audk/EmbeddedPkg/Drivers/Lan9118Dxe/Lan9118DxeUtil.c

1033 lines
27 KiB
C

/** @file
*
* Copyright (c) 2012-2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include "Lan9118Dxe.h"
STATIC EFI_MAC_ADDRESS mZeroMac = { { 0 } };
/**
This internal function reverses bits for 32bit data.
@param Value The data to be reversed.
@return Data reversed.
**/
UINT32
ReverseBits (
UINT32 Value
)
{
UINTN Index;
UINT32 NewValue;
NewValue = 0;
for (Index = 0; Index < 32; Index++) {
if ((Value & (1 << Index)) != 0) {
NewValue = NewValue | (1 << (31 - Index));
}
}
return NewValue;
}
/*
** Create Ethernet CRC
**
** INFO USED:
** 1: http://en.wikipedia.org/wiki/Cyclic_redundancy_check
**
** 2: http://www.erg.abdn.ac.uk/~gorry/eg3567/dl-pages/crc.html
**
** 3: http://en.wikipedia.org/wiki/Computation_of_CRC
*/
UINT32
GenEtherCrc32 (
IN EFI_MAC_ADDRESS *Mac,
IN UINT32 AddrLen
)
{
INT32 Iter;
UINT32 Remainder;
UINT8 *Ptr;
Iter = 0;
Remainder = 0xFFFFFFFF; // 0xFFFFFFFF is standard seed for Ethernet
// Convert Mac Address to array of bytes
Ptr = (UINT8*)Mac;
// Generate the Crc bit-by-bit (LSB first)
while (AddrLen--) {
Remainder ^= *Ptr++;
for (Iter = 0;Iter < 8;Iter++) {
// Check if exponent is set
if (Remainder & 1) {
Remainder = (Remainder >> 1) ^ CRC_POLYNOMIAL;
} else {
Remainder = (Remainder >> 1) ^ 0;
}
}
}
// Reverse the bits before returning (to Big Endian)
//TODO: Need to be reviewed. Do we want to do a bit reverse or a byte reverse (in this case use SwapBytes32())
return ReverseBits (Remainder);
}
// Function to read from MAC indirect registers
UINT32
IndirectMACRead32 (
UINT32 Index
)
{
UINT32 MacCSR;
// Check index is in the range
ASSERT(Index <= 12);
// Wait until CSR busy bit is cleared
while ((Lan9118MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
// Set CSR busy bit to ensure read will occur
// Set the R/W bit to indicate we are reading
// Set the index of CSR Address to access desired register
MacCSR = MAC_CSR_BUSY | MAC_CSR_READ | MAC_CSR_ADDR(Index);
// Write to the register
Lan9118MmioWrite32 (LAN9118_MAC_CSR_CMD, MacCSR);
// Wait until CSR busy bit is cleared
while ((Lan9118MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
// Now read from data register to get read value
return Lan9118MmioRead32 (LAN9118_MAC_CSR_DATA);
}
/*
* LAN9118 chips have special restrictions on some back-to-back Write/Read or
* Read/Read pairs of accesses. After a read or write that changes the state of
* the device, there is a period in which stale values may be returned in
* response to a read. This period is dependent on the registers accessed.
*
* We must delay prior reads by this period. This can either be achieved by
* timer-based delays, or by performing dummy reads of the BYTE_TEST register,
* for which the recommended number of reads is described in the LAN9118 data
* sheet. This is required in addition to any memory barriers.
*
* This function performs a number of dummy reads of the BYTE_TEST register, as
* a building block for the above.
*/
VOID
WaitDummyReads (
UINTN Count
)
{
while (Count--)
MmioRead32(LAN9118_BYTE_TEST);
}
UINT32
Lan9118RawMmioRead32(
UINTN Address,
UINTN Delay
)
{
UINT32 Value;
Value = MmioRead32(Address);
WaitDummyReads(Delay);
return Value;
}
UINT32
Lan9118RawMmioWrite32(
UINTN Address,
UINT32 Value,
UINTN Delay
)
{
MmioWrite32(Address, Value);
WaitDummyReads(Delay);
return Value;
}
// Function to write to MAC indirect registers
UINT32
IndirectMACWrite32 (
UINT32 Index,
UINT32 Value
)
{
UINT32 ValueWritten;
UINT32 MacCSR;
// Check index is in the range
ASSERT(Index <= 12);
// Wait until CSR busy bit is cleared
while ((Lan9118MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
// Set CSR busy bit to ensure read will occur
// Set the R/W bit to indicate we are writing
// Set the index of CSR Address to access desired register
MacCSR = MAC_CSR_BUSY | MAC_CSR_WRITE | MAC_CSR_ADDR(Index);
// Now write the value to the register before issuing the write command
ValueWritten = Lan9118MmioWrite32 (LAN9118_MAC_CSR_DATA, Value);
// Write the config to the register
Lan9118MmioWrite32 (LAN9118_MAC_CSR_CMD, MacCSR);
// Wait until CSR busy bit is cleared
while ((Lan9118MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
return ValueWritten;
}
// Function to read from MII register (PHY Access)
UINT32
IndirectPHYRead32 (
UINT32 Index
)
{
UINT32 ValueRead;
UINT32 MiiAcc;
// Check it is a valid index
ASSERT(Index < 31);
// Wait for busy bit to clear
while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
// Clear the R/W bit to indicate we are reading
// Set the index of the MII register
// Set the PHY Address
// Set the MII busy bit to allow read
MiiAcc = MII_ACC_MII_READ | MII_ACC_MII_REG_INDEX(Index) | MII_ACC_PHY_VALUE | MII_ACC_MII_BUSY;
// Now write this config to register
IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_ACC, MiiAcc & 0xFFFF);
// Wait for busy bit to clear
while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
// Now read the value of the register
ValueRead = (IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_DATA) & 0xFFFF); // only lower 16 bits are valid for any PHY register
return ValueRead;
}
// Function to write to the MII register (PHY Access)
UINT32
IndirectPHYWrite32 (
UINT32 Index,
UINT32 Value
)
{
UINT32 MiiAcc;
UINT32 ValueWritten;
// Check it is a valid index
ASSERT(Index < 31);
// Wait for busy bit to clear
while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
// Clear the R/W bit to indicate we are reading
// Set the index of the MII register
// Set the PHY Address
// Set the MII busy bit to allow read
MiiAcc = MII_ACC_MII_WRITE | MII_ACC_MII_REG_INDEX(Index) | MII_ACC_PHY_VALUE | MII_ACC_MII_BUSY;
// Write the desired value to the register first
ValueWritten = IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_DATA, (Value & 0xFFFF));
// Now write the config to register
IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_ACC, MiiAcc & 0xFFFF);
// Wait for operation to terminate
while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
return ValueWritten;
}
/* ---------------- EEPROM Operations ------------------ */
// Function to read from EEPROM memory
UINT32
IndirectEEPROMRead32 (
UINT32 Index
)
{
UINT32 EepromCmd;
// Set the busy bit to ensure read will occur
EepromCmd = E2P_EPC_BUSY | E2P_EPC_CMD_READ;
// Set the index to access desired EEPROM memory location
EepromCmd |= E2P_EPC_ADDRESS(Index);
// Write to Eeprom command register
Lan9118MmioWrite32 (LAN9118_E2P_CMD, EepromCmd);
// Wait until operation has completed
while (Lan9118MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
// Check that operation didn't time out
if (Lan9118MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_TIMEOUT) {
DEBUG ((EFI_D_ERROR, "EEPROM Operation Timed out: Read command on index %x\n",Index));
return 0;
}
// Wait until operation has completed
while (Lan9118MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
// Finally read the value
return Lan9118MmioRead32 (LAN9118_E2P_DATA);
}
// Function to write to EEPROM memory
UINT32
IndirectEEPROMWrite32 (
UINT32 Index,
UINT32 Value
)
{
UINT32 ValueWritten;
UINT32 EepromCmd;
ValueWritten = 0;
// Read the EEPROM Command register
EepromCmd = Lan9118MmioRead32 (LAN9118_E2P_CMD);
// Set the busy bit to ensure read will occur
EepromCmd |= ((UINT32)1 << 31);
// Set the EEPROM command to write(0b011)
EepromCmd &= ~(7 << 28); // Clear the command first
EepromCmd |= (3 << 28); // Write 011
// Set the index to access desired EEPROM memory location
EepromCmd |= (Index & 0xF);
// Write the value to the data register first
ValueWritten = Lan9118MmioWrite32 (LAN9118_E2P_DATA, Value);
// Write to Eeprom command register
Lan9118MmioWrite32 (LAN9118_E2P_CMD, EepromCmd);
// Wait until operation has completed
while (Lan9118MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
// Check that operation didn't time out
if (Lan9118MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_TIMEOUT) {
DEBUG ((EFI_D_ERROR, "EEPROM Operation Timed out: Write command at memloc 0x%x, with value 0x%x\n",Index, Value));
return 0;
}
// Wait until operation has completed
while (Lan9118MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
return ValueWritten;
}
/* ---------------- General Operations ----------------- */
VOID
Lan9118SetMacAddress (
EFI_MAC_ADDRESS *Mac,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
IndirectMACWrite32 (INDIRECT_MAC_INDEX_ADDRL,
(Mac->Addr[0] & 0xFF) |
((Mac->Addr[1] & 0xFF) << 8) |
((Mac->Addr[2] & 0xFF) << 16) |
((Mac->Addr[3] & 0xFF) << 24)
);
IndirectMACWrite32 (INDIRECT_MAC_INDEX_ADDRH,
(UINT32)(Mac->Addr[4] & 0xFF) |
((Mac->Addr[5] & 0xFF) << 8)
);
}
VOID
Lan9118ReadMacAddress (
OUT EFI_MAC_ADDRESS *MacAddress
)
{
UINT32 MacAddrHighValue;
UINT32 MacAddrLowValue;
// Read the Mac Addr high register
MacAddrHighValue = (IndirectMACRead32 (INDIRECT_MAC_INDEX_ADDRH) & 0xFFFF);
// Read the Mac Addr low register
MacAddrLowValue = IndirectMACRead32 (INDIRECT_MAC_INDEX_ADDRL);
SetMem (MacAddress, sizeof(*MacAddress), 0);
MacAddress->Addr[0] = (MacAddrLowValue & 0xFF);
MacAddress->Addr[1] = (MacAddrLowValue & 0xFF00) >> 8;
MacAddress->Addr[2] = (MacAddrLowValue & 0xFF0000) >> 16;
MacAddress->Addr[3] = (MacAddrLowValue & 0xFF000000) >> 24;
MacAddress->Addr[4] = (MacAddrHighValue & 0xFF);
MacAddress->Addr[5] = (MacAddrHighValue & 0xFF00) >> 8;
}
/*
* Power up the 9118 and find its MAC address.
*
* This operation can be carried out when the LAN9118 is in any power state
*
*/
EFI_STATUS
Lan9118Initialize (
IN EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINTN Retries;
UINT64 DefaultMacAddress;
// Attempt to wake-up the device if it is in a lower power state
if (((Lan9118MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_PM_MODE_MASK) >> 12) != 0) {
DEBUG ((DEBUG_NET, "Waking from reduced power state.\n"));
Lan9118MmioWrite32 (LAN9118_BYTE_TEST, 0xFFFFFFFF);
}
// Check that device is active
Retries = 20;
while ((Lan9118MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_READY) == 0 && --Retries) {
gBS->Stall (LAN9118_STALL);
}
if (!Retries) {
return EFI_TIMEOUT;
}
// Check that EEPROM isn't active
Retries = 20;
while ((Lan9118MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY) && --Retries){
gBS->Stall (LAN9118_STALL);
}
if (!Retries) {
return EFI_TIMEOUT;
}
// Check if a MAC address was loaded from EEPROM, and if it was, set it as the
// current address.
if ((Lan9118MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_MAC_ADDRESS_LOADED) == 0) {
DEBUG ((EFI_D_ERROR, "Warning: There was an error detecting EEPROM or loading the MAC Address.\n"));
// If we had an address before (set by StationAddress), continue to use it
if (CompareMem (&Snp->Mode->CurrentAddress, &mZeroMac, NET_ETHER_ADDR_LEN)) {
Lan9118SetMacAddress (&Snp->Mode->CurrentAddress, Snp);
} else {
// If there are no cached addresses, then fall back to a default
DEBUG ((EFI_D_WARN, "Warning: using driver-default MAC address\n"));
DefaultMacAddress = FixedPcdGet64 (PcdLan9118DefaultMacAddress);
Lan9118SetMacAddress((EFI_MAC_ADDRESS *) &DefaultMacAddress, Snp);
CopyMem (&Snp->Mode->CurrentAddress, &DefaultMacAddress, NET_ETHER_ADDR_LEN);
}
} else {
// Store the MAC address that was loaded from EEPROM
Lan9118ReadMacAddress (&Snp->Mode->CurrentAddress);
CopyMem (&Snp->Mode->PermanentAddress, &Snp->Mode->CurrentAddress, NET_ETHER_ADDR_LEN);
}
// Clear and acknowledge interrupts
Lan9118MmioWrite32 (LAN9118_INT_EN, 0);
Lan9118MmioWrite32 (LAN9118_IRQ_CFG, 0);
Lan9118MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
// Do self tests here?
return EFI_SUCCESS;
}
// Perform software reset on the LAN9118
// Return 0 on success, -1 on error
EFI_STATUS
SoftReset (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 HwConf;
UINT32 ResetTime;
// Initialize variable
ResetTime = 0;
// Stop Rx and Tx
StopTx (STOP_TX_MAC | STOP_TX_CFG | STOP_TX_CLEAR, Snp);
StopRx (STOP_RX_CLEAR, Snp); // Clear receiver FIFO
// Issue the reset
HwConf = Lan9118MmioRead32 (LAN9118_HW_CFG);
HwConf |= 1;
// Set the Must Be One (MBO) bit
if (((HwConf & HWCFG_MBO) >> 20) == 0) {
HwConf |= HWCFG_MBO;
}
// Check that EEPROM isn't active
while (Lan9118MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
// Write the configuration
Lan9118MmioWrite32 (LAN9118_HW_CFG, HwConf);
// Wait for reset to complete
while (Lan9118MmioRead32 (LAN9118_HW_CFG) & HWCFG_SRST) {
gBS->Stall (LAN9118_STALL);
ResetTime += 1;
// If time taken exceeds 100us, then there was an error condition
if (ResetTime > 1000) {
Snp->Mode->State = EfiSimpleNetworkStopped;
return EFI_TIMEOUT;
}
}
// Check that EEPROM isn't active
while (Lan9118MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
// TODO we probably need to re-set the mac address here.
// Clear and acknowledge all interrupts
if (Flags & SOFT_RESET_CLEAR_INT) {
Lan9118MmioWrite32 (LAN9118_INT_EN, 0);
Lan9118MmioWrite32 (LAN9118_IRQ_CFG, 0);
Lan9118MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
}
// Do self tests here?
if (Flags & SOFT_RESET_SELF_TEST) {
}
return EFI_SUCCESS;
}
// Perform PHY software reset
EFI_STATUS
PhySoftReset (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 PmtCtrl = 0;
// PMT PHY reset takes precedence over BCR
if (Flags & PHY_RESET_PMT) {
PmtCtrl = Lan9118MmioRead32 (LAN9118_PMT_CTRL);
PmtCtrl |= MPTCTRL_PHY_RST;
Lan9118MmioWrite32 (LAN9118_PMT_CTRL,PmtCtrl);
// Wait for completion
while (Lan9118MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_PHY_RST) {
gBS->Stall (LAN9118_STALL);
}
// PHY Basic Control Register reset
} else if (Flags & PHY_RESET_BCR) {
IndirectPHYWrite32 (PHY_INDEX_BASIC_CTRL, PHYCR_RESET);
// Wait for completion
while (IndirectPHYRead32 (PHY_INDEX_BASIC_CTRL) & PHYCR_RESET) {
gBS->Stall (LAN9118_STALL);
}
}
// Clear and acknowledge all interrupts
if (Flags & PHY_SOFT_RESET_CLEAR_INT) {
Lan9118MmioWrite32 (LAN9118_INT_EN, 0);
Lan9118MmioWrite32 (LAN9118_IRQ_CFG, 0);
Lan9118MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
}
return EFI_SUCCESS;
}
// Configure hardware for LAN9118
EFI_STATUS
ConfigureHardware (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 GpioConf;
// Check if we want to use LEDs on GPIO
if (Flags & HW_CONF_USE_LEDS) {
GpioConf = Lan9118MmioRead32 (LAN9118_GPIO_CFG);
// Enable GPIO as LEDs and Config as Push-Pull driver
GpioConf |= GPIO_GPIO0_PUSH_PULL | GPIO_GPIO1_PUSH_PULL | GPIO_GPIO2_PUSH_PULL |
GPIO_LED1_ENABLE | GPIO_LED2_ENABLE | GPIO_LED3_ENABLE;
// Write the configuration
Lan9118MmioWrite32 (LAN9118_GPIO_CFG, GpioConf);
}
return EFI_SUCCESS;
}
// Configure flow control
EFI_STATUS
ConfigureFlow (
UINT32 Flags,
UINT32 HighTrig,
UINT32 LowTrig,
UINT32 BPDuration,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
return EFI_SUCCESS;
}
// Do auto-negotiation
EFI_STATUS
AutoNegotiate (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 PhyControl;
UINT32 PhyStatus;
UINT32 Features;
UINT32 Retries;
// First check that auto-negotiation is supported
PhyStatus = IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS);
if ((PhyStatus & PHYSTS_AUTO_CAP) == 0) {
DEBUG ((EFI_D_ERROR, "Auto-negotiation not supported.\n"));
return EFI_DEVICE_ERROR;
}
// Check that link is up first
if ((PhyStatus & PHYSTS_LINK_STS) == 0) {
// Wait until it is up or until Time Out
Retries = FixedPcdGet32 (PcdLan9118DefaultNegotiationTimeout) / LAN9118_STALL;
while ((IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS) & PHYSTS_LINK_STS) == 0) {
gBS->Stall (LAN9118_STALL);
Retries--;
if (!Retries) {
DEBUG ((EFI_D_ERROR, "Link timeout in auto-negotiation.\n"));
return EFI_TIMEOUT;
}
}
}
// Configure features to advertise
Features = IndirectPHYRead32 (PHY_INDEX_AUTO_NEG_ADVERT);
if ((Flags & AUTO_NEGOTIATE_ADVERTISE_ALL) > 0) {
// Link speed capabilities
Features |= (PHYANA_10BASET | PHYANA_10BASETFD | PHYANA_100BASETX | PHYANA_100BASETXFD);
// Pause frame capabilities
Features &= ~(PHYANA_PAUSE_OP_MASK);
Features |= 3 << 10;
}
Features &= FixedPcdGet32 (PcdLan9118NegotiationFeatureMask);
// Write the features
IndirectPHYWrite32 (PHY_INDEX_AUTO_NEG_ADVERT, Features);
// Read control register
PhyControl = IndirectPHYRead32 (PHY_INDEX_BASIC_CTRL);
// Enable Auto-Negotiation
if ((PhyControl & PHYCR_AUTO_EN) == 0) {
PhyControl |= PHYCR_AUTO_EN;
}
// Restart auto-negotiation
PhyControl |= PHYCR_RST_AUTO;
// Enable collision test if required to do so
if (Flags & AUTO_NEGOTIATE_COLLISION_TEST) {
PhyControl |= PHYCR_COLL_TEST;
} else {
PhyControl &= ~ PHYCR_COLL_TEST;
}
// Write this configuration
IndirectPHYWrite32 (PHY_INDEX_BASIC_CTRL, PhyControl);
// Wait until process has completed
while ((IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS) & PHYSTS_AUTO_COMP) == 0);
return EFI_SUCCESS;
}
// Check the Link Status and take appropriate action
EFI_STATUS
CheckLinkStatus (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
// Get the PHY Status
UINT32 PhyBStatus = IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS);
if (PhyBStatus & PHYSTS_LINK_STS) {
return EFI_SUCCESS;
} else {
return EFI_DEVICE_ERROR;
}
}
// Stop the transmitter
EFI_STATUS
StopTx (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 MacCsr;
UINT32 TxCfg;
MacCsr = 0;
TxCfg = 0;
// Check if we want to clear tx
if (Flags & STOP_TX_CLEAR) {
TxCfg = Lan9118MmioRead32 (LAN9118_TX_CFG);
TxCfg |= TXCFG_TXS_DUMP | TXCFG_TXD_DUMP;
Lan9118MmioWrite32 (LAN9118_TX_CFG, TxCfg);
}
// Check if already stopped
if (Flags & STOP_TX_MAC) {
MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
if (MacCsr & MACCR_TX_EN) {
MacCsr &= ~MACCR_TX_EN;
IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
}
}
if (Flags & STOP_TX_CFG) {
TxCfg = Lan9118MmioRead32 (LAN9118_TX_CFG);
if (TxCfg & TXCFG_TX_ON) {
TxCfg |= TXCFG_STOP_TX;
Lan9118MmioWrite32 (LAN9118_TX_CFG, TxCfg);
// Wait for Tx to finish transmitting
while (Lan9118MmioRead32 (LAN9118_TX_CFG) & TXCFG_STOP_TX);
}
}
return EFI_SUCCESS;
}
// Stop the receiver
EFI_STATUS
StopRx (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 MacCsr;
UINT32 RxCfg;
RxCfg = 0;
// Check if already stopped
MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
if (MacCsr & MACCR_RX_EN) {
MacCsr &= ~ MACCR_RX_EN;
IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
}
// Check if we want to clear receiver FIFOs
if (Flags & STOP_RX_CLEAR) {
RxCfg = Lan9118MmioRead32 (LAN9118_RX_CFG);
RxCfg |= RXCFG_RX_DUMP;
Lan9118MmioWrite32 (LAN9118_RX_CFG, RxCfg);
while (Lan9118MmioRead32 (LAN9118_RX_CFG) & RXCFG_RX_DUMP);
}
return EFI_SUCCESS;
}
// Start the transmitter
EFI_STATUS
StartTx (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 MacCsr;
UINT32 TxCfg;
MacCsr = 0;
TxCfg = 0;
// Check if we want to clear tx
if (Flags & START_TX_CLEAR) {
TxCfg = Lan9118MmioRead32 (LAN9118_TX_CFG);
TxCfg |= TXCFG_TXS_DUMP | TXCFG_TXD_DUMP;
Lan9118MmioWrite32 (LAN9118_TX_CFG, TxCfg);
}
// Check if tx was started from MAC and enable if not
if (Flags & START_TX_MAC) {
MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
if ((MacCsr & MACCR_TX_EN) == 0) {
MacCsr |= MACCR_TX_EN;
IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
}
}
// Check if tx was started from TX_CFG and enable if not
if (Flags & START_TX_CFG) {
TxCfg = Lan9118MmioRead32 (LAN9118_TX_CFG);
if ((TxCfg & TXCFG_TX_ON) == 0) {
TxCfg |= TXCFG_TX_ON;
Lan9118MmioWrite32 (LAN9118_TX_CFG, TxCfg);
}
}
// Set the tx data trigger level
return EFI_SUCCESS;
}
// Start the receiver
EFI_STATUS
StartRx (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 MacCsr;
UINT32 RxCfg;
RxCfg = 0;
// Check if already started
MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
if ((MacCsr & MACCR_RX_EN) == 0) {
// Check if we want to clear receiver FIFOs before starting
if (Flags & START_RX_CLEAR) {
RxCfg = Lan9118MmioRead32 (LAN9118_RX_CFG);
RxCfg |= RXCFG_RX_DUMP;
Lan9118MmioWrite32 (LAN9118_RX_CFG, RxCfg);
while (Lan9118MmioRead32 (LAN9118_RX_CFG) & RXCFG_RX_DUMP);
}
MacCsr |= MACCR_RX_EN;
IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
}
return EFI_SUCCESS;
}
// Check Tx Data available space
UINT32
TxDataFreeSpace (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 TxInf;
UINT32 FreeSpace;
// Get the amount of free space from information register
TxInf = Lan9118MmioRead32 (LAN9118_TX_FIFO_INF);
FreeSpace = (TxInf & TXFIFOINF_TDFREE_MASK);
return FreeSpace; // Value in bytes
}
// Check Tx Status used space
UINT32
TxStatusUsedSpace (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 TxInf;
UINT32 UsedSpace;
// Get the amount of used space from information register
TxInf = Lan9118MmioRead32 (LAN9118_TX_FIFO_INF);
UsedSpace = (TxInf & TXFIFOINF_TXSUSED_MASK) >> 16;
return UsedSpace << 2; // Value in bytes
}
// Check Rx Data used space
UINT32
RxDataUsedSpace (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 RxInf;
UINT32 UsedSpace;
// Get the amount of used space from information register
RxInf = Lan9118MmioRead32 (LAN9118_RX_FIFO_INF);
UsedSpace = (RxInf & RXFIFOINF_RXDUSED_MASK);
return UsedSpace; // Value in bytes (rounded up to nearest DWORD)
}
// Check Rx Status used space
UINT32
RxStatusUsedSpace (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 RxInf;
UINT32 UsedSpace;
// Get the amount of used space from information register
RxInf = Lan9118MmioRead32 (LAN9118_RX_FIFO_INF);
UsedSpace = (RxInf & RXFIFOINF_RXSUSED_MASK) >> 16;
return UsedSpace << 2; // Value in bytes
}
// Change the allocation of FIFOs
EFI_STATUS
ChangeFifoAllocation (
IN UINT32 Flags,
IN OUT UINTN *TxDataSize OPTIONAL,
IN OUT UINTN *RxDataSize OPTIONAL,
IN OUT UINT32 *TxStatusSize OPTIONAL,
IN OUT UINT32 *RxStatusSize OPTIONAL,
IN OUT EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 HwConf;
UINT32 TxFifoOption;
// Check that desired sizes don't exceed limits
if (*TxDataSize > TX_FIFO_MAX_SIZE)
return EFI_INVALID_PARAMETER;
#if defined(RX_FIFO_MIN_SIZE) && defined(RX_FIFO_MAX_SIZE)
if (*RxDataSize > RX_FIFO_MAX_SIZE) {
return EFI_INVALID_PARAMETER;
}
#endif
if (Flags & ALLOC_USE_DEFAULT) {
return EFI_SUCCESS;
}
// If we use the FIFOs (always use this first)
if (Flags & ALLOC_USE_FIFOS) {
// Read the current value of allocation
HwConf = Lan9118MmioRead32 (LAN9118_HW_CFG);
TxFifoOption = (HwConf >> 16) & 0xF;
// Choose the correct size (always use larger than requested if possible)
if (*TxDataSize < TX_FIFO_MIN_SIZE) {
*TxDataSize = TX_FIFO_MIN_SIZE;
*RxDataSize = 13440;
*RxStatusSize = 896;
TxFifoOption = 2;
} else if ((*TxDataSize > TX_FIFO_MIN_SIZE) && (*TxDataSize <= 2560)) {
*TxDataSize = 2560;
*RxDataSize = 12480;
*RxStatusSize = 832;
TxFifoOption = 3;
} else if ((*TxDataSize > 2560) && (*TxDataSize <= 3584)) {
*TxDataSize = 3584;
*RxDataSize = 11520;
*RxStatusSize = 768;
TxFifoOption = 4;
} else if ((*TxDataSize > 3584) && (*TxDataSize <= 4608)) { // default option
*TxDataSize = 4608;
*RxDataSize = 10560;
*RxStatusSize = 704;
TxFifoOption = 5;
} else if ((*TxDataSize > 4608) && (*TxDataSize <= 5632)) {
*TxDataSize = 5632;
*RxDataSize = 9600;
*RxStatusSize = 640;
TxFifoOption = 6;
} else if ((*TxDataSize > 5632) && (*TxDataSize <= 6656)) {
*TxDataSize = 6656;
*RxDataSize = 8640;
*RxStatusSize = 576;
TxFifoOption = 7;
} else if ((*TxDataSize > 6656) && (*TxDataSize <= 7680)) {
*TxDataSize = 7680;
*RxDataSize = 7680;
*RxStatusSize = 512;
TxFifoOption = 8;
} else if ((*TxDataSize > 7680) && (*TxDataSize <= 8704)) {
*TxDataSize = 8704;
*RxDataSize = 6720;
*RxStatusSize = 448;
TxFifoOption = 9;
} else if ((*TxDataSize > 8704) && (*TxDataSize <= 9728)) {
*TxDataSize = 9728;
*RxDataSize = 5760;
*RxStatusSize = 384;
TxFifoOption = 10;
} else if ((*TxDataSize > 9728) && (*TxDataSize <= 10752)) {
*TxDataSize = 10752;
*RxDataSize = 4800;
*RxStatusSize = 320;
TxFifoOption = 11;
} else if ((*TxDataSize > 10752) && (*TxDataSize <= 11776)) {
*TxDataSize = 11776;
*RxDataSize = 3840;
*RxStatusSize = 256;
TxFifoOption = 12;
} else if ((*TxDataSize > 11776) && (*TxDataSize <= 12800)) {
*TxDataSize = 12800;
*RxDataSize = 2880;
*RxStatusSize = 192;
TxFifoOption = 13;
} else if ((*TxDataSize > 12800) && (*TxDataSize <= 13824)) {
*TxDataSize = 13824;
*RxDataSize = 1920;
*RxStatusSize = 128;
TxFifoOption = 14;
}
} else {
ASSERT(0); // Untested code path
HwConf = 0;
TxFifoOption = 0;
}
// Do we need DMA?
if (Flags & ALLOC_USE_DMA) {
return EFI_UNSUPPORTED; // Unsupported as of now
}
// Clear and assign the new size option
HwConf &= ~(0xF0000);
HwConf |= ((TxFifoOption & 0xF) << 16);
Lan9118MmioWrite32 (LAN9118_HW_CFG, HwConf);
return EFI_SUCCESS;
}