild (
IN EFI_HANDLE Controller,
IN EFI_HANDLE Image,
IN EFI_GUID *ServiceBindingGuid,
IN EFI_HANDLE ChildHandle
)
{
EFI_STATUS Status;
EFI_SERVICE_BINDING_PROTOCOL *Service;
ASSERT (ServiceBindingGuid != NULL);
//
// Get the ServiceBinding Protocol
//
Status = gBS->OpenProtocol (
Controller,
ServiceBindingGuid,
(VOID **) &Service,
Image,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// destory the child
//
Status = Service->DestroyChild (Service, ChildHandle);
return Status;
}
/**
Convert the mac address of the simple network protocol installed on
SnpHandle to a unicode string. Callers are responsible for freeing the
string storage.
@param SnpHandle The handle where the simple network protocol is
installed on.
@param ImageHandle The image handle used to act as the agent handle to
get the simple network protocol.
@param MacString The pointer to store the address of the string
representation of the mac address.
@retval EFI_OUT_OF_RESOURCES There are not enough memory resource.
@retval other Failed to open the simple network protocol.
**/
EFI_STATUS
NetLibGetMacString (
IN EFI_HANDLE SnpHandle,
IN EFI_HANDLE ImageHandle,
IN OUT CHAR16 **MacString
)
{
EFI_STATUS Status;
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
EFI_SIMPLE_NETWORK_MODE *Mode;
CHAR16 *MacAddress;
UINTN Index;
*MacString = NULL;
//
// Get the Simple Network protocol from the SnpHandle.
//
Status = gBS->OpenProtocol (
SnpHandle,
&gEfiSimpleNetworkProtocolGuid,
(VOID **) &Snp,
ImageHandle,
SnpHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return Status;
}
Mode = Snp->Mode;
//
// It takes 2 unicode characters to represent a 1 byte binary buffer.
// Plus one unicode character for the null-terminator.
//
MacAddress = AllocatePool ((2 * Mode->HwAddressSize + 1) * sizeof (CHAR16));
if (MacAddress == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Convert the mac address into a unicode string.
//
for (Index = 0; Index < Mode->HwAddressSize; Index++) {
MacAddress[Index * 2] = NibbleToHexChar ((UINT8) (Mode->CurrentAddress.Addr[Index] >> 4));
MacAddress[Index * 2 + 1] = NibbleToHexChar (Mode->CurrentAddress.Addr[Index]);
}
MacAddress[Mode->HwAddressSize * 2] = L'\0';
*MacString = MacAddress;
return EFI_SUCCESS;
}
/**
Check the default address used by the IPv4 driver is static or dynamic (acquired
from DHCP).
@param Controller The controller handle which has the NIC Ip4 Config Protocol
relative with the default address to judge.
@retval TRUE If the default address is static.
@retval FALSE If the default address is acquired from DHCP.
**/
STATIC
BOOLEAN
NetLibDefaultAddressIsStatic (
IN EFI_HANDLE Controller
)
{
EFI_STATUS Status;
EFI_NIC_IP4_CONFIG_PROTOCOL *NicIp4;
UINTN Len;
NIC_IP4_CONFIG_INFO *ConfigInfo;
BOOLEAN IsStatic;
Status = gBS->HandleProtocol (
Controller,
&gEfiNicIp4ConfigProtocolGuid,
(VOID **) &NicIp4
);
if (EFI_ERROR (Status)) {
return TRUE;
}
Len = 0;
Status = NicIp4->GetInfo (NicIp4, &Len, NULL);
if (Status != EFI_BUFFER_TOO_SMALL) {
return TRUE;
}
ConfigInfo = AllocatePool (Len);
if (ConfigInfo == NULL) {
return TRUE;
}
IsStatic = TRUE;
Status = NicIp4->GetInfo (NicIp4, &Len, ConfigInfo);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
IsStatic = (BOOLEAN) (ConfigInfo->Source == IP4_CONFIG_SOURCE_STATIC);
ON_EXIT:
gBS->FreePool (ConfigInfo);
return IsStatic;
}
/**
Create an IPv4 device path node.
@param Node Pointer to the IPv4 device path node.
@param Controller The handle where the NIC IP4 config protocol resides.
@param LocalIp The local IPv4 address.
@param LocalPort The local port.
@param RemoteIp The remote IPv4 address.
@param RemotePort The remote port.
@param Protocol The protocol type in the IP header.
@param UseDefaultAddress Whether this instance is using default address or not.
@retval None
**/
VOID
NetLibCreateIPv4DPathNode (
IN OUT IPv4_DEVICE_PATH *Node,
IN EFI_HANDLE Controller,
IN IP4_ADDR LocalIp,
IN UINT16 LocalPort,
IN IP4_ADDR RemoteIp,
IN UINT16 RemotePort,
IN UINT16 Protocol,
IN BOOLEAN UseDefaultAddress
)
{
Node->Header.Type = MESSAGING_DEVICE_PATH;
Node->Header.SubType = MSG_IPv4_DP;
SetDevicePathNodeLength (&Node->Header, 19);
CopyMem (&Node->LocalIpAddress, &LocalIp, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Node->RemoteIpAddress, &RemoteIp, sizeof (EFI_IPv4_ADDRESS));
Node->LocalPort = LocalPort;
Node->RemotePort = RemotePort;
Node->Protocol = Protocol;
if (!UseDefaultAddress) {
Node->StaticIpAddress = TRUE;
} else {
Node->StaticIpAddress = NetLibDefaultAddressIsStatic (Controller);
}
}
/**
Find the UNDI/SNP handle from controller and protocol GUID.
For example, IP will open a MNP child to transmit/receive
packets, when MNP is stopped, IP should also be stopped. IP
needs to find its own private data which is related the IP's
service binding instance that is install on UNDI/SNP handle.
Now, the controller is either a MNP or ARP child handle. But
IP opens these handle BY_DRIVER, use that info, we can get the
UNDI/SNP handle.
@param Controller Then protocol handle to check
@param ProtocolGuid The protocol that is related with the handle.
@return The UNDI/SNP handle or NULL.
**/
EFI_HANDLE
NetLibGetNicHandle (
IN EFI_HANDLE Controller,
IN EFI_GUID *ProtocolGuid
)
{
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenBuffer;
EFI_HANDLE Handle;
EFI_STATUS Status;
UINTN OpenCount;
UINTN Index;
Status = gBS->OpenProtocolInformation (
Controller,
ProtocolGuid,
&OpenBuffer,
&OpenCount
);
if (EFI_ERROR (Status)) {
return NULL;
}
Handle = NULL;
for (Index = 0; Index < OpenCount; Index++) {
if (OpenBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_DRIVER) {
Handle = OpenBuffer[Index].ControllerHandle;
break;
}
}
gBS->FreePool (OpenBuffer);
return Handle;
}
/**
Add a Deferred Procedure Call to the end of the DPC queue.
@DpcTpl The EFI_TPL that the DPC should be invoked.
@DpcProcedure Pointer to the DPC's function.
@DpcContext Pointer to the DPC's context. Passed to DpcProcedure
when DpcProcedure is invoked.
@retval EFI_SUCCESS The DPC was queued.
@retval EFI_INVALID_PARAMETER DpcTpl is not a valid EFI_TPL.
DpcProcedure is NULL.
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to
add the DPC to the queue.
**/
EFI_STATUS
NetLibQueueDpc (
IN EFI_TPL DpcTpl,
IN EFI_DPC_PROCEDURE DpcProcedure,
IN VOID *DpcContext OPTIONAL
)
{
return mDpc->QueueDpc (mDpc, DpcTpl, DpcProcedure, DpcContext);
}
/**
Add a Deferred Procedure Call to the end of the DPC queue.
@retval EFI_SUCCESS One or more DPCs were invoked.
@retval EFI_NOT_FOUND No DPCs were invoked.
**/
EFI_STATUS
NetLibDispatchDpc (
VOID
)
{
return mDpc->DispatchDpc(mDpc);
}
/**
The constructor function caches the pointer to DPC protocol.
The constructor function locates DPC protocol from protocol database.
It will ASSERT() if that operation fails and it will always return EFI_SUCCESS.
@param ImageHandle The firmware allocated handle for the EFI image.
@param SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The constructor always returns EFI_SUCCESS.
**/
EFI_STATUS
EFIAPI
NetLibConstructor (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
Status = gBS->LocateProtocol (&gEfiDpcProtocolGuid, NULL, (VOID**) &mDpc);
ASSERT_EFI_ERROR (Status);
ASSERT (mDpc != NULL);
return Status;
}