audk/OvmfPkg
Laszlo Ersek ddc020fb0a Revert "OvmfPkg: link SM3 support into Tcg2Pei and Tcg2Dxe"
This reverts commit a7c7d21ffa.

The reason is that said commit had not been reviewed by OvmfPkg
maintainers/reviewers, before it was pushed.

Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Imran Desai <imran.desai@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Marc-André Lureau <marcandre.lureau@redhat.com>
Cc: Stefan Berger <stefanb@linux.ibm.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1781
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Reviewed-by: Philippe Mathieu-Daude <philmd@redhat.com>
2019-07-04 17:48:08 +02:00
..
8254TimerDxe OvmfPkg/8254TimerDxe: Update to make it build for OVMF 2019-04-11 08:57:29 +08:00
8259InterruptControllerDxe OvmfPkg/8259InterruptControllerDxe: Update to make it build for OVMF 2019-04-11 08:57:28 +08:00
AcpiPlatformDxe OvmfPkg/AcpiPlatformDxe: catch theoretical nullptr deref in Xen code 2019-04-18 16:05:24 +02:00
AcpiTables OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
AmdSevDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
Csm OvmfPkg/LegacyBbs: Add boot entries for VirtIO and NVME devices 2019-06-26 15:06:44 +02:00
EmuVariableFvbRuntimeDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
EnrollDefaultKeys OvmfPkg/EnrollDefaultKeys: import the non-default key into db 2019-05-16 15:36:04 +02:00
Include OvmfPkg: introduce OVMF_PK_KEK1_APP_PREFIX_GUID 2019-04-30 14:26:45 +02:00
IncompatiblePciDeviceSupportDxe OvmfPkg/IncompatiblePciDeviceSupportDxe: Drop framework pkg dependency 2019-06-17 09:27:05 +08:00
IoMmuDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
Library OvmfPkg: Refer to Shell app via its declared GUID 2019-06-17 09:27:32 +08:00
PciHotPlugInitDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
PlatformDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
PlatformPei OvmfPkg/PlatformPei: Remove redundant reference of framework pkg DEC 2019-06-17 09:27:02 +08:00
QemuFlashFvbServicesRuntimeDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
QemuRamfbDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
QemuVideoDxe OvmfPkg/QemuVideoDxe: Shouldn't assume system in VGA alias mode. 2019-06-06 12:27:52 +02:00
ResetVector OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
SataControllerDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
Sec OvmfPkg/Sec: fix out-of-bounds reads 2019-04-24 17:31:02 +02:00
SioBusDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
SmbiosPlatformDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
SmmAccess OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
SmmControl2Dxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
Tcg/Tcg2Config OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
Virtio10Dxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
VirtioBlkDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
VirtioGpuDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
VirtioNetDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
VirtioPciDeviceDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
VirtioRngDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
VirtioScsiDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
XenBusDxe OvmfPkg/XenBusDxe: Don't call DisconnectController in Stop() 2019-07-01 16:46:51 +02:00
XenIoPciDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
XenPvBlkDxe OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
DecomprScratchEnd.fdf.inc OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
License.txt OvmfPkg/License.txt: refresh the MIT license text and include the SPDX ID 2019-04-12 12:04:33 +02:00
OvmfPkg.dec OvmfPkg/OvmfPkg.dec: Add PCD definitions used by copied CSM modules 2019-06-14 13:05:39 +08:00
OvmfPkg.fdf.inc OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
OvmfPkgIa32.dsc Revert "OvmfPkg: link SM3 support into Tcg2Pei and Tcg2Dxe" 2019-07-04 17:48:08 +02:00
OvmfPkgIa32.fdf OvmfPkg: Don't build in QemuVideoDxe when we have CSM 2019-06-26 15:06:44 +02:00
OvmfPkgIa32X64.dsc Revert "OvmfPkg: link SM3 support into Tcg2Pei and Tcg2Dxe" 2019-07-04 17:48:08 +02:00
OvmfPkgIa32X64.fdf OvmfPkg: Don't build in QemuVideoDxe when we have CSM 2019-06-26 15:06:44 +02:00
OvmfPkgX64.dsc Revert "OvmfPkg: link SM3 support into Tcg2Pei and Tcg2Dxe" 2019-07-04 17:48:08 +02:00
OvmfPkgX64.fdf OvmfPkg: Don't build in QemuVideoDxe when we have CSM 2019-06-26 15:06:44 +02:00
README OvmfPkg/README: Update the network build flags 2019-06-11 17:09:28 +02:00
VarStore.fdf.inc OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00
build.sh OvmfPkg: Replace BSD License with BSD+Patent License 2019-04-09 10:58:19 -07:00

README

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.



=== OVMF OVERVIEW ===



The Open Virtual Machine Firmware (OVMF) project aims

to support firmware for Virtual Machines using the edk2

code base.  More information can be found at:



http://www.tianocore.org/ovmf/



=== STATUS ===



Current capabilities:

* IA32 and X64 architectures

* QEMU (0.10.0 or later)

  - Video, keyboard, IDE, CD-ROM, serial

  - Runs UEFI shell

  - Optional NIC support.  Requires QEMU (0.12.2 or later)

* UEFI Linux boots

* UEFI Windows 8 boots

* UEFI Windows 7 & Windows 2008 Server boot (see important notes below!)



=== FUTURE PLANS ===



* Test/Stabilize UEFI Self-Certification Tests (SCT) results



=== BUILDING OVMF ===



Pre-requisites:

* Build environment capable of build the edk2 MdeModulePkg.

* A properly configured ASL compiler:

  - Intel ASL compiler: Available from http://www.acpica.org

  - Microsoft ASL compiler: Available from http://www.acpi.info

* NASM: http://www.nasm.us/



Update Conf/target.txt ACTIVE_PLATFORM for OVMF:

                             PEI arch   DXE arch   UEFI interfaces

* OvmfPkg/OvmfPkgIa32.dsc      IA32       IA32           IA32

* OvmfPkg/OvmfPkgIa32X64.dsc   IA32       X64            X64

* OvmfPkg/OvmfPkgX64.dsc       X64        X64            X64



Update Conf/target.txt TARGET_ARCH based on the .dsc file:

                             TARGET_ARCH

* OvmfPkg/OvmfPkgIa32.dsc     IA32

* OvmfPkg/OvmfPkgIa32X64.dsc  IA32 X64

* OvmfPkg/OvmfPkgX64.dsc      X64



Following the edk2 build process, you will find the OVMF binaries

under the $WORKSPACE/Build/*/*/FV directory.  The actual path will

depend on how your build is configured.  You can expect to find

these binary outputs:

* OVMF.FD

  - Please note!  This filename has changed.  Older releases used OVMF.Fv.

* OvmfVideo.rom

  - This file is not built separately any longer, starting with svn r13520.



More information on building OVMF can be found at:



https://github.com/tianocore/tianocore.github.io/wiki/How%20to%20build%20OVMF



=== RUNNING OVMF on QEMU ===



* QEMU 0.12.2 or later is required.

* Be sure to use qemu-system-x86_64, if you are using and X64 firmware.

  (qemu-system-x86_64 works for the IA32 firmware as well, of course.)

* Use OVMF for QEMU firmware (3 options available)

  - Option 1: QEMU 1.6 or newer; Use QEMU -pflash parameter

    * QEMU/OVMF will use emulated flash, and fully support UEFI variables

    * Run qemu with: -pflash path/to/OVMF.fd

    * Note that this option is required for running SecureBoot-enabled builds

      (-D SECURE_BOOT_ENABLE).

  - Option 2: Use QEMU -bios parameter

    * Note that UEFI variables will be partially emulated, and non-volatile

      variables may lose their contents after a reboot

    * Run qemu with: -bios path/to/OVMF.fd

  - Option 3: Use QEMU -L parameter

    * Note that UEFI variables will be partially emulated, and non-volatile

      variables may lose their contents after a reboot

    * Either copy, rename or symlink OVMF.fd => bios.bin

    * Use the QEMU -L parameter to specify the directory where the bios.bin

      file is located.

* The EFI shell is built into OVMF builds at this time, so it should

  run automatically if a UEFI boot application is not found on the

  removable media.

* On Linux, newer version of QEMU may enable KVM feature, and this might

  cause OVMF to fail to boot.  The QEMU '-no-kvm' may allow OVMF to boot.

* Capturing OVMF debug messages on qemu:

  - The default OVMF build writes debug messages to IO port 0x402.  The

    following qemu command line options save them in the file called

    debug.log: '-debugcon file:debug.log -global isa-debugcon.iobase=0x402'.

  - It is possible to revert to the original behavior, when debug messages were

    written to the emulated serial port (potentially intermixing OVMF debug

    output with UEFI serial console output).  For this the

    '-D DEBUG_ON_SERIAL_PORT' option has to be passed to the build command (see

    the next section), and in order to capture the serial output qemu needs to

    be started with eg. '-serial file:serial.log'.

  - Debug messages fall into several categories.  Logged vs. suppressed

    categories are controlled at OVMF build time by the

    'gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel' bitmask (an UINT32

    value) in the selected .dsc file.  Individual bits of this bitmask are

    defined in <MdePkg/Include/Library/DebugLib.h>.  One non-default bit (with

    some performance impact) that is frequently set for debugging is 0x00400000

    (DEBUG_VERBOSE).

  - The RELEASE build target ('-b RELEASE' build option, see below) disables

    all debug messages.  The default build target is DEBUG.



=== Build Scripts ===



On systems with the bash shell you can use OvmfPkg/build.sh to simplify

building and running OVMF.



So, for example, to build + run OVMF X64:

$ OvmfPkg/build.sh -a X64

$ OvmfPkg/build.sh -a X64 qemu



And to run a 64-bit UEFI bootable ISO image:

$ OvmfPkg/build.sh -a X64 qemu -cdrom /path/to/disk-image.iso



To build a 32-bit OVMF without debug messages using GCC 4.8:

$ OvmfPkg/build.sh -a IA32 -b RELEASE -t GCC48



=== SMM support ===



Requirements:

* SMM support requires QEMU 2.5.

* The minimum required QEMU machine type is "pc-q35-2.5".

* SMM with KVM requires Linux 4.4 (host).



OVMF is capable of utilizing SMM if the underlying QEMU or KVM hypervisor

emulates SMM. SMM is put to use in the S3 suspend and resume infrastructure,

and in the UEFI variable driver stack. The purpose is (virtual) hardware

separation between the runtime guest OS and the firmware (OVMF), with the

intent to make Secure Boot actually secure, by preventing the runtime guest OS

from tampering with the variable store and S3 areas.



For SMM support, OVMF must be built with the "-D SMM_REQUIRE" option. The

resultant firmware binary will check if QEMU actually provides SMM emulation;

if it doesn't, then OVMF will log an error and trigger an assertion failure

during boot (even in RELEASE builds). Both the naming of the flag (SMM_REQUIRE,

instead of SMM_ENABLE), and this behavior are consistent with the goal

described above: this is supposed to be a security feature, and fallbacks are

not allowed. Similarly, a pflash-backed variable store is a requirement.



QEMU should be started with the options listed below (in addition to any other

guest-specific flags). The command line should be gradually composed from the

hints below. '\' is used to extend the command line to multiple lines, and '^'

can be used on Windows.



* QEMU binary and options specific to 32-bit guests:



  $ qemu-system-i386 -cpu coreduo,-nx \



  or



  $ qemu-system-x86_64 -cpu <MODEL>,-lm,-nx \



* QEMU binary for running 64-bit guests (no particular options):



  $ qemu-system-x86_64 \



* Flags common to all SMM scenarios (only the Q35 machine type is supported):



  -machine q35,smm=on,accel=(tcg|kvm) \

  -m ... \

  -smp ... \

  -global driver=cfi.pflash01,property=secure,value=on \

  -drive if=pflash,format=raw,unit=0,file=OVMF_CODE.fd,readonly=on \

  -drive if=pflash,format=raw,unit=1,file=copy_of_OVMF_VARS.fd \



* In order to disable S3, add:



  -global ICH9-LPC.disable_s3=1 \



=== Network Support ===



OVMF provides a UEFI network stack by default. Its lowest level driver is the

NIC driver, higher levels are generic. In order to make DHCP, PXE Boot, and eg.

socket test utilities from the StdLib edk2 package work, (1) qemu has to be

configured to emulate a NIC, (2) a matching UEFI NIC driver must be available

when OVMF boots.



(If a NIC is configured for the virtual machine, and -- dependent on boot order

-- PXE booting is attempted, but no DHCP server responds to OVMF's DHCP

DISCOVER message at startup, the boot process may take approx. 3 seconds

longer.)



* For each NIC emulated by qemu, a GPLv2 licensed UEFI driver is available from

  the iPXE project. The qemu source distribution, starting with version 1.5,

  contains prebuilt binaries of these drivers (and of course allows one to

  rebuild them from source as well). This is the recommended set of drivers.



* Use the qemu -netdev and -device options, or the legacy -net option, to

  enable NIC support: <http://wiki.qemu.org/Documentation/Networking>.



* For a qemu >= 1.5 binary running *without* any "-M machine" option where

  "machine" would identify a < qemu-1.5 configuration (for example: "-M

  pc-i440fx-1.4" or "-M pc-0.13"), the iPXE drivers are automatically available

  to and configured for OVMF in the default qemu installation.



* For a qemu binary in [0.13, 1.5), or a qemu >= 1.5 binary with an "-M

  machine" option where "machine" selects a < qemu-1.5 configuration:



  - download a >= 1.5.0-rc1 source tarball from <http://wiki.qemu.org/Download>,



  - extract the following iPXE driver files from the tarball and install them

    in a location that is accessible to qemu processes (this may depend on your

    SELinux configuration, for example):



    qemu-VERSION/pc-bios/efi-e1000.rom

    qemu-VERSION/pc-bios/efi-ne2k_pci.rom

    qemu-VERSION/pc-bios/efi-pcnet.rom

    qemu-VERSION/pc-bios/efi-rtl8139.rom

    qemu-VERSION/pc-bios/efi-virtio.rom



  - extend the NIC's -device option on the qemu command line with a matching

    "romfile=" optarg:



    -device e1000,...,romfile=/full/path/to/efi-e1000.rom

    -device ne2k_pci,...,romfile=/full/path/to/efi-ne2k_pci.rom

    -device pcnet,...,romfile=/full/path/to/efi-pcnet.rom

    -device rtl8139,...,romfile=/full/path/to/efi-rtl8139.rom

    -device virtio-net-pci,...,romfile=/full/path/to/efi-virtio.rom



* Independently of the iPXE NIC drivers, the default OVMF build provides a

  basic virtio-net driver, located in OvmfPkg/VirtioNetDxe.



* Also independently of the iPXE NIC drivers, Intel's proprietary E1000 NIC

  driver (from the BootUtil distribution) can be embedded in the OVMF image at

  build time:



  - Download BootUtil:

    - Navigate to

      https://downloadcenter.intel.com/download/19186/Ethernet-Intel-Ethernet-Connections-Boot-Utility-Preboot-Images-and-EFI-Drivers

    - Click the download link for "PREBOOT.EXE".

    - Accept the Intel Software License Agreement that appears.

    - Unzip "PREBOOT.EXE" into a separate directory (this works with the

      "unzip" utility on platforms different from Windows as well).

    - Copy the "APPS/EFI/EFIx64/E3522X2.EFI" driver binary to

      "Intel3.5/EFIX64/E3522X2.EFI" in your WORKSPACE.

    - Intel have stopped distributing an IA32 driver binary (which used to

      match the filename pattern "E35??E2.EFI"), thus this method will only

      work for the IA32X64 and X64 builds of OVMF.



  - Include the driver in OVMF during the build:

    - Add "-D E1000_ENABLE" to your build command (only when building

      "OvmfPkg/OvmfPkgIa32X64.dsc" or "OvmfPkg/OvmfPkgX64.dsc").

    - For example: "build -D E1000_ENABLE".



* When a matching iPXE driver is configured for a NIC as described above, it

  takes priority over other drivers that could possibly drive the card too:



                         | e1000  ne2k_pci  pcnet  rtl8139  virtio-net-pci

    ---------------------+------------------------------------------------

    iPXE                 |   x       x        x       x           x

    VirtioNetDxe         |                                        x

    Intel BootUtil (X64) |   x



=== HTTPS Boot ===



HTTPS Boot is an alternative solution to PXE. It replaces the tftp server

with a HTTPS server so the firmware can download the images through a trusted

and encrypted connection.



* To enable HTTPS Boot, you have to build OVMF with -D NETWORK_HTTP_BOOT_ENABLE

  and -D NETWORK_TLS_ENABLE. The former brings in the HTTP stack from

  NetworkPkg while the latter enables TLS support in both NetworkPkg and

  CryptoPkg.



  If you want to exclude the unsecured HTTP connection completely, OVMF has to

  be built with -D NETWORK_ALLOW_HTTP_CONNECTIONS=FALSE so that only the HTTPS

  connections will be accepted.



* By default, there is no trusted certificate. The user has to import the

  certificates either manually with "Tls Auth Configuration" utility in the

  firmware UI or through the fw_cfg entry, etc/edk2/https/cacerts.



  -fw_cfg name=etc/edk2/https/cacerts,file=<certdb>



  The blob for etc/edk2/https/cacerts has to be in the format of Signature

  Database(*1). You can use p11-kit(*2) or efisiglit(*3) to create the

  certificate list.



  If you want to create the certificate list based on the CA certificates

  in your local host, p11-kit will be a good choice. Here is the command to

  create the list:



  p11-kit extract --format=edk2-cacerts --filter=ca-anchors \

    --overwrite --purpose=server-auth <certdb>



  If you only want to import one certificate, efisiglist is the tool for you:



  efisiglist -a <cert file> -o <certdb>



  Please note that the certificate has to be in the DER format.



  You can also append a certificate to the existing list with the following

  command:



  efisiglist -i <old certdb> -a <cert file> -o <new certdb>



  NOTE: You may need the patch to make efisiglist generate the correct header.

  (https://github.com/rhboot/pesign/pull/40)



* Besides the trusted certificates, it's also possible to configure the trusted

  cipher suites for HTTPS through another fw_cfg entry: etc/edk2/https/ciphers.



  -fw_cfg name=etc/edk2/https/ciphers,file=<cipher suites>



  OVMF expects a binary UINT16 array which comprises the cipher suites HEX

  IDs(*4). If the cipher suite list is given, OVMF will choose the cipher

  suite from the intersection of the given list and the built-in cipher

  suites. Otherwise, OVMF just chooses whatever proper cipher suites from the

  built-in ones.



  While the tool(*5) to create the cipher suite array is still under

  development, the array can be generated with the following script:



  export LC_ALL=C

  openssl ciphers -V \

  | sed -r -n \

     -e 's/^ *0x([0-9A-F]{2}),0x([0-9A-F]{2}) - .*$/\\\\x\1 \\\\x\2/p' \

  | xargs -r -- printf -- '%b' > ciphers.bin



  This script creates ciphers.bin that contains all the cipher suite IDs

  supported by openssl according to the local host configuration.



  You may want to enable only a limited set of cipher suites. Then, you

  should check the validity of your list first:



  openssl ciphers -V <cipher list>



  If all the cipher suites in your list map to the proper HEX IDs, go ahead

  to modify the script and execute it:



  export LC_ALL=C

  openssl ciphers -V <cipher list> \

  | sed -r -n \

     -e 's/^ *0x([0-9A-F]{2}),0x([0-9A-F]{2}) - .*$/\\\\x\1 \\\\x\2/p' \

  | xargs -r -- printf -- '%b' > ciphers.bin



* In the future (after release 2.12), QEMU should populate both above fw_cfg

  files automatically from the local host configuration, and enable the user

  to override either with dedicated options or properties.



(*1) See "31.4.1 Signature Database" in UEFI specification 2.7 errata A.

(*2) p11-kit: https://github.com/p11-glue/p11-kit/

(*3) efisiglist: https://github.com/rhboot/pesign/blob/master/src/efisiglist.c

(*4) https://wiki.mozilla.org/Security/Server_Side_TLS#Cipher_names_correspondence_table

(*5) update-crypto-policies: https://gitlab.com/redhat-crypto/fedora-crypto-policies



=== OVMF Flash Layout ===



Like all current IA32/X64 system designs, OVMF's firmware device (rom/flash)

appears in QEMU's physical address space just below 4GB (0x100000000).



OVMF supports building a 1MB, 2MB or 4MB flash image (see the DSC files for the

FD_SIZE_1MB, FD_SIZE_2MB, FD_SIZE_4MB build defines). The base address for the

1MB image in QEMU physical memory is 0xfff00000. The base address for the 2MB

image is 0xffe00000. The base address for the 4MB image is 0xffc00000.



Using the 1MB or 2MB image, the layout of the firmware device in memory looks

like:



+--------------------------------------- 4GB (0x100000000)

| VTF0 (16-bit reset code) and OVMF SEC

| (SECFV, 208KB/0x34000)

+--------------------------------------- varies based on flash size

|

| Compressed main firmware image

| (FVMAIN_COMPACT)

|

+--------------------------------------- base + 0x20000

| Fault-tolerant write (FTW)

| Spare blocks (64KB/0x10000)

+--------------------------------------- base + 0x10000

| FTW Work block (4KB/0x1000)

+--------------------------------------- base + 0x0f000

| Event log area (4KB/0x1000)

+--------------------------------------- base + 0x0e000

| Non-volatile variable storage

| area (56KB/0xe000)

+--------------------------------------- base address



Using the 4MB image, the layout of the firmware device in memory looks like:



+--------------------------------------- base + 0x400000 (4GB/0x100000000)

| VTF0 (16-bit reset code) and OVMF SEC

| (SECFV, 208KB/0x34000)

+--------------------------------------- base + 0x3cc000

|

| Compressed main firmware image

| (FVMAIN_COMPACT, 3360KB/0x348000)

|

+--------------------------------------- base + 0x84000

| Fault-tolerant write (FTW)

| Spare blocks (264KB/0x42000)

+--------------------------------------- base + 0x42000

| FTW Work block (4KB/0x1000)

+--------------------------------------- base + 0x41000

| Event log area (4KB/0x1000)

+--------------------------------------- base + 0x40000

| Non-volatile variable storage

| area (256KB/0x40000)

+--------------------------------------- base address (0xffc00000)



The code in SECFV locates FVMAIN_COMPACT, and decompresses the

main firmware (MAINFV) into RAM memory at address 0x800000. The

remaining OVMF firmware then uses this decompressed firmware

volume image.



=== UEFI Windows 7 & Windows 2008 Server ===



* One of the '-vga std' and '-vga qxl' QEMU options should be used.

* Only one video mode, 1024x768x32, is supported at OS runtime.

* The '-vga qxl' QEMU option is recommended. After booting the installed

  guest OS, select the video card in Device Manager, and upgrade its driver

  to the QXL XDDM one. Download location:

  <http://www.spice-space.org/download.html>, Guest | Windows binaries.

  This enables further resolutions at OS runtime, and provides S3

  (suspend/resume) capability.