audk/QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei/meminit.c

2645 lines
99 KiB
C

/************************************************************************
*
* Copyright (c) 2013-2015 Intel Corporation.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
* This file contains all of the Cat Mountain Memory Reference Code (MRC).
*
* These functions are generic and should work for any Cat Mountain config.
*
* MRC requires two data structures to be passed in which are initialised by "PreMemInit()".
*
* The basic flow is as follows:
* 01) Check for supported DDR speed configuration
* 02) Set up MEMORY_MANAGER buffer as pass-through (POR)
* 03) Set Channel Interleaving Mode and Channel Stride to the most aggressive setting possible
* 04) Set up the MCU logic
* 05) Set up the DDR_PHY logic
* 06) Initialise the DRAMs (JEDEC)
* 07) Perform the Receive Enable Calibration algorithm
* 08) Perform the Write Leveling algorithm
* 09) Perform the Read Training algorithm (includes internal Vref)
* 10) Perform the Write Training algorithm
* 11) Set Channel Interleaving Mode and Channel Stride to the desired settings
*
* Dunit configuration based on Valleyview MRC.
*
***************************************************************************/
#include "mrc.h"
#include "memory_options.h"
#include "meminit.h"
#include "meminit_utils.h"
#include "hte.h"
#include "io.h"
// Override ODT to off state if requested
#define DRMC_DEFAULT (mrc_params->rd_odt_value==0?BIT12:0)
// tRFC values (in picoseconds) per density
const uint32_t tRFC[5] =
{
90000, // 512Mb
110000, // 1Gb
160000, // 2Gb
300000, // 4Gb
350000, // 8Gb
};
// tCK clock period in picoseconds per speed index 800, 1066, 1333
const uint32_t tCK[3] =
{
2500,
1875,
1500
};
#ifdef SIM
// Select static timings specific to simulation environment
#define PLATFORM_ID 0
#else
// Select static timings specific to ClantonPeek platform
#define PLATFORM_ID 1
#endif
// Global variables
const uint16_t ddr_wclk[] =
{193, 158};
const uint16_t ddr_wctl[] =
{ 1, 217};
const uint16_t ddr_wcmd[] =
{ 1, 220};
#ifdef BACKUP_RCVN
const uint16_t ddr_rcvn[] =
{129, 498};
#endif // BACKUP_RCVN
#ifdef BACKUP_WDQS
const uint16_t ddr_wdqs[] =
{ 65, 289};
#endif // BACKUP_WDQS
#ifdef BACKUP_RDQS
const uint8_t ddr_rdqs[] =
{ 32, 24};
#endif // BACKUP_RDQS
#ifdef BACKUP_WDQ
const uint16_t ddr_wdq[] =
{ 32, 257};
#endif // BACKUP_WDQ
// Select MEMORY_MANAGER as the source for PRI interface
static void select_memory_manager(
MRCParams_t *mrc_params)
{
RegDCO Dco;
ENTERFN();
Dco.raw = isbR32m(MCU, DCO);
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER
isbW32m(MCU, DCO, Dco.raw);
LEAVEFN();
}
// Select HTE as the source for PRI interface
void select_hte(
MRCParams_t *mrc_params)
{
RegDCO Dco;
ENTERFN();
Dco.raw = isbR32m(MCU, DCO);
Dco.field.PMICTL = 1; //1 - PRI owned by HTE
isbW32m(MCU, DCO, Dco.raw);
LEAVEFN();
}
// Send DRAM command, data should be formated
// using DCMD_Xxxx macro or emrsXCommand structure.
static void dram_init_command(
uint32_t data)
{
Wr32(DCMD, 0, data);
}
// Send DRAM wake command using special MCU side-band WAKE opcode
static void dram_wake_command(
void)
{
ENTERFN();
Wr32(MMIO, PCIADDR(0,0,0,SB_PACKET_REG),
(uint32_t) SB_COMMAND(SB_WAKE_CMND_OPCODE, MCU, 0));
LEAVEFN();
}
// Stop self refresh driven by MCU
static void clear_self_refresh(
MRCParams_t *mrc_params)
{
ENTERFN();
// clear the PMSTS Channel Self Refresh bits
isbM32m(MCU, PMSTS, BIT0, BIT0);
LEAVEFN();
}
// Configure MCU before jedec init sequence
static void prog_decode_before_jedec(
MRCParams_t *mrc_params)
{
RegDRP Drp;
RegDRCF Drfc;
RegDCAL Dcal;
RegDSCH Dsch;
RegDPMC0 Dpmc0;
ENTERFN();
// Disable power saving features
Dpmc0.raw = isbR32m(MCU, DPMC0);
Dpmc0.field.CLKGTDIS = 1;
Dpmc0.field.DISPWRDN = 1;
Dpmc0.field.DYNSREN = 0;
Dpmc0.field.PCLSTO = 0;
isbW32m(MCU, DPMC0, Dpmc0.raw);
// Disable out of order transactions
Dsch.raw = isbR32m(MCU, DSCH);
Dsch.field.OOODIS = 1;
Dsch.field.NEWBYPDIS = 1;
isbW32m(MCU, DSCH, Dsch.raw);
// Disable issuing the REF command
Drfc.raw = isbR32m(MCU, DRFC);
Drfc.field.tREFI = 0;
isbW32m(MCU, DRFC, Drfc.raw);
// Disable ZQ calibration short
Dcal.raw = isbR32m(MCU, DCAL);
Dcal.field.ZQCINT = 0;
Dcal.field.SRXZQCL = 0;
isbW32m(MCU, DCAL, Dcal.raw);
// Training performed in address mode 0, rank population has limited impact, however
// simulator complains if enabled non-existing rank.
Drp.raw = 0;
if (mrc_params->rank_enables & 1)
Drp.field.rank0Enabled = 1;
if (mrc_params->rank_enables & 2)
Drp.field.rank1Enabled = 1;
isbW32m(MCU, DRP, Drp.raw);
LEAVEFN();
}
// After Cold Reset, BIOS should set COLDWAKE bit to 1 before
// sending the WAKE message to the Dunit.
// For Standby Exit, or any other mode in which the DRAM is in
// SR, this bit must be set to 0.
static void perform_ddr_reset(
MRCParams_t *mrc_params)
{
ENTERFN();
// Set COLDWAKE bit before sending the WAKE message
isbM32m(MCU, DRMC, BIT16, BIT16);
// Send wake command to DUNIT (MUST be done before JEDEC)
dram_wake_command();
// Set default value
isbW32m(MCU, DRMC, DRMC_DEFAULT);
LEAVEFN();
}
// Dunit Initialisation Complete.
// Indicates that initialisation of the Dunit has completed.
// Memory accesses are permitted and maintenance operation
// begins. Until this bit is set to a 1, the memory controller will
// not accept DRAM requests from the MEMORY_MANAGER or HTE.
static void set_ddr_init_complete(
MRCParams_t *mrc_params)
{
RegDCO Dco;
ENTERFN();
Dco.raw = isbR32m(MCU, DCO);
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER
Dco.field.IC = 1; //1 - initialisation complete
isbW32m(MCU, DCO, Dco.raw);
LEAVEFN();
}
static void prog_page_ctrl(
MRCParams_t *mrc_params)
{
RegDPMC0 Dpmc0;
ENTERFN();
Dpmc0.raw = isbR32m(MCU, DPMC0);
Dpmc0.field.PCLSTO = 0x4;
Dpmc0.field.PREAPWDEN = 1;
isbW32m(MCU, DPMC0, Dpmc0.raw);
}
// Configure MCU Power Management Control Register
// and Scheduler Control Register.
static void prog_ddr_control(
MRCParams_t *mrc_params)
{
RegDSCH Dsch;
RegDPMC0 Dpmc0;
ENTERFN();
Dpmc0.raw = isbR32m(MCU, DPMC0);
Dsch.raw = isbR32m(MCU, DSCH);
Dpmc0.field.DISPWRDN = mrc_params->power_down_disable;
Dpmc0.field.CLKGTDIS = 0;
Dpmc0.field.PCLSTO = 4;
Dpmc0.field.PREAPWDEN = 1;
Dsch.field.OOODIS = 0;
Dsch.field.OOOST3DIS = 0;
Dsch.field.NEWBYPDIS = 0;
isbW32m(MCU, DSCH, Dsch.raw);
isbW32m(MCU, DPMC0, Dpmc0.raw);
// CMDTRIST = 2h - CMD/ADDR are tristated when no valid command
isbM32m(MCU, DPMC1, 2 << 4, BIT5|BIT4);
LEAVEFN();
}
// After training complete configure MCU Rank Population Register
// specifying: ranks enabled, device width, density, address mode.
static void prog_dra_drb(
MRCParams_t *mrc_params)
{
RegDRP Drp;
RegDCO Dco;
ENTERFN();
Dco.raw = isbR32m(MCU, DCO);
Dco.field.IC = 0;
isbW32m(MCU, DCO, Dco.raw);
Drp.raw = 0;
if (mrc_params->rank_enables & 1)
Drp.field.rank0Enabled = 1;
if (mrc_params->rank_enables & 2)
Drp.field.rank1Enabled = 1;
if (mrc_params->dram_width == x16)
{
Drp.field.dimm0DevWidth = 1;
Drp.field.dimm1DevWidth = 1;
}
// Density encoding in DRAMParams_t 0=512Mb, 1=Gb, 2=2Gb, 3=4Gb
// has to be mapped RANKDENSx encoding (0=1Gb)
Drp.field.dimm0DevDensity = mrc_params->params.DENSITY - 1;
Drp.field.dimm1DevDensity = mrc_params->params.DENSITY - 1;
// Address mode can be overwritten if ECC enabled
Drp.field.addressMap = mrc_params->address_mode;
isbW32m(MCU, DRP, Drp.raw);
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER
Dco.field.IC = 1; //1 - initialisation complete
isbW32m(MCU, DCO, Dco.raw);
LEAVEFN();
}
// Configure refresh rate and short ZQ calibration interval.
// Activate dynamic self refresh.
static void change_refresh_period(
MRCParams_t *mrc_params)
{
RegDRCF Drfc;
RegDCAL Dcal;
RegDPMC0 Dpmc0;
ENTERFN();
Drfc.raw = isbR32m(MCU, DRFC);
Drfc.field.tREFI = mrc_params->refresh_rate;
Drfc.field.REFDBTCLR = 1;
isbW32m(MCU, DRFC, Drfc.raw);
Dcal.raw = isbR32m(MCU, DCAL);
Dcal.field.ZQCINT = 3; // 63ms
isbW32m(MCU, DCAL, Dcal.raw);
Dpmc0.raw = isbR32m(MCU, DPMC0);
Dpmc0.field.ENPHYCLKGATE = 1;
Dpmc0.field.DYNSREN = 1;
isbW32m(MCU, DPMC0, Dpmc0.raw);
LEAVEFN();
}
// Send DRAM wake command
static void perform_wake(
MRCParams_t *mrc_params)
{
ENTERFN();
dram_wake_command();
LEAVEFN();
}
// prog_ddr_timing_control (aka mcu_init):
// POST_CODE[major] == 0x02
//
// It will initialise timing registers in the MCU (DTR0..DTR4).
static void prog_ddr_timing_control(
MRCParams_t *mrc_params)
{
uint8_t TCL, WL;
uint8_t TRP, TRCD, TRAS, TWR, TWTR, TRRD, TRTP, TFAW;
uint32_t TCK;
RegDTR0 Dtr0;
RegDTR1 Dtr1;
RegDTR2 Dtr2;
RegDTR3 Dtr3;
RegDTR4 Dtr4;
ENTERFN();
// mcu_init starts
post_code(0x02, 0x00);
Dtr0.raw = isbR32m(MCU, DTR0);
Dtr1.raw = isbR32m(MCU, DTR1);
Dtr2.raw = isbR32m(MCU, DTR2);
Dtr3.raw = isbR32m(MCU, DTR3);
Dtr4.raw = isbR32m(MCU, DTR4);
TCK = tCK[mrc_params->ddr_speed]; // Clock in picoseconds
TCL = mrc_params->params.tCL; // CAS latency in clocks
TRP = TCL; // Per CAT MRC
TRCD = TCL; // Per CAT MRC
TRAS = MCEIL(mrc_params->params.tRAS, TCK);
TWR = MCEIL(15000, TCK); // Per JEDEC: tWR=15000ps DDR2/3 from 800-1600
TWTR = MCEIL(mrc_params->params.tWTR, TCK);
TRRD = MCEIL(mrc_params->params.tRRD, TCK);
TRTP = 4; // Valid for 800 and 1066, use 5 for 1333
TFAW = MCEIL(mrc_params->params.tFAW, TCK);
WL = 5 + mrc_params->ddr_speed;
Dtr0.field.dramFrequency = mrc_params->ddr_speed;
Dtr0.field.tCL = TCL - 5; //Convert from TCL (DRAM clocks) to VLV indx
Dtr0.field.tRP = TRP - 5; //5 bit DRAM Clock
Dtr0.field.tRCD = TRCD - 5; //5 bit DRAM Clock
Dtr1.field.tWCL = WL - 3; //Convert from WL (DRAM clocks) to VLV indx
Dtr1.field.tWTP = WL + 4 + TWR - 14; //Change to tWTP
Dtr1.field.tRTP = MMAX(TRTP, 4) - 3; //4 bit DRAM Clock
Dtr1.field.tRRD = TRRD - 4; //4 bit DRAM Clock
Dtr1.field.tCMD = 1; //2N
Dtr1.field.tRAS = TRAS - 14; //6 bit DRAM Clock
Dtr1.field.tFAW = ((TFAW + 1) >> 1) - 5; //4 bit DRAM Clock
Dtr1.field.tCCD = 0; //Set 4 Clock CAS to CAS delay (multi-burst)
Dtr2.field.tRRDR = 1;
Dtr2.field.tWWDR = 2;
Dtr2.field.tRWDR = 2;
Dtr3.field.tWRDR = 2;
Dtr3.field.tWRDD = 2;
if (mrc_params->ddr_speed == DDRFREQ_800)
{
// Extended RW delay (+1)
Dtr3.field.tRWSR = TCL - 5 + 1;
}
else if(mrc_params->ddr_speed == DDRFREQ_1066)
{
// Extended RW delay (+1)
Dtr3.field.tRWSR = TCL - 5 + 1;
}
Dtr3.field.tWRSR = 4 + WL + TWTR - 11;
if (mrc_params->ddr_speed == DDRFREQ_800)
{
Dtr3.field.tXP = MMAX(0, 1 - Dtr1.field.tCMD);
}
else
{
Dtr3.field.tXP = MMAX(0, 2 - Dtr1.field.tCMD);
}
Dtr4.field.WRODTSTRT = Dtr1.field.tCMD;
Dtr4.field.WRODTSTOP = Dtr1.field.tCMD;
Dtr4.field.RDODTSTRT = Dtr1.field.tCMD + Dtr0.field.tCL - Dtr1.field.tWCL + 2; //Convert from WL (DRAM clocks) to VLV indx
Dtr4.field.RDODTSTOP = Dtr1.field.tCMD + Dtr0.field.tCL - Dtr1.field.tWCL + 2;
Dtr4.field.TRGSTRDIS = 0;
Dtr4.field.ODTDIS = 0;
isbW32m(MCU, DTR0, Dtr0.raw);
isbW32m(MCU, DTR1, Dtr1.raw);
isbW32m(MCU, DTR2, Dtr2.raw);
isbW32m(MCU, DTR3, Dtr3.raw);
isbW32m(MCU, DTR4, Dtr4.raw);
LEAVEFN();
}
// ddrphy_init:
// POST_CODE[major] == 0x03
//
// This function performs some initialisation on the DDRIO unit.
// This function is dependent on BOARD_ID, DDR_SPEED, and CHANNEL_ENABLES.
static void ddrphy_init(MRCParams_t *mrc_params)
{
uint32_t tempD; // temporary DWORD
uint8_t channel_i; // channel counter
uint8_t rank_i; // rank counter
uint8_t bl_grp_i; // byte lane group counter (2 BLs per module)
uint8_t bl_divisor = /*(mrc_params->channel_width==x16)?2:*/1; // byte lane divisor
uint8_t speed = mrc_params->ddr_speed & (BIT1|BIT0); // For DDR3 --> 0 == 800, 1 == 1066, 2 == 1333
uint8_t tCAS;
uint8_t tCWL;
ENTERFN();
tCAS = mrc_params->params.tCL;
tCWL = 5 + mrc_params->ddr_speed;
// ddrphy_init starts
post_code(0x03, 0x00);
// HSD#231531
// Make sure IOBUFACT is deasserted before initialising the DDR PHY.
// HSD#234845
// Make sure WRPTRENABLE is deasserted before initialising the DDR PHY.
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// Deassert DDRPHY Initialisation Complete
isbM32m(DDRPHY, (CMDPMCONFIG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ~BIT20, BIT20); // SPID_INIT_COMPLETE=0
// Deassert IOBUFACT
isbM32m(DDRPHY, (CMDCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ~BIT2, BIT2); // IOBUFACTRST_N=0
// Disable WRPTR
isbM32m(DDRPHY, (CMDPTRREG + (channel_i * DDRIOCCC_CH_OFFSET)), ~BIT0, BIT0); // WRPTRENABLE=0
} // if channel enabled
} // channel_i loop
// Put PHY in reset
isbM32m(DDRPHY, MASTERRSTN, 0, BIT0); // PHYRSTN=0
// Initialise DQ01,DQ23,CMD,CLK-CTL,COMP modules
// STEP0:
post_code(0x03, 0x10);
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// DQ01-DQ23
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) {
isbM32m(DDRPHY, (DQOBSCKEBBCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((bl_grp_i) ? (0x00) : (BIT22)), (BIT22)); // Analog MUX select - IO2xCLKSEL
// ODT Strength
switch (mrc_params->rd_odt_value) {
case 1: tempD = 0x3; break; // 60 ohm
case 2: tempD = 0x3; break; // 120 ohm
case 3: tempD = 0x3; break; // 180 ohm
default: tempD = 0x3; break; // 120 ohm
}
isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD<<5), (BIT6|BIT5)); // ODT strength
isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD<<5), (BIT6|BIT5)); // ODT strength
// Dynamic ODT/DIFFAMP
tempD = (((tCAS)<<24)|((tCAS)<<16)|((tCAS)<<8)|((tCAS)<<0));
switch (speed) {
case 0: tempD -= 0x01010101; break; // 800
case 1: tempD -= 0x02020202; break; // 1066
case 2: tempD -= 0x03030303; break; // 1333
case 3: tempD -= 0x04040404; break; // 1600
}
isbM32m(DDRPHY, (B01LATCTL1 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // Launch Time: ODT, DIFFAMP, ODT, DIFFAMP
switch (speed) {
// HSD#234715
case 0: tempD = ((0x06<<16)|(0x07<<8)); break; // 800
case 1: tempD = ((0x07<<16)|(0x08<<8)); break; // 1066
case 2: tempD = ((0x09<<16)|(0x0A<<8)); break; // 1333
case 3: tempD = ((0x0A<<16)|(0x0B<<8)); break; // 1600
}
isbM32m(DDRPHY, (B0ONDURCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8))); // On Duration: ODT, DIFFAMP
isbM32m(DDRPHY, (B1ONDURCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8))); // On Duration: ODT, DIFFAMP
switch (mrc_params->rd_odt_value) {
case 0: tempD = ((0x3F<<16)|(0x3f<<10)); break; // override DIFFAMP=on, ODT=off
default: tempD = ((0x3F<<16)|(0x2A<<10)); break; // override DIFFAMP=on, ODT=on
}
isbM32m(DDRPHY, (B0OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT
isbM32m(DDRPHY, (B1OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT
// DLL Setup
// 1xCLK Domain Timings: tEDP,RCVEN,WDQS (PO)
isbM32m(DDRPHY, (B0LATCTL0 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (((tCAS+7)<<16)|((tCAS-4)<<8)|((tCWL-2)<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // 1xCLK: tEDP, RCVEN, WDQS
isbM32m(DDRPHY, (B1LATCTL0 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (((tCAS+7)<<16)|((tCAS-4)<<8)|((tCWL-2)<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // 1xCLK: tEDP, RCVEN, WDQS
// RCVEN Bypass (PO)
isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x0<<7)|(0x0<<0)), (BIT7|BIT0)); // AFE Bypass, RCVEN DIFFAMP
isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x0<<7)|(0x0<<0)), (BIT7|BIT0)); // AFE Bypass, RCVEN DIFFAMP
// TX
isbM32m(DDRPHY, (DQCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT16), (BIT16)); // 0 means driving DQ during DQS-preamble
isbM32m(DDRPHY, (B01PTRCTL1 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT8), (BIT8)); // WR_LVL mode disable
// RX (PO)
isbM32m(DDRPHY, (B0VREFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x03<<2)|(0x0<<1)|(0x0<<0)), ((BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)|BIT1|BIT0)); // Internal Vref Code, Enable#, Ext_or_Int (1=Ext)
isbM32m(DDRPHY, (B1VREFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x03<<2)|(0x0<<1)|(0x0<<0)), ((BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)|BIT1|BIT0)); // Internal Vref Code, Enable#, Ext_or_Int (1=Ext)
isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (0), (BIT4)); // Per-Bit De-Skew Enable
isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (0), (BIT4)); // Per-Bit De-Skew Enable
}
// CLKEBB
isbM32m(DDRPHY, (CMDOBSCKEBBCTL + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT23));
// Enable tristate control of cmd/address bus
isbM32m(DDRPHY, (CMDCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT1|BIT0));
// ODT RCOMP
isbM32m(DDRPHY, (CMDRCOMPODT + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x03<<5)|(0x03<<0)), ((BIT9|BIT8|BIT7|BIT6|BIT5)|(BIT4|BIT3|BIT2|BIT1|BIT0)));
// CMDPM* registers must be programmed in this order...
isbM32m(DDRPHY, (CMDPMDLYREG4 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFFFU<<16)|(0xFFFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8|BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn On Delays: SFR (regulator), MPLL
isbM32m(DDRPHY, (CMDPMDLYREG3 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFU<<28)|(0xFFF<<16)|(0xF<<12)|(0x616<<0)), ((BIT31|BIT30|BIT29|BIT28)|(BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8|BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Delays: ASSERT_IOBUFACT_to_ALLON0_for_PM_MSG_3, VREG (MDLL) Turn On, ALLON0_to_DEASSERT_IOBUFACT_for_PM_MSG_gt0, MDLL Turn On
isbM32m(DDRPHY, (CMDPMDLYREG2 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // MPLL Divider Reset Delays
isbM32m(DDRPHY, (CMDPMDLYREG1 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn Off Delays: VREG, Staggered MDLL, MDLL, PI
isbM32m(DDRPHY, (CMDPMDLYREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn On Delays: MPLL, Staggered MDLL, PI, IOBUFACT
isbM32m(DDRPHY, (CMDPMCONFIG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x6<<8)|BIT6|(0x4<<0)), (BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|(BIT11|BIT10|BIT9|BIT8)|BIT6|(BIT3|BIT2|BIT1|BIT0))); // Allow PUnit signals
isbM32m(DDRPHY, (CMDMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x3<<4)|(0x7<<0)), ((BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DLL_VREG Bias Trim, VREF Tuning for DLL_VREG
// CLK-CTL
isbM32m(DDRPHY, (CCOBSCKEBBCTL + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT24)); // CLKEBB
isbM32m(DDRPHY, (CCCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x0<<16)|(0x0<<12)|(0x0<<8)|(0xF<<4)|BIT0), ((BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|BIT0)); // Buffer Enable: CS,CKE,ODT,CLK
isbM32m(DDRPHY, (CCRCOMPODT + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x03<<8)|(0x03<<0)), ((BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT RCOMP
isbM32m(DDRPHY, (CCMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x3<<4)|(0x7<<0)), ((BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DLL_VREG Bias Trim, VREF Tuning for DLL_VREG
// COMP (RON channel specific)
// - DQ/DQS/DM RON: 32 Ohm
// - CTRL/CMD RON: 27 Ohm
// - CLK RON: 26 Ohm
isbM32m(DDRPHY, (DQVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x08<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD
isbM32m(DDRPHY, (CMDVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0C<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD
isbM32m(DDRPHY, (CLKVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0F<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD
isbM32m(DDRPHY, (DQSVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x08<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD
isbM32m(DDRPHY, (CTLVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0C<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD
// DQS Swapped Input Enable
isbM32m(DDRPHY, (COMPEN1CH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT19|BIT17), ((BIT31|BIT30)|BIT19|BIT17|(BIT15|BIT14)));
// ODT VREF = 1.5 x 274/360+274 = 0.65V (code of ~50)
isbM32m(DDRPHY, (DQVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x32<<8)|(0x03<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD
isbM32m(DDRPHY, (DQSVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x32<<8)|(0x03<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD
isbM32m(DDRPHY, (CLKVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0E<<8)|(0x05<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD
// Slew rate settings are frequency specific, numbers below are for 800Mhz (speed == 0)
// - DQ/DQS/DM/CLK SR: 4V/ns,
// - CTRL/CMD SR: 1.5V/ns
tempD = (0x0E<<16)|(0x0E<<12)|(0x08<<8)|(0x0B<<4)|(0x0B<<0);
isbM32m(DDRPHY, (DLYSELCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (tempD), ((BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DCOMP Delay Select: CTL,CMD,CLK,DQS,DQ
isbM32m(DDRPHY, (TCOVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x05<<16)|(0x05<<8)|(0x05<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // TCO Vref CLK,DQS,DQ
isbM32m(DDRPHY, (CCBUFODTCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x03<<8)|(0x03<<0)), ((BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // ODTCOMP CMD/CTL PU/PD
isbM32m(DDRPHY, (COMPEN0CH0 + (channel_i * DDRCOMP_CH_OFFSET)), (0), ((BIT31|BIT30)|BIT8)); // COMP
#ifdef BACKUP_COMPS
// DQ COMP Overrides
isbM32m(DDRPHY, (DQDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU
isbM32m(DDRPHY, (DQDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD
isbM32m(DDRPHY, (DQDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU
isbM32m(DDRPHY, (DQDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD
isbM32m(DDRPHY, (DQODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU
isbM32m(DDRPHY, (DQODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD
isbM32m(DDRPHY, (DQTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU
isbM32m(DDRPHY, (DQTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD
// DQS COMP Overrides
isbM32m(DDRPHY, (DQSDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU
isbM32m(DDRPHY, (DQSDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD
isbM32m(DDRPHY, (DQSDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU
isbM32m(DDRPHY, (DQSDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD
isbM32m(DDRPHY, (DQSODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU
isbM32m(DDRPHY, (DQSODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD
isbM32m(DDRPHY, (DQSTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU
isbM32m(DDRPHY, (DQSTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD
// CLK COMP Overrides
isbM32m(DDRPHY, (CLKDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0C<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU
isbM32m(DDRPHY, (CLKDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0C<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD
isbM32m(DDRPHY, (CLKDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x07<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU
isbM32m(DDRPHY, (CLKDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x07<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD
isbM32m(DDRPHY, (CLKODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU
isbM32m(DDRPHY, (CLKODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD
isbM32m(DDRPHY, (CLKTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU
isbM32m(DDRPHY, (CLKTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD
// CMD COMP Overrides
isbM32m(DDRPHY, (CMDDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU
isbM32m(DDRPHY, (CMDDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD
isbM32m(DDRPHY, (CMDDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU
isbM32m(DDRPHY, (CMDDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD
// CTL COMP Overrides
isbM32m(DDRPHY, (CTLDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU
isbM32m(DDRPHY, (CTLDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD
isbM32m(DDRPHY, (CTLDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU
isbM32m(DDRPHY, (CTLDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD
#else
// DQ TCOCOMP Overrides
isbM32m(DDRPHY, (DQTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU
isbM32m(DDRPHY, (DQTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD
// DQS TCOCOMP Overrides
isbM32m(DDRPHY, (DQSTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU
isbM32m(DDRPHY, (DQSTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD
// CLK TCOCOMP Overrides
isbM32m(DDRPHY, (CLKTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU
isbM32m(DDRPHY, (CLKTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD
#endif // BACKUP_COMPS
// program STATIC delays
#ifdef BACKUP_WCMD
set_wcmd(channel_i, ddr_wcmd[PLATFORM_ID]);
#else
set_wcmd(channel_i, ddr_wclk[PLATFORM_ID] + HALF_CLK);
#endif // BACKUP_WCMD
for (rank_i=0; rank_i<NUM_RANKS; rank_i++) {
if (mrc_params->rank_enables & (1<<rank_i)) {
set_wclk(channel_i, rank_i, ddr_wclk[PLATFORM_ID]);
#ifdef BACKUP_WCTL
set_wctl(channel_i, rank_i, ddr_wctl[PLATFORM_ID]);
#else
set_wctl(channel_i, rank_i, ddr_wclk[PLATFORM_ID] + HALF_CLK);
#endif // BACKUP_WCTL
}
}
}
}
// COMP (non channel specific)
//isbM32m(DDRPHY, (), (), ());
isbM32m(DDRPHY, (DQANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable
isbM32m(DDRPHY, (DQANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable
isbM32m(DDRPHY, (CMDANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable
isbM32m(DDRPHY, (CMDANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable
isbM32m(DDRPHY, (CLKANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable
isbM32m(DDRPHY, (CLKANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable
isbM32m(DDRPHY, (DQSANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable
isbM32m(DDRPHY, (DQSANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable
isbM32m(DDRPHY, (CTLANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable
isbM32m(DDRPHY, (CTLANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable
isbM32m(DDRPHY, (DQANAODTPUCTL), (BIT30), (BIT30)); // ODT: Dither PU Enable
isbM32m(DDRPHY, (DQANAODTPDCTL), (BIT30), (BIT30)); // ODT: Dither PD Enable
isbM32m(DDRPHY, (CLKANAODTPUCTL), (BIT30), (BIT30)); // ODT: Dither PU Enable
isbM32m(DDRPHY, (CLKANAODTPDCTL), (BIT30), (BIT30)); // ODT: Dither PD Enable
isbM32m(DDRPHY, (DQSANAODTPUCTL), (BIT30), (BIT30)); // ODT: Dither PU Enable
isbM32m(DDRPHY, (DQSANAODTPDCTL), (BIT30), (BIT30)); // ODT: Dither PD Enable
isbM32m(DDRPHY, (DQANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable
isbM32m(DDRPHY, (DQANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable
isbM32m(DDRPHY, (CMDANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable
isbM32m(DDRPHY, (CMDANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable
isbM32m(DDRPHY, (CLKANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable
isbM32m(DDRPHY, (CLKANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable
isbM32m(DDRPHY, (DQSANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable
isbM32m(DDRPHY, (DQSANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable
isbM32m(DDRPHY, (CTLANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable
isbM32m(DDRPHY, (CTLANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable
isbM32m(DDRPHY, (DQANATCOPUCTL), (BIT30), (BIT30)); // TCO: Dither PU Enable
isbM32m(DDRPHY, (DQANATCOPDCTL), (BIT30), (BIT30)); // TCO: Dither PD Enable
isbM32m(DDRPHY, (CLKANATCOPUCTL), (BIT30), (BIT30)); // TCO: Dither PU Enable
isbM32m(DDRPHY, (CLKANATCOPDCTL), (BIT30), (BIT30)); // TCO: Dither PD Enable
isbM32m(DDRPHY, (DQSANATCOPUCTL), (BIT30), (BIT30)); // TCO: Dither PU Enable
isbM32m(DDRPHY, (DQSANATCOPDCTL), (BIT30), (BIT30)); // TCO: Dither PD Enable
isbM32m(DDRPHY, (TCOCNTCTRL), (0x1<<0), (BIT1|BIT0)); // TCOCOMP: Pulse Count
isbM32m(DDRPHY, (CHNLBUFSTATIC), ((0x03<<24)|(0x03<<16)), ((BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODT: CMD/CTL PD/PU
isbM32m(DDRPHY, (MSCNTR), (0x64<<0), (BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0)); // Set 1us counter
isbM32m(DDRPHY, (LATCH1CTL), (0x1<<28), (BIT30|BIT29|BIT28)); // ???
// Release PHY from reset
isbM32m(DDRPHY, MASTERRSTN, BIT0, BIT0); // PHYRSTN=1
// STEP1:
post_code(0x03, 0x11);
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// DQ01-DQ23
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) {
isbM32m(DDRPHY, (DQMDLLCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT13), (BIT13)); // Enable VREG
delay_n(3);
}
// ECC
isbM32m(DDRPHY, (ECCMDLLCTL), (BIT13), (BIT13)); // Enable VREG
delay_n(3);
// CMD
isbM32m(DDRPHY, (CMDMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT13), (BIT13)); // Enable VREG
delay_n(3);
// CLK-CTL
isbM32m(DDRPHY, (CCMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT13), (BIT13)); // Enable VREG
delay_n(3);
}
}
// STEP2:
post_code(0x03, 0x12);
delay_n(200);
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// DQ01-DQ23
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) {
isbM32m(DDRPHY, (DQMDLLCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT17), (BIT17)); // Enable MCDLL
delay_n(50);
}
// ECC
isbM32m(DDRPHY, (ECCMDLLCTL), (BIT17), (BIT17)); // Enable MCDLL
delay_n(50);
// CMD
isbM32m(DDRPHY, (CMDMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT18), (BIT18)); // Enable MCDLL
delay_n(50);
// CLK-CTL
isbM32m(DDRPHY, (CCMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT18), (BIT18)); // Enable MCDLL
delay_n(50);
}
}
// STEP3:
post_code(0x03, 0x13);
delay_n(100);
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// DQ01-DQ23
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) {
#ifdef FORCE_16BIT_DDRIO
tempD = ((bl_grp_i) && (mrc_params->channel_width == x16)) ? ((0x1<<12)|(0x1<<8)|(0xF<<4)|(0xF<<0)) : ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0));
#else
tempD = ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0));
#endif
isbM32m(DDRPHY, (DQDLLTXCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL
delay_n(3);
isbM32m(DDRPHY, (DQDLLRXCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT3|BIT2|BIT1|BIT0), (BIT3|BIT2|BIT1|BIT0)); // Enable RXDLL
delay_n(3);
isbM32m(DDRPHY, (B0OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT3|BIT2|BIT1|BIT0), (BIT3|BIT2|BIT1|BIT0)); // Enable RXDLL Overrides BL0
}
// ECC
tempD = ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0));
isbM32m(DDRPHY, (ECCDLLTXCTL), (tempD), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL
delay_n(3);
// CMD (PO)
isbM32m(DDRPHY, (CMDDLLTXCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0)), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL
delay_n(3);
}
}
// STEP4:
post_code(0x03, 0x14);
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// Host To Memory Clock Alignment (HMC) for 800/1066
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) {
isbM32m(DDRPHY, (DQCLKALIGNREG2 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((bl_grp_i)?(0x3):(0x1)), (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID
}
isbM32m(DDRPHY, (ECCCLKALIGNREG2 + (channel_i * DDRIODQ_CH_OFFSET)), 0x2, (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID
isbM32m(DDRPHY, (CMDCLKALIGNREG2 + (channel_i * DDRIODQ_CH_OFFSET)), 0x0, (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID
isbM32m(DDRPHY, (CCCLKALIGNREG2 + (channel_i * DDRIODQ_CH_OFFSET)), 0x2, (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID
isbM32m(DDRPHY, (CMDCLKALIGNREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), (0x2<<4), (BIT5|BIT4)); // CLK_ALIGN_MODE
isbM32m(DDRPHY, (CMDCLKALIGNREG1 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x18<<16)|(0x10<<8)|(0x8<<2)|(0x1<<0)), ((BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)|(BIT1|BIT0))); // NUM_SAMPLES, MAX_SAMPLES, MACRO_PI_STEP, MICRO_PI_STEP
isbM32m(DDRPHY, (CMDCLKALIGNREG2 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x10<<16)|(0x4<<8)|(0x2<<4)), ((BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4))); // ???, TOTAL_NUM_MODULES, FIRST_U_PARTITION
#ifdef HMC_TEST
isbM32m(DDRPHY, (CMDCLKALIGNREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), BIT24, BIT24); // START_CLK_ALIGN=1
while (isbR32m(DDRPHY, (CMDCLKALIGNREG0 + (channel_i * DDRIOCCC_CH_OFFSET))) & BIT24); // wait for START_CLK_ALIGN=0
#endif // HMC_TEST
// Set RD/WR Pointer Seperation & COUNTEN & FIFOPTREN
isbM32m(DDRPHY, (CMDPTRREG + (channel_i * DDRIOCCC_CH_OFFSET)), BIT0, BIT0); // WRPTRENABLE=1
#ifdef SIM
// comp is not working on simulator
#else
// COMP initial
isbM32m(DDRPHY, (COMPEN0CH0 + (channel_i * DDRCOMP_CH_OFFSET)), BIT5, BIT5); // enable bypass for CLK buffer (PO)
isbM32m(DDRPHY, (CMPCTRL), (BIT0), (BIT0)); // Initial COMP Enable
while (isbR32m(DDRPHY, (CMPCTRL)) & BIT0); // wait for Initial COMP Enable = 0
isbM32m(DDRPHY, (COMPEN0CH0 + (channel_i * DDRCOMP_CH_OFFSET)), ~BIT5, BIT5); // disable bypass for CLK buffer (PO)
#endif
// IOBUFACT
// STEP4a
isbM32m(DDRPHY, (CMDCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), BIT2, BIT2); // IOBUFACTRST_N=1
// DDRPHY initialisation complete
isbM32m(DDRPHY, (CMDPMCONFIG0 + (channel_i * DDRIOCCC_CH_OFFSET)), BIT20, BIT20); // SPID_INIT_COMPLETE=1
}
}
LEAVEFN();
return;
}
// jedec_init (aka PerformJedecInit):
// This function performs JEDEC initialisation on all enabled channels.
static void jedec_init(
MRCParams_t *mrc_params,
uint32_t silent)
{
uint8_t TWR, WL, Rank;
uint32_t TCK;
RegDTR0 DTR0reg;
DramInitDDR3MRS0 mrs0Command;
DramInitDDR3EMR1 emrs1Command;
DramInitDDR3EMR2 emrs2Command;
DramInitDDR3EMR3 emrs3Command;
ENTERFN();
// jedec_init starts
if (!silent)
{
post_code(0x04, 0x00);
}
// Assert RESET# for 200us
isbM32m(DDRPHY, CCDDR3RESETCTL, BIT1, (BIT8|BIT1)); // DDR3_RESET_SET=0, DDR3_RESET_RESET=1
#ifdef QUICKSIM
// Don't waste time during simulation
delay_u(2);
#else
delay_u(200);
#endif
isbM32m(DDRPHY, CCDDR3RESETCTL, BIT8, (BIT8|BIT1)); // DDR3_RESET_SET=1, DDR3_RESET_RESET=0
DTR0reg.raw = isbR32m(MCU, DTR0);
// Set CKEVAL for populated ranks
// then send NOP to each rank (#4550197)
{
uint32_t DRPbuffer;
uint32_t DRMCbuffer;
DRPbuffer = isbR32m(MCU, DRP);
DRPbuffer &= 0x3;
DRMCbuffer = isbR32m(MCU, DRMC);
DRMCbuffer &= 0xFFFFFFFC;
DRMCbuffer |= (BIT4 | DRPbuffer);
isbW32m(MCU, DRMC, DRMCbuffer);
for (Rank = 0; Rank < NUM_RANKS; Rank++)
{
// Skip to next populated rank
if ((mrc_params->rank_enables & (1 << Rank)) == 0)
{
continue;
}
dram_init_command(DCMD_NOP(Rank));
}
isbW32m(MCU, DRMC, DRMC_DEFAULT);
}
// setup for emrs 2
// BIT[15:11] --> Always "0"
// BIT[10:09] --> Rtt_WR: want "Dynamic ODT Off" (0)
// BIT[08] --> Always "0"
// BIT[07] --> SRT: use sr_temp_range
// BIT[06] --> ASR: want "Manual SR Reference" (0)
// BIT[05:03] --> CWL: use oem_tCWL
// BIT[02:00] --> PASR: want "Full Array" (0)
emrs2Command.raw = 0;
emrs2Command.field.bankAddress = 2;
WL = 5 + mrc_params->ddr_speed;
emrs2Command.field.CWL = WL - 5;
emrs2Command.field.SRT = mrc_params->sr_temp_range;
// setup for emrs 3
// BIT[15:03] --> Always "0"
// BIT[02] --> MPR: want "Normal Operation" (0)
// BIT[01:00] --> MPR_Loc: want "Predefined Pattern" (0)
emrs3Command.raw = 0;
emrs3Command.field.bankAddress = 3;
// setup for emrs 1
// BIT[15:13] --> Always "0"
// BIT[12:12] --> Qoff: want "Output Buffer Enabled" (0)
// BIT[11:11] --> TDQS: want "Disabled" (0)
// BIT[10:10] --> Always "0"
// BIT[09,06,02] --> Rtt_nom: use rtt_nom_value
// BIT[08] --> Always "0"
// BIT[07] --> WR_LVL: want "Disabled" (0)
// BIT[05,01] --> DIC: use ron_value
// BIT[04:03] --> AL: additive latency want "0" (0)
// BIT[00] --> DLL: want "Enable" (0)
//
// (BIT5|BIT1) set Ron value
// 00 --> RZQ/6 (40ohm)
// 01 --> RZQ/7 (34ohm)
// 1* --> RESERVED
//
// (BIT9|BIT6|BIT2) set Rtt_nom value
// 000 --> Disabled
// 001 --> RZQ/4 ( 60ohm)
// 010 --> RZQ/2 (120ohm)
// 011 --> RZQ/6 ( 40ohm)
// 1** --> RESERVED
emrs1Command.raw = 0;
emrs1Command.field.bankAddress = 1;
emrs1Command.field.dllEnabled = 0; // 0 = Enable , 1 = Disable
if (mrc_params->ron_value == 0)
{
emrs1Command.field.DIC0 = DDR3_EMRS1_DIC_34;
}
else
{
emrs1Command.field.DIC0 = DDR3_EMRS1_DIC_40;
}
if (mrc_params->rtt_nom_value == 0)
{
emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_40 << 6);
}
else if (mrc_params->rtt_nom_value == 1)
{
emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_60 << 6);
}
else if (mrc_params->rtt_nom_value == 2)
{
emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_120 << 6);
}
// save MRS1 value (excluding control fields)
mrc_params->mrs1 = emrs1Command.raw >> 6;
// setup for mrs 0
// BIT[15:13] --> Always "0"
// BIT[12] --> PPD: for Quark (1)
// BIT[11:09] --> WR: use oem_tWR
// BIT[08] --> DLL: want "Reset" (1, self clearing)
// BIT[07] --> MODE: want "Normal" (0)
// BIT[06:04,02] --> CL: use oem_tCAS
// BIT[03] --> RD_BURST_TYPE: want "Interleave" (1)
// BIT[01:00] --> BL: want "8 Fixed" (0)
// WR:
// 0 --> 16
// 1 --> 5
// 2 --> 6
// 3 --> 7
// 4 --> 8
// 5 --> 10
// 6 --> 12
// 7 --> 14
// CL:
// BIT[02:02] "0" if oem_tCAS <= 11 (1866?)
// BIT[06:04] use oem_tCAS-4
mrs0Command.raw = 0;
mrs0Command.field.bankAddress = 0;
mrs0Command.field.dllReset = 1;
mrs0Command.field.BL = 0;
mrs0Command.field.PPD = 1;
mrs0Command.field.casLatency = DTR0reg.field.tCL + 1;
TCK = tCK[mrc_params->ddr_speed];
TWR = MCEIL(15000, TCK); // Per JEDEC: tWR=15000ps DDR2/3 from 800-1600
mrs0Command.field.writeRecovery = TWR - 4;
for (Rank = 0; Rank < NUM_RANKS; Rank++)
{
// Skip to next populated rank
if ((mrc_params->rank_enables & (1 << Rank)) == 0)
{
continue;
}
emrs2Command.field.rankSelect = Rank;
dram_init_command(emrs2Command.raw);
emrs3Command.field.rankSelect = Rank;
dram_init_command(emrs3Command.raw);
emrs1Command.field.rankSelect = Rank;
dram_init_command(emrs1Command.raw);
mrs0Command.field.rankSelect = Rank;
dram_init_command(mrs0Command.raw);
dram_init_command(DCMD_ZQCL(Rank));
}
LEAVEFN();
return;
}
// rcvn_cal:
// POST_CODE[major] == 0x05
//
// This function will perform our RCVEN Calibration Algorithm.
// We will only use the 2xCLK domain timings to perform RCVEN Calibration.
// All byte lanes will be calibrated "simultaneously" per channel per rank.
static void rcvn_cal(
MRCParams_t *mrc_params)
{
uint8_t channel_i; // channel counter
uint8_t rank_i; // rank counter
uint8_t bl_i; // byte lane counter
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor
#ifdef R2R_SHARING
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs
#ifndef BACKUP_RCVN
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs
#endif // BACKUP_RCVN
#endif // R2R_SHARING
#ifdef BACKUP_RCVN
#else
uint32_t tempD; // temporary DWORD
uint32_t delay[NUM_BYTE_LANES]; // absolute PI value to be programmed on the byte lane
RegDTR1 dtr1;
RegDTR1 dtr1save;
#endif // BACKUP_RCVN
ENTERFN();
// rcvn_cal starts
post_code(0x05, 0x00);
#ifndef BACKUP_RCVN
// need separate burst to sample DQS preamble
dtr1.raw = dtr1save.raw = isbR32m(MCU, DTR1);
dtr1.field.tCCD = 1;
isbW32m(MCU, DTR1, dtr1.raw);
#endif
#ifdef R2R_SHARING
// need to set "final_delay[][]" elements to "0"
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay));
#endif // R2R_SHARING
// loop through each enabled channel
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
// perform RCVEN Calibration on a per rank basis
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
// POST_CODE here indicates the current channel and rank being calibrated
post_code(0x05, (0x10 + ((channel_i << 4) | rank_i)));
#ifdef BACKUP_RCVN
// set hard-coded timing values
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
set_rcvn(channel_i, rank_i, bl_i, ddr_rcvn[PLATFORM_ID]);
}
#else
// enable FIFORST
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i += 2)
{
isbM32m(DDRPHY, (B01PTRCTL1 + ((bl_i >> 1) * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), 0,
BIT8); // 0 is enabled
} // bl_i loop
// initialise the starting delay to 128 PI (tCAS +1 CLK)
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
#ifdef SIM
// Original value was late at the end of DQS sequence
delay[bl_i] = 3 * FULL_CLK;
#else
delay[bl_i] = (4 + 1) * FULL_CLK; // 1x CLK domain timing is tCAS-4
#endif
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]);
} // bl_i loop
// now find the rising edge
find_rising_edge(mrc_params, delay, channel_i, rank_i, true);
// Now increase delay by 32 PI (1/4 CLK) to place in center of high pulse.
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
delay[bl_i] += QRTR_CLK;
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]);
} // bl_i loop
// Now decrement delay by 128 PI (1 CLK) until we sample a "0"
do
{
tempD = sample_dqs(mrc_params, channel_i, rank_i, true);
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
if (tempD & (1 << bl_i))
{
if (delay[bl_i] >= FULL_CLK)
{
delay[bl_i] -= FULL_CLK;
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]);
}
else
{
// not enough delay
training_message(channel_i, rank_i, bl_i);
post_code(0xEE, 0x50);
}
}
} // bl_i loop
} while (tempD & 0xFF);
#ifdef R2R_SHARING
// increment "num_ranks_enabled"
num_ranks_enabled++;
// Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble.
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
delay[bl_i] += QRTR_CLK;
// add "delay[]" values to "final_delay[][]" for rolling average
final_delay[channel_i][bl_i] += delay[bl_i];
// set timing based on rolling average values
set_rcvn(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled));
} // bl_i loop
#else
// Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble.
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
delay[bl_i] += QRTR_CLK;
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]);
} // bl_i loop
#endif // R2R_SHARING
// disable FIFORST
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i += 2)
{
isbM32m(DDRPHY, (B01PTRCTL1 + ((bl_i >> 1) * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), BIT8,
BIT8); // 1 is disabled
} // bl_i loop
#endif // BACKUP_RCVN
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#ifndef BACKUP_RCVN
// restore original
isbW32m(MCU, DTR1, dtr1save.raw);
#endif
#ifdef MRC_SV
if (mrc_params->tune_rcvn)
{
uint32_t rcven, val;
uint32_t rdcmd2rcven;
/*
Formulas for RDCMD2DATAVALID & DIFFAMP dynamic timings
1. Set after RCVEN training
//Tune RDCMD2DATAVALID
x80/x84[21:16]
MAX OF 2 RANKS : round up (rdcmd2rcven (rcven 1x) + 2x x 2 + PI/128) + 5
//rdcmd2rcven x80/84[12:8]
//rcven 2x x70[23:20] & [11:8]
//Tune DIFFAMP Timings
//diffampen launch x88[20:16] & [4:0] -- B01LATCTL1
MIN OF 2 RANKS : round down (rcven 1x + 2x x 2 + PI/128) - 1
//diffampen length x8C/x90 [13:8] -- B0ONDURCTL B1ONDURCTL
MAX OF 2 RANKS : roundup (rcven 1x + 2x x 2 + PI/128) + 5
2. need to do a fiforst after settings these values
*/
DPF(D_INFO, "BEFORE\n");
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0LATCTL0));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B01LATCTL1));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0ONDURCTL));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1LATCTL0));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1ONDURCTL));
rcven = get_rcvn(0, 0, 0) / 128;
rdcmd2rcven = (isbR32m(DDRPHY, B0LATCTL0) >> 8) & 0x1F;
val = rdcmd2rcven + rcven + 6;
isbM32m(DDRPHY, B0LATCTL0, val << 16, (BIT21|BIT20|BIT19|BIT18|BIT17|BIT16));
val = rdcmd2rcven + rcven - 1;
isbM32m(DDRPHY, B01LATCTL1, val << 0, (BIT4|BIT3|BIT2|BIT1|BIT0));
val = rdcmd2rcven + rcven + 5;
isbM32m(DDRPHY, B0ONDURCTL, val << 8, (BIT13|BIT12|BIT11|BIT10|BIT9|BIT8));
rcven = get_rcvn(0, 0, 1) / 128;
rdcmd2rcven = (isbR32m(DDRPHY, B1LATCTL0) >> 8) & 0x1F;
val = rdcmd2rcven + rcven + 6;
isbM32m(DDRPHY, B1LATCTL0, val << 16, (BIT21|BIT20|BIT19|BIT18|BIT17|BIT16));
val = rdcmd2rcven + rcven - 1;
isbM32m(DDRPHY, B01LATCTL1, val << 16, (BIT20|BIT19|BIT18|BIT17|BIT16));
val = rdcmd2rcven + rcven + 5;
isbM32m(DDRPHY, B1ONDURCTL, val << 8, (BIT13|BIT12|BIT11|BIT10|BIT9|BIT8));
DPF(D_INFO, "AFTER\n");
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0LATCTL0));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B01LATCTL1));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0ONDURCTL));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1LATCTL0));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1ONDURCTL));
DPF(D_INFO, "\nPress a key\n");
mgetc();
// fifo reset
isbM32m(DDRPHY, B01PTRCTL1, 0, BIT8); // 0 is enabled
delay_n(3);
isbM32m(DDRPHY, B01PTRCTL1, BIT8, BIT8); // 1 is disabled
}
#endif
LEAVEFN();
return;
}
// Check memory executing write/read/verify of many data patterns
// at the specified address. Bits in the result indicate failure
// on specific byte lane.
static uint32_t check_bls_ex(
MRCParams_t *mrc_params,
uint32_t address)
{
uint32_t result;
uint8_t first_run = 0;
if (mrc_params->hte_setup)
{
mrc_params->hte_setup = 0;
first_run = 1;
select_hte(mrc_params);
}
result = WriteStressBitLanesHTE(mrc_params, address, first_run);
DPF(D_TRN, "check_bls_ex result is %x\n", result);
return result;
}
// Check memory executing simple write/read/verify at
// the specified address. Bits in the result indicate failure
// on specific byte lane.
static uint32_t check_rw_coarse(
MRCParams_t *mrc_params,
uint32_t address)
{
uint32_t result = 0;
uint8_t first_run = 0;
if (mrc_params->hte_setup)
{
mrc_params->hte_setup = 0;
first_run = 1;
select_hte(mrc_params);
}
result = BasicWriteReadHTE(mrc_params, address, first_run, WRITE_TRAIN);
DPF(D_TRN, "check_rw_coarse result is %x\n", result);
return result;
}
// wr_level:
// POST_CODE[major] == 0x06
//
// This function will perform the Write Levelling algorithm (align WCLK and WDQS).
// This algorithm will act on each rank in each channel separately.
static void wr_level(
MRCParams_t *mrc_params)
{
uint8_t channel_i; // channel counter
uint8_t rank_i; // rank counter
uint8_t bl_i; // byte lane counter
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor
#ifdef R2R_SHARING
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs
#ifndef BACKUP_WDQS
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs
#endif // BACKUP_WDQS
#endif // R2R_SHARING
#ifdef BACKUP_WDQS
#else
bool all_edges_found; // determines stop condition for CRS_WR_LVL
uint32_t delay[NUM_BYTE_LANES]; // absolute PI value to be programmed on the byte lane
// static makes it so the data is loaded in the heap once by shadow(), where
// non-static copies the data onto the stack every time this function is called.
uint32_t address; // address to be checked during COARSE_WR_LVL
RegDTR4 dtr4;
RegDTR4 dtr4save;
#endif // BACKUP_WDQS
ENTERFN();
// wr_level starts
post_code(0x06, 0x00);
#ifdef R2R_SHARING
// need to set "final_delay[][]" elements to "0"
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay));
#endif // R2R_SHARING
// loop through each enabled channel
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
// perform WRITE LEVELING algorithm on a per rank basis
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
// POST_CODE here indicates the current rank and channel being calibrated
post_code(0x06, (0x10 + ((channel_i << 4) | rank_i)));
#ifdef BACKUP_WDQS
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
set_wdqs(channel_i, rank_i, bl_i, ddr_wdqs[PLATFORM_ID]);
set_wdq(channel_i, rank_i, bl_i, (ddr_wdqs[PLATFORM_ID] - QRTR_CLK));
}
#else
{ // Begin product specific code
// perform a single PRECHARGE_ALL command to make DRAM state machine go to IDLE state
dram_init_command(DCMD_PREA(rank_i));
// enable Write Levelling Mode (EMRS1 w/ Write Levelling Mode Enable)
dram_init_command(DCMD_MRS1(rank_i,0x0082));
// set ODT DRAM Full Time Termination disable in MCU
dtr4.raw = dtr4save.raw = isbR32m(MCU, DTR4);
dtr4.field.ODTDIS = 1;
isbW32m(MCU, DTR4, dtr4.raw);
for (bl_i = 0; bl_i < ((NUM_BYTE_LANES / bl_divisor) / 2); bl_i++)
{
isbM32m(DDRPHY, DQCTL + (DDRIODQ_BL_OFFSET * bl_i) + (DDRIODQ_CH_OFFSET * channel_i),
(BIT28 | (0x1 << 8) | (0x1 << 6) | (0x1 << 4) | (0x1 << 2)),
(BIT28 | (BIT9|BIT8) | (BIT7|BIT6) | (BIT5|BIT4) | (BIT3|BIT2))); // Enable Sandy Bridge Mode (WDQ Tri-State) & Ensure 5 WDQS pulses during Write Leveling
}
isbM32m(DDRPHY, CCDDR3RESETCTL + (DDRIOCCC_CH_OFFSET * channel_i), (BIT16), (BIT16)); // Write Leveling Mode enabled in IO
} // End product specific code
// Initialise the starting delay to WCLK
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
{ // Begin product specific code
// CLK0 --> RK0
// CLK1 --> RK1
delay[bl_i] = get_wclk(channel_i, rank_i);
} // End product specific code
set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]);
} // bl_i loop
// now find the rising edge
find_rising_edge(mrc_params, delay, channel_i, rank_i, false);
{ // Begin product specific code
// disable Write Levelling Mode
isbM32m(DDRPHY, CCDDR3RESETCTL + (DDRIOCCC_CH_OFFSET * channel_i), (0), (BIT16)); // Write Leveling Mode disabled in IO
for (bl_i = 0; bl_i < ((NUM_BYTE_LANES / bl_divisor) / 2); bl_i++)
{
isbM32m(DDRPHY, DQCTL + (DDRIODQ_BL_OFFSET * bl_i) + (DDRIODQ_CH_OFFSET * channel_i),
((0x1 << 8) | (0x1 << 6) | (0x1 << 4) | (0x1 << 2)),
(BIT28 | (BIT9|BIT8) | (BIT7|BIT6) | (BIT5|BIT4) | (BIT3|BIT2))); // Disable Sandy Bridge Mode & Ensure 4 WDQS pulses during normal operation
} // bl_i loop
// restore original DTR4
isbW32m(MCU, DTR4, dtr4save.raw);
// restore original value (Write Levelling Mode Disable)
dram_init_command(DCMD_MRS1(rank_i, mrc_params->mrs1));
// perform a single PRECHARGE_ALL command to make DRAM state machine go to IDLE state
dram_init_command(DCMD_PREA(rank_i));
} // End product specific code
post_code(0x06, (0x30 + ((channel_i << 4) | rank_i)));
// COARSE WRITE LEVEL:
// check that we're on the correct clock edge
// hte reconfiguration request
mrc_params->hte_setup = 1;
// start CRS_WR_LVL with WDQS = WDQS + 128 PI
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
delay[bl_i] = get_wdqs(channel_i, rank_i, bl_i) + FULL_CLK;
set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]);
// program WDQ timings based on WDQS (WDQ = WDQS - 32 PI)
set_wdq(channel_i, rank_i, bl_i, (delay[bl_i] - QRTR_CLK));
} // bl_i loop
// get an address in the targeted channel/rank
address = get_addr(mrc_params, channel_i, rank_i);
do
{
uint32_t coarse_result = 0x00;
uint32_t coarse_result_mask = byte_lane_mask(mrc_params);
all_edges_found = true; // assume pass
#ifdef SIM
// need restore memory to idle state as write can be in bad sync
dram_init_command (DCMD_PREA(rank_i));
#endif
mrc_params->hte_setup = 1;
coarse_result = check_rw_coarse(mrc_params, address);
// check for failures and margin the byte lane back 128 PI (1 CLK)
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
if (coarse_result & (coarse_result_mask << bl_i))
{
all_edges_found = false;
delay[bl_i] -= FULL_CLK;
set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]);
// program WDQ timings based on WDQS (WDQ = WDQS - 32 PI)
set_wdq(channel_i, rank_i, bl_i, (delay[bl_i] - QRTR_CLK));
}
} // bl_i loop
} while (!all_edges_found);
#ifdef R2R_SHARING
// increment "num_ranks_enabled"
num_ranks_enabled++;
// accumulate "final_delay[][]" values from "delay[]" values for rolling average
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
final_delay[channel_i][bl_i] += delay[bl_i];
set_wdqs(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled));
// program WDQ timings based on WDQS (WDQ = WDQS - 32 PI)
set_wdq(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled) - QRTR_CLK);
} // bl_i loop
#endif // R2R_SHARING
#endif // BACKUP_WDQS
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
LEAVEFN();
return;
}
// rd_train:
// POST_CODE[major] == 0x07
//
// This function will perform the READ TRAINING Algorithm on all channels/ranks/byte_lanes simultaneously to minimize execution time.
// The idea here is to train the VREF and RDQS (and eventually RDQ) values to achieve maximum READ margins.
// The algorithm will first determine the X coordinate (RDQS setting).
// This is done by collapsing the VREF eye until we find a minimum required RDQS eye for VREF_MIN and VREF_MAX.
// Then we take the averages of the RDQS eye at VREF_MIN and VREF_MAX, then average those; this will be the final X coordinate.
// The algorithm will then determine the Y coordinate (VREF setting).
// This is done by collapsing the RDQS eye until we find a minimum required VREF eye for RDQS_MIN and RDQS_MAX.
// Then we take the averages of the VREF eye at RDQS_MIN and RDQS_MAX, then average those; this will be the final Y coordinate.
// NOTE: this algorithm assumes the eye curves have a one-to-one relationship, meaning for each X the curve has only one Y and vice-a-versa.
static void rd_train(
MRCParams_t *mrc_params)
{
#define MIN_RDQS_EYE 10 // in PI Codes
#define MIN_VREF_EYE 10 // in VREF Codes
#define RDQS_STEP 1 // how many RDQS codes to jump while margining
#define VREF_STEP 1 // how many VREF codes to jump while margining
#define VREF_MIN (0x00) // offset into "vref_codes[]" for minimum allowed VREF setting
#define VREF_MAX (0x3F) // offset into "vref_codes[]" for maximum allowed VREF setting
#define RDQS_MIN (0x00) // minimum RDQS delay value
#define RDQS_MAX (0x3F) // maximum RDQS delay value
#define B 0 // BOTTOM VREF
#define T 1 // TOP VREF
#define L 0 // LEFT RDQS
#define R 1 // RIGHT RDQS
uint8_t channel_i; // channel counter
uint8_t rank_i; // rank counter
uint8_t bl_i; // byte lane counter
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor
#ifdef BACKUP_RDQS
#else
uint8_t side_x; // tracks LEFT/RIGHT approach vectors
uint8_t side_y; // tracks BOTTOM/TOP approach vectors
uint8_t x_coordinate[2/*side_x*/][2/*side_y*/][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // X coordinate data (passing RDQS values) for approach vectors
uint8_t y_coordinate[2/*side_x*/][2/*side_y*/][NUM_CHANNELS][NUM_BYTE_LANES]; // Y coordinate data (passing VREF values) for approach vectors
uint8_t x_center[NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // centered X (RDQS)
uint8_t y_center[NUM_CHANNELS][NUM_BYTE_LANES]; // centered Y (VREF)
uint32_t address; // target address for "check_bls_ex()"
uint32_t result; // result of "check_bls_ex()"
uint32_t bl_mask; // byte lane mask for "result" checking
#ifdef R2R_SHARING
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs
#endif // R2R_SHARING
#endif // BACKUP_RDQS
// rd_train starts
post_code(0x07, 0x00);
ENTERFN();
#ifdef BACKUP_RDQS
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1<<channel_i))
{
for (rank_i=0; rank_i<NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1<<rank_i))
{
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
set_rdqs(channel_i, rank_i, bl_i, ddr_rdqs[PLATFORM_ID]);
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#else
// initialise x/y_coordinate arrays
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
// x_coordinate:
x_coordinate[L][B][channel_i][rank_i][bl_i] = RDQS_MIN;
x_coordinate[R][B][channel_i][rank_i][bl_i] = RDQS_MAX;
x_coordinate[L][T][channel_i][rank_i][bl_i] = RDQS_MIN;
x_coordinate[R][T][channel_i][rank_i][bl_i] = RDQS_MAX;
// y_coordinate:
y_coordinate[L][B][channel_i][bl_i] = VREF_MIN;
y_coordinate[R][B][channel_i][bl_i] = VREF_MIN;
y_coordinate[L][T][channel_i][bl_i] = VREF_MAX;
y_coordinate[R][T][channel_i][bl_i] = VREF_MAX;
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
// initialise other variables
bl_mask = byte_lane_mask(mrc_params);
address = get_addr(mrc_params, 0, 0);
#ifdef R2R_SHARING
// need to set "final_delay[][]" elements to "0"
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay));
#endif // R2R_SHARING
// look for passing coordinates
for (side_y = B; side_y <= T; side_y++)
{
for (side_x = L; side_x <= R; side_x++)
{
post_code(0x07, (0x10 + (side_y * 2) + (side_x)));
// find passing values
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (0x1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (0x1 << rank_i))
{
// set x/y_coordinate search starting settings
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
set_rdqs(channel_i, rank_i, bl_i, x_coordinate[side_x][side_y][channel_i][rank_i][bl_i]);
set_vref(channel_i, bl_i, y_coordinate[side_x][side_y][channel_i][bl_i]);
} // bl_i loop
// get an address in the target channel/rank
address = get_addr(mrc_params, channel_i, rank_i);
// request HTE reconfiguration
mrc_params->hte_setup = 1;
// test the settings
do
{
// result[07:00] == failing byte lane (MAX 8)
result = check_bls_ex( mrc_params, address);
// check for failures
if (result & 0xFF)
{
// at least 1 byte lane failed
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
if (result & (bl_mask << bl_i))
{
// adjust the RDQS values accordingly
if (side_x == L)
{
x_coordinate[L][side_y][channel_i][rank_i][bl_i] += RDQS_STEP;
}
else
{
x_coordinate[R][side_y][channel_i][rank_i][bl_i] -= RDQS_STEP;
}
// check that we haven't closed the RDQS_EYE too much
if ((x_coordinate[L][side_y][channel_i][rank_i][bl_i] > (RDQS_MAX - MIN_RDQS_EYE)) ||
(x_coordinate[R][side_y][channel_i][rank_i][bl_i] < (RDQS_MIN + MIN_RDQS_EYE))
||
(x_coordinate[L][side_y][channel_i][rank_i][bl_i]
== x_coordinate[R][side_y][channel_i][rank_i][bl_i]))
{
// not enough RDQS margin available at this VREF
// update VREF values accordingly
if (side_y == B)
{
y_coordinate[side_x][B][channel_i][bl_i] += VREF_STEP;
}
else
{
y_coordinate[side_x][T][channel_i][bl_i] -= VREF_STEP;
}
// check that we haven't closed the VREF_EYE too much
if ((y_coordinate[side_x][B][channel_i][bl_i] > (VREF_MAX - MIN_VREF_EYE)) ||
(y_coordinate[side_x][T][channel_i][bl_i] < (VREF_MIN + MIN_VREF_EYE)) ||
(y_coordinate[side_x][B][channel_i][bl_i] == y_coordinate[side_x][T][channel_i][bl_i]))
{
// VREF_EYE collapsed below MIN_VREF_EYE
training_message(channel_i, rank_i, bl_i);
post_code(0xEE, (0x70 + (side_y * 2) + (side_x)));
}
else
{
// update the VREF setting
set_vref(channel_i, bl_i, y_coordinate[side_x][side_y][channel_i][bl_i]);
// reset the X coordinate to begin the search at the new VREF
x_coordinate[side_x][side_y][channel_i][rank_i][bl_i] =
(side_x == L) ? (RDQS_MIN) : (RDQS_MAX);
}
}
// update the RDQS setting
set_rdqs(channel_i, rank_i, bl_i, x_coordinate[side_x][side_y][channel_i][rank_i][bl_i]);
} // if bl_i failed
} // bl_i loop
} // at least 1 byte lane failed
} while (result & 0xFF);
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
} // side_x loop
} // side_y loop
post_code(0x07, 0x20);
// find final RDQS (X coordinate) & final VREF (Y coordinate)
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
uint32_t tempD1;
uint32_t tempD2;
// x_coordinate:
DPF(D_INFO, "RDQS T/B eye rank%d lane%d : %d-%d %d-%d\n", rank_i, bl_i,
x_coordinate[L][T][channel_i][rank_i][bl_i],
x_coordinate[R][T][channel_i][rank_i][bl_i],
x_coordinate[L][B][channel_i][rank_i][bl_i],
x_coordinate[R][B][channel_i][rank_i][bl_i]);
tempD1 = (x_coordinate[R][T][channel_i][rank_i][bl_i] + x_coordinate[L][T][channel_i][rank_i][bl_i]) / 2; // average the TOP side LEFT & RIGHT values
tempD2 = (x_coordinate[R][B][channel_i][rank_i][bl_i] + x_coordinate[L][B][channel_i][rank_i][bl_i]) / 2; // average the BOTTOM side LEFT & RIGHT values
x_center[channel_i][rank_i][bl_i] = (uint8_t) ((tempD1 + tempD2) / 2); // average the above averages
// y_coordinate:
DPF(D_INFO, "VREF R/L eye lane%d : %d-%d %d-%d\n", bl_i,
y_coordinate[R][B][channel_i][bl_i],
y_coordinate[R][T][channel_i][bl_i],
y_coordinate[L][B][channel_i][bl_i],
y_coordinate[L][T][channel_i][bl_i]);
tempD1 = (y_coordinate[R][T][channel_i][bl_i] + y_coordinate[R][B][channel_i][bl_i]) / 2; // average the RIGHT side TOP & BOTTOM values
tempD2 = (y_coordinate[L][T][channel_i][bl_i] + y_coordinate[L][B][channel_i][bl_i]) / 2; // average the LEFT side TOP & BOTTOM values
y_center[channel_i][bl_i] = (uint8_t) ((tempD1 + tempD2) / 2); // average the above averages
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#ifdef RX_EYE_CHECK
// perform an eye check
for (side_y=B; side_y<=T; side_y++)
{
for (side_x=L; side_x<=R; side_x++)
{
post_code(0x07, (0x30 + (side_y * 2) + (side_x)));
// update the settings for the eye check
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1<<channel_i))
{
for (rank_i=0; rank_i<NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1<<rank_i))
{
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
if (side_x == L)
{
set_rdqs(channel_i, rank_i, bl_i, (x_center[channel_i][rank_i][bl_i] - (MIN_RDQS_EYE / 2)));
}
else
{
set_rdqs(channel_i, rank_i, bl_i, (x_center[channel_i][rank_i][bl_i] + (MIN_RDQS_EYE / 2)));
}
if (side_y == B)
{
set_vref(channel_i, bl_i, (y_center[channel_i][bl_i] - (MIN_VREF_EYE / 2)));
}
else
{
set_vref(channel_i, bl_i, (y_center[channel_i][bl_i] + (MIN_VREF_EYE / 2)));
}
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
// request HTE reconfiguration
mrc_params->hte_setup = 1;
// check the eye
if (check_bls_ex( mrc_params, address) & 0xFF)
{
// one or more byte lanes failed
post_code(0xEE, (0x74 + (side_x * 2) + (side_y)));
}
} // side_x loop
} // side_y loop
#endif // RX_EYE_CHECK
post_code(0x07, 0x40);
// set final placements
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
#ifdef R2R_SHARING
// increment "num_ranks_enabled"
num_ranks_enabled++;
#endif // R2R_SHARING
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
// x_coordinate:
#ifdef R2R_SHARING
final_delay[channel_i][bl_i] += x_center[channel_i][rank_i][bl_i];
set_rdqs(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled));
#else
set_rdqs(channel_i, rank_i, bl_i, x_center[channel_i][rank_i][bl_i]);
#endif // R2R_SHARING
// y_coordinate:
set_vref(channel_i, bl_i, y_center[channel_i][bl_i]);
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#endif // BACKUP_RDQS
LEAVEFN();
return;
}
// wr_train:
// POST_CODE[major] == 0x08
//
// This function will perform the WRITE TRAINING Algorithm on all channels/ranks/byte_lanes simultaneously to minimize execution time.
// The idea here is to train the WDQ timings to achieve maximum WRITE margins.
// The algorithm will start with WDQ at the current WDQ setting (tracks WDQS in WR_LVL) +/- 32 PIs (+/- 1/4 CLK) and collapse the eye until all data patterns pass.
// This is because WDQS will be aligned to WCLK by the Write Leveling algorithm and WDQ will only ever have a 1/2 CLK window of validity.
static void wr_train(
MRCParams_t *mrc_params)
{
#define WDQ_STEP 1 // how many WDQ codes to jump while margining
#define L 0 // LEFT side loop value definition
#define R 1 // RIGHT side loop value definition
uint8_t channel_i; // channel counter
uint8_t rank_i; // rank counter
uint8_t bl_i; // byte lane counter
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor
#ifdef BACKUP_WDQ
#else
uint8_t side_i; // LEFT/RIGHT side indicator (0=L, 1=R)
uint32_t tempD; // temporary DWORD
uint32_t delay[2/*side_i*/][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // 2 arrays, for L & R side passing delays
uint32_t address; // target address for "check_bls_ex()"
uint32_t result; // result of "check_bls_ex()"
uint32_t bl_mask; // byte lane mask for "result" checking
#ifdef R2R_SHARING
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs
#endif // R2R_SHARING
#endif // BACKUP_WDQ
// wr_train starts
post_code(0x08, 0x00);
ENTERFN();
#ifdef BACKUP_WDQ
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1<<channel_i))
{
for (rank_i=0; rank_i<NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1<<rank_i))
{
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
set_wdq(channel_i, rank_i, bl_i, ddr_wdq[PLATFORM_ID]);
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#else
// initialise "delay"
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
// want to start with WDQ = (WDQS - QRTR_CLK) +/- QRTR_CLK
tempD = get_wdqs(channel_i, rank_i, bl_i) - QRTR_CLK;
delay[L][channel_i][rank_i][bl_i] = tempD - QRTR_CLK;
delay[R][channel_i][rank_i][bl_i] = tempD + QRTR_CLK;
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
// initialise other variables
bl_mask = byte_lane_mask(mrc_params);
address = get_addr(mrc_params, 0, 0);
#ifdef R2R_SHARING
// need to set "final_delay[][]" elements to "0"
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay));
#endif // R2R_SHARING
// start algorithm on the LEFT side and train each channel/bl until no failures are observed, then repeat for the RIGHT side.
for (side_i = L; side_i <= R; side_i++)
{
post_code(0x08, (0x10 + (side_i)));
// set starting values
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
set_wdq(channel_i, rank_i, bl_i, delay[side_i][channel_i][rank_i][bl_i]);
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
// find passing values
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (0x1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (0x1 << rank_i))
{
// get an address in the target channel/rank
address = get_addr(mrc_params, channel_i, rank_i);
// request HTE reconfiguration
mrc_params->hte_setup = 1;
// check the settings
do
{
#ifdef SIM
// need restore memory to idle state as write can be in bad sync
dram_init_command (DCMD_PREA(rank_i));
#endif
// result[07:00] == failing byte lane (MAX 8)
result = check_bls_ex( mrc_params, address);
// check for failures
if (result & 0xFF)
{
// at least 1 byte lane failed
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
if (result & (bl_mask << bl_i))
{
if (side_i == L)
{
delay[L][channel_i][rank_i][bl_i] += WDQ_STEP;
}
else
{
delay[R][channel_i][rank_i][bl_i] -= WDQ_STEP;
}
// check for algorithm failure
if (delay[L][channel_i][rank_i][bl_i] != delay[R][channel_i][rank_i][bl_i])
{
// margin available, update delay setting
set_wdq(channel_i, rank_i, bl_i, delay[side_i][channel_i][rank_i][bl_i]);
}
else
{
// no margin available, notify the user and halt
training_message(channel_i, rank_i, bl_i);
post_code(0xEE, (0x80 + side_i));
}
} // if bl_i failed
} // bl_i loop
} // at least 1 byte lane failed
} while (result & 0xFF); // stop when all byte lanes pass
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
} // side_i loop
// program WDQ to the middle of passing window
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
#ifdef R2R_SHARING
// increment "num_ranks_enabled"
num_ranks_enabled++;
#endif // R2R_SHARING
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
DPF(D_INFO, "WDQ eye rank%d lane%d : %d-%d\n", rank_i, bl_i,
delay[L][channel_i][rank_i][bl_i],
delay[R][channel_i][rank_i][bl_i]);
tempD = (delay[R][channel_i][rank_i][bl_i] + delay[L][channel_i][rank_i][bl_i]) / 2;
#ifdef R2R_SHARING
final_delay[channel_i][bl_i] += tempD;
set_wdq(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled));
#else
set_wdq(channel_i, rank_i, bl_i, tempD);
#endif // R2R_SHARING
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#endif // BACKUP_WDQ
LEAVEFN();
return;
}
// Wrapper for jedec initialisation routine
static void perform_jedec_init(
MRCParams_t *mrc_params)
{
jedec_init(mrc_params, 0);
}
// Configure DDRPHY for Auto-Refresh, Periodic Compensations,
// Dynamic Diff-Amp, ZQSPERIOD, Auto-Precharge, CKE Power-Down
static void set_auto_refresh(
MRCParams_t *mrc_params)
{
uint32_t channel_i;
uint32_t rank_i;
uint32_t bl_i;
uint32_t bl_divisor = /*(mrc_params->channel_width==x16)?2:*/1;
uint32_t tempD;
ENTERFN();
// enable Auto-Refresh, Periodic Compensations, Dynamic Diff-Amp, ZQSPERIOD, Auto-Precharge, CKE Power-Down
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
// Enable Periodic RCOMPS
isbM32m(DDRPHY, CMPCTRL, (BIT1), (BIT1));
// Enable Dynamic DiffAmp & Set Read ODT Value
switch (mrc_params->rd_odt_value)
{
case 0: tempD = 0x3F; break; // OFF
default: tempD = 0x00; break; // Auto
} // rd_odt_value switch
for (bl_i=0; bl_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_i++)
{
isbM32m(DDRPHY, (B0OVRCTL + (bl_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)),
((0x00<<16)|(tempD<<10)),
((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT
isbM32m(DDRPHY, (B1OVRCTL + (bl_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)),
((0x00<<16)|(tempD<<10)),
((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10)));// Override: DIFFAMP, ODT
} // bl_i loop
// Issue ZQCS command
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
dram_init_command(DCMD_ZQCS(rank_i));
} // if rank_i enabled
} // rank_i loop
} // if channel_i enabled
} // channel_i loop
clear_pointers();
LEAVEFN();
return;
}
// Depending on configuration enables ECC support.
// Available memory size is decresed, and updated with 0s
// in order to clear error status. Address mode 2 forced.
static void ecc_enable(
MRCParams_t *mrc_params)
{
RegDRP Drp;
RegDSCH Dsch;
RegDECCCTRL Ctr;
if (mrc_params->ecc_enables == 0) return;
ENTERFN();
// Configuration required in ECC mode
Drp.raw = isbR32m(MCU, DRP);
Drp.field.addressMap = 2;
Drp.field.split64 = 1;
isbW32m(MCU, DRP, Drp.raw);
// Disable new request bypass
Dsch.raw = isbR32m(MCU, DSCH);
Dsch.field.NEWBYPDIS = 1;
isbW32m(MCU, DSCH, Dsch.raw);
// Enable ECC
Ctr.raw = 0;
Ctr.field.SBEEN = 1;
Ctr.field.DBEEN = 1;
Ctr.field.ENCBGEN = 1;
isbW32m(MCU, DECCCTRL, Ctr.raw);
#ifdef SIM
// Read back to be sure writing took place
Ctr.raw = isbR32m(MCU, DECCCTRL);
#endif
// Assume 8 bank memory, one bank is gone for ECC
mrc_params->mem_size -= mrc_params->mem_size / 8;
// For S3 resume memory content has to be preserved
if (mrc_params->boot_mode != bmS3)
{
select_hte(mrc_params);
HteMemInit(mrc_params, MrcMemInit, MrcHaltHteEngineOnError);
select_memory_manager(mrc_params);
}
LEAVEFN();
return;
}
// Lock MCU registers at the end of initialisation sequence.
static void lock_registers(
MRCParams_t *mrc_params)
{
RegDCO Dco;
ENTERFN();
Dco.raw = isbR32m(MCU, DCO);
Dco.field.PMIDIS = 0; //0 - PRI enabled
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER
Dco.field.DRPLOCK = 1;
Dco.field.REUTLOCK = 1;
isbW32m(MCU, DCO, Dco.raw);
LEAVEFN();
}
#ifdef MRC_SV
// cache write back invalidate
static void asm_wbinvd(void)
{
#if defined (SIM) || defined (GCC)
asm(
"wbinvd;"
);
#else
__asm wbinvd;
#endif
}
// cache invalidate
static void asm_invd(void)
{
#if defined (SIM) || defined (GCC)
asm(
"invd;"
);
#else
__asm invd;
#endif
}
static void cpu_read(void)
{
uint32_t adr, dat, limit;
asm_invd();
limit = 8 * 1024;
for (adr = 0; adr < limit; adr += 4)
{
dat = *(uint32_t*) adr;
if ((adr & 0x0F) == 0)
{
DPF(D_INFO, "\n%x : ", adr);
}
DPF(D_INFO, "%x ", dat);
}
DPF(D_INFO, "\n");
DPF(D_INFO, "CPU read done\n");
}
static void cpu_write(void)
{
uint32_t adr, limit;
limit = 8 * 1024;
for (adr = 0; adr < limit; adr += 4)
{
*(uint32_t*) adr = 0xDEAD0000 + adr;
}
asm_wbinvd();
DPF(D_INFO, "CPU write done\n");
}
static void cpu_memory_test(
MRCParams_t *mrc_params)
{
uint32_t result = 0;
uint32_t val, dat, adr, adr0, step, limit;
uint64_t my_tsc;
ENTERFN();
asm_invd();
adr0 = 1 * 1024 * 1024;
limit = 256 * 1024 * 1024;
for (step = 0; step <= 4; step++)
{
DPF(D_INFO, "Mem test step %d starting from %xh\n", step, adr0);
my_tsc = read_tsc();
for (adr = adr0; adr < limit; adr += sizeof(uint32_t))
{
if (step == 0) dat = adr;
else if (step == 1) dat = (1 << ((adr >> 2) & 0x1f));
else if (step == 2) dat = ~(1 << ((adr >> 2) & 0x1f));
else if (step == 3) dat = 0x5555AAAA;
else if (step == 4) dat = 0xAAAA5555;
*(uint32_t*) adr = dat;
}
DPF(D_INFO, "Write time %llXh\n", read_tsc() - my_tsc);
my_tsc = read_tsc();
for (adr = adr0; adr < limit; adr += sizeof(uint32_t))
{
if (step == 0) dat = adr;
else if (step == 1) dat = (1 << ((adr >> 2) & 0x1f));
else if (step == 2) dat = ~(1 << ((adr >> 2) & 0x1f));
else if (step == 3) dat = 0x5555AAAA;
else if (step == 4) dat = 0xAAAA5555;
val = *(uint32_t*) adr;
if (val != dat)
{
DPF(D_INFO, "%x vs. %x@%x\n", dat, val, adr);
result = adr|BIT31;
}
}
DPF(D_INFO, "Read time %llXh\n", read_tsc() - my_tsc);
}
DPF( D_INFO, "Memory test result %x\n", result);
LEAVEFN();
}
#endif // MRC_SV
// Execute memory test, if error dtected it is
// indicated in mrc_params->status.
static void memory_test(
MRCParams_t *mrc_params)
{
uint32_t result = 0;
ENTERFN();
select_hte(mrc_params);
result = HteMemInit(mrc_params, MrcMemTest, MrcHaltHteEngineOnError);
select_memory_manager(mrc_params);
DPF(D_INFO, "Memory test result %x\n", result);
mrc_params->status = ((result == 0) ? MRC_SUCCESS : MRC_E_MEMTEST);
LEAVEFN();
}
// Force same timings as with backup settings
static void static_timings(
MRCParams_t *mrc_params)
{
uint8_t ch, rk, bl;
for (ch = 0; ch < NUM_CHANNELS; ch++)
{
for (rk = 0; rk < NUM_RANKS; rk++)
{
for (bl = 0; bl < NUM_BYTE_LANES; bl++)
{
set_rcvn(ch, rk, bl, 498); // RCVN
set_rdqs(ch, rk, bl, 24); // RDQS
set_wdqs(ch, rk, bl, 292); // WDQS
set_wdq( ch, rk, bl, 260); // WDQ
if (rk == 0)
{
set_vref(ch, bl, 32); // VREF (RANK0 only)
}
}
set_wctl(ch, rk, 217); // WCTL
}
set_wcmd(ch, 220); // WCMD
}
return;
}
//
// Initialise system memory.
//
void MemInit(
MRCParams_t *mrc_params)
{
static const MemInit_t init[] =
{
{ 0x0101, bmCold|bmFast|bmWarm|bmS3, clear_self_refresh }, //0
{ 0x0200, bmCold|bmFast|bmWarm|bmS3, prog_ddr_timing_control }, //1 initialise the MCU
{ 0x0103, bmCold|bmFast , prog_decode_before_jedec }, //2
{ 0x0104, bmCold|bmFast , perform_ddr_reset }, //3
{ 0x0300, bmCold|bmFast |bmS3, ddrphy_init }, //4 initialise the DDRPHY
{ 0x0400, bmCold|bmFast , perform_jedec_init }, //5 perform JEDEC initialisation of DRAMs
{ 0x0105, bmCold|bmFast , set_ddr_init_complete }, //6
{ 0x0106, bmFast|bmWarm|bmS3, restore_timings }, //7
{ 0x0106, bmCold , default_timings }, //8
{ 0x0500, bmCold , rcvn_cal }, //9 perform RCVN_CAL algorithm
{ 0x0600, bmCold , wr_level }, //10 perform WR_LEVEL algorithm
{ 0x0120, bmCold , prog_page_ctrl }, //11
{ 0x0700, bmCold , rd_train }, //12 perform RD_TRAIN algorithm
{ 0x0800, bmCold , wr_train }, //13 perform WR_TRAIN algorithm
{ 0x010B, bmCold , store_timings }, //14
{ 0x010C, bmCold|bmFast|bmWarm|bmS3, enable_scrambling }, //15
{ 0x010D, bmCold|bmFast|bmWarm|bmS3, prog_ddr_control }, //16
{ 0x010E, bmCold|bmFast|bmWarm|bmS3, prog_dra_drb }, //17
{ 0x010F, bmWarm|bmS3, perform_wake }, //18
{ 0x0110, bmCold|bmFast|bmWarm|bmS3, change_refresh_period }, //19
{ 0x0111, bmCold|bmFast|bmWarm|bmS3, set_auto_refresh }, //20
{ 0x0112, bmCold|bmFast|bmWarm|bmS3, ecc_enable }, //21
{ 0x0113, bmCold|bmFast , memory_test }, //22
{ 0x0114, bmCold|bmFast|bmWarm|bmS3, lock_registers } //23 set init done
};
uint32_t i;
ENTERFN();
DPF(D_INFO, "Meminit build %s %s\n", __DATE__, __TIME__);
// MRC started
post_code(0x01, 0x00);
if (mrc_params->boot_mode != bmCold)
{
if (mrc_params->ddr_speed != mrc_params->timings.ddr_speed)
{
// full training required as frequency changed
mrc_params->boot_mode = bmCold;
}
}
for (i = 0; i < MCOUNT(init); i++)
{
uint64_t my_tsc;
#ifdef MRC_SV
if (mrc_params->menu_after_mrc && i > 14)
{
uint8_t ch;
mylop:
DPF(D_INFO, "-- c - continue --\n");
DPF(D_INFO, "-- j - move to jedec init --\n");
DPF(D_INFO, "-- m - memory test --\n");
DPF(D_INFO, "-- r - cpu read --\n");
DPF(D_INFO, "-- w - cpu write --\n");
DPF(D_INFO, "-- b - hte base test --\n");
DPF(D_INFO, "-- g - hte extended test --\n");
ch = mgetc();
switch (ch)
{
case 'c':
break;
case 'j': //move to jedec init
i = 5;
break;
case 'M':
case 'N':
{
uint32_t n, res, cnt=0;
for(n=0; mgetch()==0; n++)
{
if( ch == 'M' || n % 256 == 0)
{
DPF(D_INFO, "n=%d e=%d\n", n, cnt);
}
res = 0;
if( ch == 'M')
{
memory_test(mrc_params);
res |= mrc_params->status;
}
mrc_params->hte_setup = 1;
res |= check_bls_ex(mrc_params, 0x00000000);
res |= check_bls_ex(mrc_params, 0x00000000);
res |= check_bls_ex(mrc_params, 0x00000000);
res |= check_bls_ex(mrc_params, 0x00000000);
if( mrc_params->rank_enables & 2)
{
mrc_params->hte_setup = 1;
res |= check_bls_ex(mrc_params, 0x40000000);
res |= check_bls_ex(mrc_params, 0x40000000);
res |= check_bls_ex(mrc_params, 0x40000000);
res |= check_bls_ex(mrc_params, 0x40000000);
}
if( res != 0)
{
DPF(D_INFO, "###########\n");
DPF(D_INFO, "#\n");
DPF(D_INFO, "# Error count %d\n", ++cnt);
DPF(D_INFO, "#\n");
DPF(D_INFO, "###########\n");
}
} // for
select_memory_manager(mrc_params);
}
goto mylop;
case 'm':
memory_test(mrc_params);
goto mylop;
case 'n':
cpu_memory_test(mrc_params);
goto mylop;
case 'l':
ch = mgetc();
if (ch <= '9') DpfPrintMask ^= (ch - '0') << 3;
DPF(D_INFO, "Log mask %x\n", DpfPrintMask);
goto mylop;
case 'p':
print_timings(mrc_params);
goto mylop;
case 'R':
rd_train(mrc_params);
goto mylop;
case 'W':
wr_train(mrc_params);
goto mylop;
case 'r':
cpu_read();
goto mylop;
case 'w':
cpu_write();
goto mylop;
case 'g':
{
uint32_t result;
select_hte(mrc_params);
mrc_params->hte_setup = 1;
result = check_bls_ex(mrc_params, 0);
DPF(D_INFO, "Extended test result %x\n", result);
select_memory_manager(mrc_params);
}
goto mylop;
case 'b':
{
uint32_t result;
select_hte(mrc_params);
mrc_params->hte_setup = 1;
result = check_rw_coarse(mrc_params, 0);
DPF(D_INFO, "Base test result %x\n", result);
select_memory_manager(mrc_params);
}
goto mylop;
case 'B':
select_hte(mrc_params);
HteMemOp(0x2340, 1, 1);
select_memory_manager(mrc_params);
goto mylop;
case '3':
{
RegDPMC0 DPMC0reg;
DPF( D_INFO, "===>> Start suspend\n");
isbR32m(MCU, DSTAT);
DPMC0reg.raw = isbR32m(MCU, DPMC0);
DPMC0reg.field.DYNSREN = 0;
DPMC0reg.field.powerModeOpCode = 0x05; // Disable Master DLL
isbW32m(MCU, DPMC0, DPMC0reg.raw);
// Should be off for negative test case verification
#if 1
Wr32(MMIO, PCIADDR(0,0,0,SB_PACKET_REG),
(uint32_t)SB_COMMAND(SB_SUSPEND_CMND_OPCODE, MCU, 0));
#endif
DPF( D_INFO, "press key\n");
mgetc();
DPF( D_INFO, "===>> Start resume\n");
isbR32m(MCU, DSTAT);
mrc_params->boot_mode = bmS3;
i = 0;
}
} // switch
} // if( menu
#endif //MRC_SV
if (mrc_params->boot_mode & init[i].boot_path)
{
uint8_t major = init[i].post_code >> 8 & 0xFF;
uint8_t minor = init[i].post_code >> 0 & 0xFF;
post_code(major, minor);
my_tsc = read_tsc();
init[i].init_fn(mrc_params);
DPF(D_TIME, "Execution time %llX", read_tsc() - my_tsc);
}
}
// display the timings
print_timings(mrc_params);
// MRC is complete.
post_code(0x01, 0xFF);
LEAVEFN();
return;
}