mirror of
				https://github.com/acidanthera/audk.git
				synced 2025-10-25 17:23:53 +02:00 
			
		
		
		
	https://bugzilla.tianocore.org/show_bug.cgi?id=1201 Update Brotli to the latest version 1.0.6 https://github.com/google/brotli Verify VS2017, GCC5 build. Verify Decompression boot functionality. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Liming Gao <liming.gao@intel.com> Reviewed-by: Star Zeng <star.zeng@intel.com>
		
			
				
	
	
		
			791 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			791 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright 2015 Google Inc. All Rights Reserved.
 | |
| 
 | |
|    Distributed under MIT license.
 | |
|    See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
 | |
| */
 | |
| 
 | |
| /* Function for fast encoding of an input fragment, independently from the input
 | |
|    history. This function uses one-pass processing: when we find a backward
 | |
|    match, we immediately emit the corresponding command and literal codes to
 | |
|    the bit stream.
 | |
| 
 | |
|    Adapted from the CompressFragment() function in
 | |
|    https://github.com/google/snappy/blob/master/snappy.cc */
 | |
| 
 | |
| #include "./compress_fragment.h"
 | |
| 
 | |
| #include <string.h>  /* memcmp, memcpy, memset */
 | |
| 
 | |
| #include "../common/constants.h"
 | |
| #include "../common/platform.h"
 | |
| #include <brotli/types.h>
 | |
| #include "./brotli_bit_stream.h"
 | |
| #include "./entropy_encode.h"
 | |
| #include "./fast_log.h"
 | |
| #include "./find_match_length.h"
 | |
| #include "./memory.h"
 | |
| #include "./write_bits.h"
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #define MAX_DISTANCE (long)BROTLI_MAX_BACKWARD_LIMIT(18)
 | |
| 
 | |
| /* kHashMul32 multiplier has these properties:
 | |
|    * The multiplier must be odd. Otherwise we may lose the highest bit.
 | |
|    * No long streaks of ones or zeros.
 | |
|    * There is no effort to ensure that it is a prime, the oddity is enough
 | |
|      for this use.
 | |
|    * The number has been tuned heuristically against compression benchmarks. */
 | |
| static const uint32_t kHashMul32 = 0x1E35A7BD;
 | |
| 
 | |
| static BROTLI_INLINE uint32_t Hash(const uint8_t* p, size_t shift) {
 | |
|   const uint64_t h = (BROTLI_UNALIGNED_LOAD64LE(p) << 24) * kHashMul32;
 | |
|   return (uint32_t)(h >> shift);
 | |
| }
 | |
| 
 | |
| static BROTLI_INLINE uint32_t HashBytesAtOffset(
 | |
|     uint64_t v, int offset, size_t shift) {
 | |
|   BROTLI_DCHECK(offset >= 0);
 | |
|   BROTLI_DCHECK(offset <= 3);
 | |
|   {
 | |
|     const uint64_t h = ((v >> (8 * offset)) << 24) * kHashMul32;
 | |
|     return (uint32_t)(h >> shift);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static BROTLI_INLINE BROTLI_BOOL IsMatch(const uint8_t* p1, const uint8_t* p2) {
 | |
|   return TO_BROTLI_BOOL(
 | |
|       BrotliUnalignedRead32(p1) == BrotliUnalignedRead32(p2) &&
 | |
|       p1[4] == p2[4]);
 | |
| }
 | |
| 
 | |
| /* Builds a literal prefix code into "depths" and "bits" based on the statistics
 | |
|    of the "input" string and stores it into the bit stream.
 | |
|    Note that the prefix code here is built from the pre-LZ77 input, therefore
 | |
|    we can only approximate the statistics of the actual literal stream.
 | |
|    Moreover, for long inputs we build a histogram from a sample of the input
 | |
|    and thus have to assign a non-zero depth for each literal.
 | |
|    Returns estimated compression ratio millibytes/char for encoding given input
 | |
|    with generated code. */
 | |
| static size_t BuildAndStoreLiteralPrefixCode(MemoryManager* m,
 | |
|                                              const uint8_t* input,
 | |
|                                              const size_t input_size,
 | |
|                                              uint8_t depths[256],
 | |
|                                              uint16_t bits[256],
 | |
|                                              size_t* storage_ix,
 | |
|                                              uint8_t* storage) {
 | |
|   uint32_t histogram[256] = { 0 };
 | |
|   size_t histogram_total;
 | |
|   size_t i;
 | |
|   if (input_size < (1 << 15)) {
 | |
|     for (i = 0; i < input_size; ++i) {
 | |
|       ++histogram[input[i]];
 | |
|     }
 | |
|     histogram_total = input_size;
 | |
|     for (i = 0; i < 256; ++i) {
 | |
|       /* We weigh the first 11 samples with weight 3 to account for the
 | |
|          balancing effect of the LZ77 phase on the histogram. */
 | |
|       const uint32_t adjust = 2 * BROTLI_MIN(uint32_t, histogram[i], 11u);
 | |
|       histogram[i] += adjust;
 | |
|       histogram_total += adjust;
 | |
|     }
 | |
|   } else {
 | |
|     static const size_t kSampleRate = 29;
 | |
|     for (i = 0; i < input_size; i += kSampleRate) {
 | |
|       ++histogram[input[i]];
 | |
|     }
 | |
|     histogram_total = (input_size + kSampleRate - 1) / kSampleRate;
 | |
|     for (i = 0; i < 256; ++i) {
 | |
|       /* We add 1 to each population count to avoid 0 bit depths (since this is
 | |
|          only a sample and we don't know if the symbol appears or not), and we
 | |
|          weigh the first 11 samples with weight 3 to account for the balancing
 | |
|          effect of the LZ77 phase on the histogram (more frequent symbols are
 | |
|          more likely to be in backward references instead as literals). */
 | |
|       const uint32_t adjust = 1 + 2 * BROTLI_MIN(uint32_t, histogram[i], 11u);
 | |
|       histogram[i] += adjust;
 | |
|       histogram_total += adjust;
 | |
|     }
 | |
|   }
 | |
|   BrotliBuildAndStoreHuffmanTreeFast(m, histogram, histogram_total,
 | |
|                                      /* max_bits = */ 8,
 | |
|                                      depths, bits, storage_ix, storage);
 | |
|   if (BROTLI_IS_OOM(m)) return 0;
 | |
|   {
 | |
|     size_t literal_ratio = 0;
 | |
|     for (i = 0; i < 256; ++i) {
 | |
|       if (histogram[i]) literal_ratio += histogram[i] * depths[i];
 | |
|     }
 | |
|     /* Estimated encoding ratio, millibytes per symbol. */
 | |
|     return (literal_ratio * 125) / histogram_total;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Builds a command and distance prefix code (each 64 symbols) into "depth" and
 | |
|    "bits" based on "histogram" and stores it into the bit stream. */
 | |
| static void BuildAndStoreCommandPrefixCode(const uint32_t histogram[128],
 | |
|     uint8_t depth[128], uint16_t bits[128], size_t* storage_ix,
 | |
|     uint8_t* storage) {
 | |
|   /* Tree size for building a tree over 64 symbols is 2 * 64 + 1. */
 | |
|   HuffmanTree tree[129];
 | |
|   uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS] = { 0 };
 | |
|   uint16_t cmd_bits[64];
 | |
| 
 | |
|   BrotliCreateHuffmanTree(histogram, 64, 15, tree, depth);
 | |
|   BrotliCreateHuffmanTree(&histogram[64], 64, 14, tree, &depth[64]);
 | |
|   /* We have to jump through a few hoops here in order to compute
 | |
|      the command bits because the symbols are in a different order than in
 | |
|      the full alphabet. This looks complicated, but having the symbols
 | |
|      in this order in the command bits saves a few branches in the Emit*
 | |
|      functions. */
 | |
|   memcpy(cmd_depth, depth, 24);
 | |
|   memcpy(cmd_depth + 24, depth + 40, 8);
 | |
|   memcpy(cmd_depth + 32, depth + 24, 8);
 | |
|   memcpy(cmd_depth + 40, depth + 48, 8);
 | |
|   memcpy(cmd_depth + 48, depth + 32, 8);
 | |
|   memcpy(cmd_depth + 56, depth + 56, 8);
 | |
|   BrotliConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits);
 | |
|   memcpy(bits, cmd_bits, 48);
 | |
|   memcpy(bits + 24, cmd_bits + 32, 16);
 | |
|   memcpy(bits + 32, cmd_bits + 48, 16);
 | |
|   memcpy(bits + 40, cmd_bits + 24, 16);
 | |
|   memcpy(bits + 48, cmd_bits + 40, 16);
 | |
|   memcpy(bits + 56, cmd_bits + 56, 16);
 | |
|   BrotliConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]);
 | |
|   {
 | |
|     /* Create the bit length array for the full command alphabet. */
 | |
|     size_t i;
 | |
|     memset(cmd_depth, 0, 64);  /* only 64 first values were used */
 | |
|     memcpy(cmd_depth, depth, 8);
 | |
|     memcpy(cmd_depth + 64, depth + 8, 8);
 | |
|     memcpy(cmd_depth + 128, depth + 16, 8);
 | |
|     memcpy(cmd_depth + 192, depth + 24, 8);
 | |
|     memcpy(cmd_depth + 384, depth + 32, 8);
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|       cmd_depth[128 + 8 * i] = depth[40 + i];
 | |
|       cmd_depth[256 + 8 * i] = depth[48 + i];
 | |
|       cmd_depth[448 + 8 * i] = depth[56 + i];
 | |
|     }
 | |
|     BrotliStoreHuffmanTree(
 | |
|         cmd_depth, BROTLI_NUM_COMMAND_SYMBOLS, tree, storage_ix, storage);
 | |
|   }
 | |
|   BrotliStoreHuffmanTree(&depth[64], 64, tree, storage_ix, storage);
 | |
| }
 | |
| 
 | |
| /* REQUIRES: insertlen < 6210 */
 | |
| static BROTLI_INLINE void EmitInsertLen(size_t insertlen,
 | |
|                                         const uint8_t depth[128],
 | |
|                                         const uint16_t bits[128],
 | |
|                                         uint32_t histo[128],
 | |
|                                         size_t* storage_ix,
 | |
|                                         uint8_t* storage) {
 | |
|   if (insertlen < 6) {
 | |
|     const size_t code = insertlen + 40;
 | |
|     BrotliWriteBits(depth[code], bits[code], storage_ix, storage);
 | |
|     ++histo[code];
 | |
|   } else if (insertlen < 130) {
 | |
|     const size_t tail = insertlen - 2;
 | |
|     const uint32_t nbits = Log2FloorNonZero(tail) - 1u;
 | |
|     const size_t prefix = tail >> nbits;
 | |
|     const size_t inscode = (nbits << 1) + prefix + 42;
 | |
|     BrotliWriteBits(depth[inscode], bits[inscode], storage_ix, storage);
 | |
|     BrotliWriteBits(nbits, tail - (prefix << nbits), storage_ix, storage);
 | |
|     ++histo[inscode];
 | |
|   } else if (insertlen < 2114) {
 | |
|     const size_t tail = insertlen - 66;
 | |
|     const uint32_t nbits = Log2FloorNonZero(tail);
 | |
|     const size_t code = nbits + 50;
 | |
|     BrotliWriteBits(depth[code], bits[code], storage_ix, storage);
 | |
|     BrotliWriteBits(nbits, tail - ((size_t)1 << nbits), storage_ix, storage);
 | |
|     ++histo[code];
 | |
|   } else {
 | |
|     BrotliWriteBits(depth[61], bits[61], storage_ix, storage);
 | |
|     BrotliWriteBits(12, insertlen - 2114, storage_ix, storage);
 | |
|     ++histo[61];
 | |
|   }
 | |
| }
 | |
| 
 | |
| static BROTLI_INLINE void EmitLongInsertLen(size_t insertlen,
 | |
|                                             const uint8_t depth[128],
 | |
|                                             const uint16_t bits[128],
 | |
|                                             uint32_t histo[128],
 | |
|                                             size_t* storage_ix,
 | |
|                                             uint8_t* storage) {
 | |
|   if (insertlen < 22594) {
 | |
|     BrotliWriteBits(depth[62], bits[62], storage_ix, storage);
 | |
|     BrotliWriteBits(14, insertlen - 6210, storage_ix, storage);
 | |
|     ++histo[62];
 | |
|   } else {
 | |
|     BrotliWriteBits(depth[63], bits[63], storage_ix, storage);
 | |
|     BrotliWriteBits(24, insertlen - 22594, storage_ix, storage);
 | |
|     ++histo[63];
 | |
|   }
 | |
| }
 | |
| 
 | |
| static BROTLI_INLINE void EmitCopyLen(size_t copylen,
 | |
|                                       const uint8_t depth[128],
 | |
|                                       const uint16_t bits[128],
 | |
|                                       uint32_t histo[128],
 | |
|                                       size_t* storage_ix,
 | |
|                                       uint8_t* storage) {
 | |
|   if (copylen < 10) {
 | |
|     BrotliWriteBits(
 | |
|         depth[copylen + 14], bits[copylen + 14], storage_ix, storage);
 | |
|     ++histo[copylen + 14];
 | |
|   } else if (copylen < 134) {
 | |
|     const size_t tail = copylen - 6;
 | |
|     const uint32_t nbits = Log2FloorNonZero(tail) - 1u;
 | |
|     const size_t prefix = tail >> nbits;
 | |
|     const size_t code = (nbits << 1) + prefix + 20;
 | |
|     BrotliWriteBits(depth[code], bits[code], storage_ix, storage);
 | |
|     BrotliWriteBits(nbits, tail - (prefix << nbits), storage_ix, storage);
 | |
|     ++histo[code];
 | |
|   } else if (copylen < 2118) {
 | |
|     const size_t tail = copylen - 70;
 | |
|     const uint32_t nbits = Log2FloorNonZero(tail);
 | |
|     const size_t code = nbits + 28;
 | |
|     BrotliWriteBits(depth[code], bits[code], storage_ix, storage);
 | |
|     BrotliWriteBits(nbits, tail - ((size_t)1 << nbits), storage_ix, storage);
 | |
|     ++histo[code];
 | |
|   } else {
 | |
|     BrotliWriteBits(depth[39], bits[39], storage_ix, storage);
 | |
|     BrotliWriteBits(24, copylen - 2118, storage_ix, storage);
 | |
|     ++histo[39];
 | |
|   }
 | |
| }
 | |
| 
 | |
| static BROTLI_INLINE void EmitCopyLenLastDistance(size_t copylen,
 | |
|                                                   const uint8_t depth[128],
 | |
|                                                   const uint16_t bits[128],
 | |
|                                                   uint32_t histo[128],
 | |
|                                                   size_t* storage_ix,
 | |
|                                                   uint8_t* storage) {
 | |
|   if (copylen < 12) {
 | |
|     BrotliWriteBits(depth[copylen - 4], bits[copylen - 4], storage_ix, storage);
 | |
|     ++histo[copylen - 4];
 | |
|   } else if (copylen < 72) {
 | |
|     const size_t tail = copylen - 8;
 | |
|     const uint32_t nbits = Log2FloorNonZero(tail) - 1;
 | |
|     const size_t prefix = tail >> nbits;
 | |
|     const size_t code = (nbits << 1) + prefix + 4;
 | |
|     BrotliWriteBits(depth[code], bits[code], storage_ix, storage);
 | |
|     BrotliWriteBits(nbits, tail - (prefix << nbits), storage_ix, storage);
 | |
|     ++histo[code];
 | |
|   } else if (copylen < 136) {
 | |
|     const size_t tail = copylen - 8;
 | |
|     const size_t code = (tail >> 5) + 30;
 | |
|     BrotliWriteBits(depth[code], bits[code], storage_ix, storage);
 | |
|     BrotliWriteBits(5, tail & 31, storage_ix, storage);
 | |
|     BrotliWriteBits(depth[64], bits[64], storage_ix, storage);
 | |
|     ++histo[code];
 | |
|     ++histo[64];
 | |
|   } else if (copylen < 2120) {
 | |
|     const size_t tail = copylen - 72;
 | |
|     const uint32_t nbits = Log2FloorNonZero(tail);
 | |
|     const size_t code = nbits + 28;
 | |
|     BrotliWriteBits(depth[code], bits[code], storage_ix, storage);
 | |
|     BrotliWriteBits(nbits, tail - ((size_t)1 << nbits), storage_ix, storage);
 | |
|     BrotliWriteBits(depth[64], bits[64], storage_ix, storage);
 | |
|     ++histo[code];
 | |
|     ++histo[64];
 | |
|   } else {
 | |
|     BrotliWriteBits(depth[39], bits[39], storage_ix, storage);
 | |
|     BrotliWriteBits(24, copylen - 2120, storage_ix, storage);
 | |
|     BrotliWriteBits(depth[64], bits[64], storage_ix, storage);
 | |
|     ++histo[39];
 | |
|     ++histo[64];
 | |
|   }
 | |
| }
 | |
| 
 | |
| static BROTLI_INLINE void EmitDistance(size_t distance,
 | |
|                                        const uint8_t depth[128],
 | |
|                                        const uint16_t bits[128],
 | |
|                                        uint32_t histo[128],
 | |
|                                        size_t* storage_ix, uint8_t* storage) {
 | |
|   const size_t d = distance + 3;
 | |
|   const uint32_t nbits = Log2FloorNonZero(d) - 1u;
 | |
|   const size_t prefix = (d >> nbits) & 1;
 | |
|   const size_t offset = (2 + prefix) << nbits;
 | |
|   const size_t distcode = 2 * (nbits - 1) + prefix + 80;
 | |
|   BrotliWriteBits(depth[distcode], bits[distcode], storage_ix, storage);
 | |
|   BrotliWriteBits(nbits, d - offset, storage_ix, storage);
 | |
|   ++histo[distcode];
 | |
| }
 | |
| 
 | |
| static BROTLI_INLINE void EmitLiterals(const uint8_t* input, const size_t len,
 | |
|                                        const uint8_t depth[256],
 | |
|                                        const uint16_t bits[256],
 | |
|                                        size_t* storage_ix, uint8_t* storage) {
 | |
|   size_t j;
 | |
|   for (j = 0; j < len; j++) {
 | |
|     const uint8_t lit = input[j];
 | |
|     BrotliWriteBits(depth[lit], bits[lit], storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* REQUIRES: len <= 1 << 24. */
 | |
| static void BrotliStoreMetaBlockHeader(
 | |
|     size_t len, BROTLI_BOOL is_uncompressed, size_t* storage_ix,
 | |
|     uint8_t* storage) {
 | |
|   size_t nibbles = 6;
 | |
|   /* ISLAST */
 | |
|   BrotliWriteBits(1, 0, storage_ix, storage);
 | |
|   if (len <= (1U << 16)) {
 | |
|     nibbles = 4;
 | |
|   } else if (len <= (1U << 20)) {
 | |
|     nibbles = 5;
 | |
|   }
 | |
|   BrotliWriteBits(2, nibbles - 4, storage_ix, storage);
 | |
|   BrotliWriteBits(nibbles * 4, len - 1, storage_ix, storage);
 | |
|   /* ISUNCOMPRESSED */
 | |
|   BrotliWriteBits(1, (uint64_t)is_uncompressed, storage_ix, storage);
 | |
| }
 | |
| 
 | |
| static void UpdateBits(size_t n_bits, uint32_t bits, size_t pos,
 | |
|     uint8_t* array) {
 | |
|   while (n_bits > 0) {
 | |
|     size_t byte_pos = pos >> 3;
 | |
|     size_t n_unchanged_bits = pos & 7;
 | |
|     size_t n_changed_bits = BROTLI_MIN(size_t, n_bits, 8 - n_unchanged_bits);
 | |
|     size_t total_bits = n_unchanged_bits + n_changed_bits;
 | |
|     uint32_t mask =
 | |
|         (~((1u << total_bits) - 1u)) | ((1u << n_unchanged_bits) - 1u);
 | |
|     uint32_t unchanged_bits = array[byte_pos] & mask;
 | |
|     uint32_t changed_bits = bits & ((1u << n_changed_bits) - 1u);
 | |
|     array[byte_pos] =
 | |
|         (uint8_t)((changed_bits << n_unchanged_bits) | unchanged_bits);
 | |
|     n_bits -= n_changed_bits;
 | |
|     bits >>= n_changed_bits;
 | |
|     pos += n_changed_bits;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void RewindBitPosition(const size_t new_storage_ix,
 | |
|                               size_t* storage_ix, uint8_t* storage) {
 | |
|   const size_t bitpos = new_storage_ix & 7;
 | |
|   const size_t mask = (1u << bitpos) - 1;
 | |
|   storage[new_storage_ix >> 3] &= (uint8_t)mask;
 | |
|   *storage_ix = new_storage_ix;
 | |
| }
 | |
| 
 | |
| static BROTLI_BOOL ShouldMergeBlock(
 | |
|     const uint8_t* data, size_t len, const uint8_t* depths) {
 | |
|   size_t histo[256] = { 0 };
 | |
|   static const size_t kSampleRate = 43;
 | |
|   size_t i;
 | |
|   for (i = 0; i < len; i += kSampleRate) {
 | |
|     ++histo[data[i]];
 | |
|   }
 | |
|   {
 | |
|     const size_t total = (len + kSampleRate - 1) / kSampleRate;
 | |
|     double r = (FastLog2(total) + 0.5) * (double)total + 200;
 | |
|     for (i = 0; i < 256; ++i) {
 | |
|       r -= (double)histo[i] * (depths[i] + FastLog2(histo[i]));
 | |
|     }
 | |
|     return TO_BROTLI_BOOL(r >= 0.0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Acceptable loss for uncompressible speedup is 2% */
 | |
| #define MIN_RATIO 980
 | |
| 
 | |
| static BROTLI_INLINE BROTLI_BOOL ShouldUseUncompressedMode(
 | |
|     const uint8_t* metablock_start, const uint8_t* next_emit,
 | |
|     const size_t insertlen, const size_t literal_ratio) {
 | |
|   const size_t compressed = (size_t)(next_emit - metablock_start);
 | |
|   if (compressed * 50 > insertlen) {
 | |
|     return BROTLI_FALSE;
 | |
|   } else {
 | |
|     return TO_BROTLI_BOOL(literal_ratio > MIN_RATIO);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void EmitUncompressedMetaBlock(const uint8_t* begin, const uint8_t* end,
 | |
|                                       const size_t storage_ix_start,
 | |
|                                       size_t* storage_ix, uint8_t* storage) {
 | |
|   const size_t len = (size_t)(end - begin);
 | |
|   RewindBitPosition(storage_ix_start, storage_ix, storage);
 | |
|   BrotliStoreMetaBlockHeader(len, 1, storage_ix, storage);
 | |
|   *storage_ix = (*storage_ix + 7u) & ~7u;
 | |
|   memcpy(&storage[*storage_ix >> 3], begin, len);
 | |
|   *storage_ix += len << 3;
 | |
|   storage[*storage_ix >> 3] = 0;
 | |
| }
 | |
| 
 | |
| static uint32_t kCmdHistoSeed[128] = {
 | |
|   0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,
 | |
|   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
 | |
|   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
 | |
|   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|   1, 1, 1, 1, 0, 0, 0, 0,
 | |
| };
 | |
| 
 | |
| static BROTLI_INLINE void BrotliCompressFragmentFastImpl(
 | |
|     MemoryManager* m, const uint8_t* input, size_t input_size,
 | |
|     BROTLI_BOOL is_last, int* table, size_t table_bits, uint8_t cmd_depth[128],
 | |
|     uint16_t cmd_bits[128], size_t* cmd_code_numbits, uint8_t* cmd_code,
 | |
|     size_t* storage_ix, uint8_t* storage) {
 | |
|   uint32_t cmd_histo[128];
 | |
|   const uint8_t* ip_end;
 | |
| 
 | |
|   /* "next_emit" is a pointer to the first byte that is not covered by a
 | |
|      previous copy. Bytes between "next_emit" and the start of the next copy or
 | |
|      the end of the input will be emitted as literal bytes. */
 | |
|   const uint8_t* next_emit = input;
 | |
|   /* Save the start of the first block for position and distance computations.
 | |
|   */
 | |
|   const uint8_t* base_ip = input;
 | |
| 
 | |
|   static const size_t kFirstBlockSize = 3 << 15;
 | |
|   static const size_t kMergeBlockSize = 1 << 16;
 | |
| 
 | |
|   const size_t kInputMarginBytes = BROTLI_WINDOW_GAP;
 | |
|   const size_t kMinMatchLen = 5;
 | |
| 
 | |
|   const uint8_t* metablock_start = input;
 | |
|   size_t block_size = BROTLI_MIN(size_t, input_size, kFirstBlockSize);
 | |
|   size_t total_block_size = block_size;
 | |
|   /* Save the bit position of the MLEN field of the meta-block header, so that
 | |
|      we can update it later if we decide to extend this meta-block. */
 | |
|   size_t mlen_storage_ix = *storage_ix + 3;
 | |
| 
 | |
|   uint8_t lit_depth[256];
 | |
|   uint16_t lit_bits[256];
 | |
| 
 | |
|   size_t literal_ratio;
 | |
| 
 | |
|   const uint8_t* ip;
 | |
|   int last_distance;
 | |
| 
 | |
|   const size_t shift = 64u - table_bits;
 | |
| 
 | |
|   BrotliStoreMetaBlockHeader(block_size, 0, storage_ix, storage);
 | |
|   /* No block splits, no contexts. */
 | |
|   BrotliWriteBits(13, 0, storage_ix, storage);
 | |
| 
 | |
|   literal_ratio = BuildAndStoreLiteralPrefixCode(
 | |
|       m, input, block_size, lit_depth, lit_bits, storage_ix, storage);
 | |
|   if (BROTLI_IS_OOM(m)) return;
 | |
| 
 | |
|   {
 | |
|     /* Store the pre-compressed command and distance prefix codes. */
 | |
|     size_t i;
 | |
|     for (i = 0; i + 7 < *cmd_code_numbits; i += 8) {
 | |
|       BrotliWriteBits(8, cmd_code[i >> 3], storage_ix, storage);
 | |
|     }
 | |
|   }
 | |
|   BrotliWriteBits(*cmd_code_numbits & 7, cmd_code[*cmd_code_numbits >> 3],
 | |
|                   storage_ix, storage);
 | |
| 
 | |
|  emit_commands:
 | |
|   /* Initialize the command and distance histograms. We will gather
 | |
|      statistics of command and distance codes during the processing
 | |
|      of this block and use it to update the command and distance
 | |
|      prefix codes for the next block. */
 | |
|   memcpy(cmd_histo, kCmdHistoSeed, sizeof(kCmdHistoSeed));
 | |
| 
 | |
|   /* "ip" is the input pointer. */
 | |
|   ip = input;
 | |
|   last_distance = -1;
 | |
|   ip_end = input + block_size;
 | |
| 
 | |
|   if (BROTLI_PREDICT_TRUE(block_size >= kInputMarginBytes)) {
 | |
|     /* For the last block, we need to keep a 16 bytes margin so that we can be
 | |
|        sure that all distances are at most window size - 16.
 | |
|        For all other blocks, we only need to keep a margin of 5 bytes so that
 | |
|        we don't go over the block size with a copy. */
 | |
|     const size_t len_limit = BROTLI_MIN(size_t, block_size - kMinMatchLen,
 | |
|                                         input_size - kInputMarginBytes);
 | |
|     const uint8_t* ip_limit = input + len_limit;
 | |
| 
 | |
|     uint32_t next_hash;
 | |
|     for (next_hash = Hash(++ip, shift); ; ) {
 | |
|       /* Step 1: Scan forward in the input looking for a 5-byte-long match.
 | |
|          If we get close to exhausting the input then goto emit_remainder.
 | |
| 
 | |
|          Heuristic match skipping: If 32 bytes are scanned with no matches
 | |
|          found, start looking only at every other byte. If 32 more bytes are
 | |
|          scanned, look at every third byte, etc.. When a match is found,
 | |
|          immediately go back to looking at every byte. This is a small loss
 | |
|          (~5% performance, ~0.1% density) for compressible data due to more
 | |
|          bookkeeping, but for non-compressible data (such as JPEG) it's a huge
 | |
|          win since the compressor quickly "realizes" the data is incompressible
 | |
|          and doesn't bother looking for matches everywhere.
 | |
| 
 | |
|          The "skip" variable keeps track of how many bytes there are since the
 | |
|          last match; dividing it by 32 (i.e. right-shifting by five) gives the
 | |
|          number of bytes to move ahead for each iteration. */
 | |
|       uint32_t skip = 32;
 | |
| 
 | |
|       const uint8_t* next_ip = ip;
 | |
|       const uint8_t* candidate;
 | |
|       BROTLI_DCHECK(next_emit < ip);
 | |
| trawl:
 | |
|       do {
 | |
|         uint32_t hash = next_hash;
 | |
|         uint32_t bytes_between_hash_lookups = skip++ >> 5;
 | |
|         BROTLI_DCHECK(hash == Hash(next_ip, shift));
 | |
|         ip = next_ip;
 | |
|         next_ip = ip + bytes_between_hash_lookups;
 | |
|         if (BROTLI_PREDICT_FALSE(next_ip > ip_limit)) {
 | |
|           goto emit_remainder;
 | |
|         }
 | |
|         next_hash = Hash(next_ip, shift);
 | |
|         candidate = ip - last_distance;
 | |
|         if (IsMatch(ip, candidate)) {
 | |
|           if (BROTLI_PREDICT_TRUE(candidate < ip)) {
 | |
|             table[hash] = (int)(ip - base_ip);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         candidate = base_ip + table[hash];
 | |
|         BROTLI_DCHECK(candidate >= base_ip);
 | |
|         BROTLI_DCHECK(candidate < ip);
 | |
| 
 | |
|         table[hash] = (int)(ip - base_ip);
 | |
|       } while (BROTLI_PREDICT_TRUE(!IsMatch(ip, candidate)));
 | |
| 
 | |
|       /* Check copy distance. If candidate is not feasible, continue search.
 | |
|          Checking is done outside of hot loop to reduce overhead. */
 | |
|       if (ip - candidate > MAX_DISTANCE) goto trawl;
 | |
| 
 | |
|       /* Step 2: Emit the found match together with the literal bytes from
 | |
|          "next_emit" to the bit stream, and then see if we can find a next match
 | |
|          immediately afterwards. Repeat until we find no match for the input
 | |
|          without emitting some literal bytes. */
 | |
| 
 | |
|       {
 | |
|         /* We have a 5-byte match at ip, and we need to emit bytes in
 | |
|            [next_emit, ip). */
 | |
|         const uint8_t* base = ip;
 | |
|         size_t matched = 5 + FindMatchLengthWithLimit(
 | |
|             candidate + 5, ip + 5, (size_t)(ip_end - ip) - 5);
 | |
|         int distance = (int)(base - candidate);  /* > 0 */
 | |
|         size_t insert = (size_t)(base - next_emit);
 | |
|         ip += matched;
 | |
|         BROTLI_DCHECK(0 == memcmp(base, candidate, matched));
 | |
|         if (BROTLI_PREDICT_TRUE(insert < 6210)) {
 | |
|           EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
 | |
|                         storage_ix, storage);
 | |
|         } else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert,
 | |
|                                              literal_ratio)) {
 | |
|           EmitUncompressedMetaBlock(metablock_start, base, mlen_storage_ix - 3,
 | |
|                                     storage_ix, storage);
 | |
|           input_size -= (size_t)(base - input);
 | |
|           input = base;
 | |
|           next_emit = input;
 | |
|           goto next_block;
 | |
|         } else {
 | |
|           EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
 | |
|                             storage_ix, storage);
 | |
|         }
 | |
|         EmitLiterals(next_emit, insert, lit_depth, lit_bits,
 | |
|                      storage_ix, storage);
 | |
|         if (distance == last_distance) {
 | |
|           BrotliWriteBits(cmd_depth[64], cmd_bits[64], storage_ix, storage);
 | |
|           ++cmd_histo[64];
 | |
|         } else {
 | |
|           EmitDistance((size_t)distance, cmd_depth, cmd_bits,
 | |
|                        cmd_histo, storage_ix, storage);
 | |
|           last_distance = distance;
 | |
|         }
 | |
|         EmitCopyLenLastDistance(matched, cmd_depth, cmd_bits, cmd_histo,
 | |
|                                 storage_ix, storage);
 | |
| 
 | |
|         next_emit = ip;
 | |
|         if (BROTLI_PREDICT_FALSE(ip >= ip_limit)) {
 | |
|           goto emit_remainder;
 | |
|         }
 | |
|         /* We could immediately start working at ip now, but to improve
 | |
|            compression we first update "table" with the hashes of some positions
 | |
|            within the last copy. */
 | |
|         {
 | |
|           uint64_t input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 3);
 | |
|           uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
 | |
|           uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift);
 | |
|           table[prev_hash] = (int)(ip - base_ip - 3);
 | |
|           prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
 | |
|           table[prev_hash] = (int)(ip - base_ip - 2);
 | |
|           prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
 | |
|           table[prev_hash] = (int)(ip - base_ip - 1);
 | |
| 
 | |
|           candidate = base_ip + table[cur_hash];
 | |
|           table[cur_hash] = (int)(ip - base_ip);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       while (IsMatch(ip, candidate)) {
 | |
|         /* We have a 5-byte match at ip, and no need to emit any literal bytes
 | |
|            prior to ip. */
 | |
|         const uint8_t* base = ip;
 | |
|         size_t matched = 5 + FindMatchLengthWithLimit(
 | |
|             candidate + 5, ip + 5, (size_t)(ip_end - ip) - 5);
 | |
|         if (ip - candidate > MAX_DISTANCE) break;
 | |
|         ip += matched;
 | |
|         last_distance = (int)(base - candidate);  /* > 0 */
 | |
|         BROTLI_DCHECK(0 == memcmp(base, candidate, matched));
 | |
|         EmitCopyLen(matched, cmd_depth, cmd_bits, cmd_histo,
 | |
|                     storage_ix, storage);
 | |
|         EmitDistance((size_t)last_distance, cmd_depth, cmd_bits,
 | |
|                      cmd_histo, storage_ix, storage);
 | |
| 
 | |
|         next_emit = ip;
 | |
|         if (BROTLI_PREDICT_FALSE(ip >= ip_limit)) {
 | |
|           goto emit_remainder;
 | |
|         }
 | |
|         /* We could immediately start working at ip now, but to improve
 | |
|            compression we first update "table" with the hashes of some positions
 | |
|            within the last copy. */
 | |
|         {
 | |
|           uint64_t input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 3);
 | |
|           uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
 | |
|           uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift);
 | |
|           table[prev_hash] = (int)(ip - base_ip - 3);
 | |
|           prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
 | |
|           table[prev_hash] = (int)(ip - base_ip - 2);
 | |
|           prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
 | |
|           table[prev_hash] = (int)(ip - base_ip - 1);
 | |
| 
 | |
|           candidate = base_ip + table[cur_hash];
 | |
|           table[cur_hash] = (int)(ip - base_ip);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       next_hash = Hash(++ip, shift);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  emit_remainder:
 | |
|   BROTLI_DCHECK(next_emit <= ip_end);
 | |
|   input += block_size;
 | |
|   input_size -= block_size;
 | |
|   block_size = BROTLI_MIN(size_t, input_size, kMergeBlockSize);
 | |
| 
 | |
|   /* Decide if we want to continue this meta-block instead of emitting the
 | |
|      last insert-only command. */
 | |
|   if (input_size > 0 &&
 | |
|       total_block_size + block_size <= (1 << 20) &&
 | |
|       ShouldMergeBlock(input, block_size, lit_depth)) {
 | |
|     BROTLI_DCHECK(total_block_size > (1 << 16));
 | |
|     /* Update the size of the current meta-block and continue emitting commands.
 | |
|        We can do this because the current size and the new size both have 5
 | |
|        nibbles. */
 | |
|     total_block_size += block_size;
 | |
|     UpdateBits(20, (uint32_t)(total_block_size - 1), mlen_storage_ix, storage);
 | |
|     goto emit_commands;
 | |
|   }
 | |
| 
 | |
|   /* Emit the remaining bytes as literals. */
 | |
|   if (next_emit < ip_end) {
 | |
|     const size_t insert = (size_t)(ip_end - next_emit);
 | |
|     if (BROTLI_PREDICT_TRUE(insert < 6210)) {
 | |
|       EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
 | |
|                     storage_ix, storage);
 | |
|       EmitLiterals(next_emit, insert, lit_depth, lit_bits, storage_ix, storage);
 | |
|     } else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert,
 | |
|                                          literal_ratio)) {
 | |
|       EmitUncompressedMetaBlock(metablock_start, ip_end, mlen_storage_ix - 3,
 | |
|                                 storage_ix, storage);
 | |
|     } else {
 | |
|       EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
 | |
|                         storage_ix, storage);
 | |
|       EmitLiterals(next_emit, insert, lit_depth, lit_bits,
 | |
|                    storage_ix, storage);
 | |
|     }
 | |
|   }
 | |
|   next_emit = ip_end;
 | |
| 
 | |
| next_block:
 | |
|   /* If we have more data, write a new meta-block header and prefix codes and
 | |
|      then continue emitting commands. */
 | |
|   if (input_size > 0) {
 | |
|     metablock_start = input;
 | |
|     block_size = BROTLI_MIN(size_t, input_size, kFirstBlockSize);
 | |
|     total_block_size = block_size;
 | |
|     /* Save the bit position of the MLEN field of the meta-block header, so that
 | |
|        we can update it later if we decide to extend this meta-block. */
 | |
|     mlen_storage_ix = *storage_ix + 3;
 | |
|     BrotliStoreMetaBlockHeader(block_size, 0, storage_ix, storage);
 | |
|     /* No block splits, no contexts. */
 | |
|     BrotliWriteBits(13, 0, storage_ix, storage);
 | |
|     literal_ratio = BuildAndStoreLiteralPrefixCode(
 | |
|         m, input, block_size, lit_depth, lit_bits, storage_ix, storage);
 | |
|     if (BROTLI_IS_OOM(m)) return;
 | |
|     BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits,
 | |
|                                    storage_ix, storage);
 | |
|     goto emit_commands;
 | |
|   }
 | |
| 
 | |
|   if (!is_last) {
 | |
|     /* If this is not the last block, update the command and distance prefix
 | |
|        codes for the next block and store the compressed forms. */
 | |
|     cmd_code[0] = 0;
 | |
|     *cmd_code_numbits = 0;
 | |
|     BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits,
 | |
|                                    cmd_code_numbits, cmd_code);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #define FOR_TABLE_BITS_(X) X(9) X(11) X(13) X(15)
 | |
| 
 | |
| #define BAKE_METHOD_PARAM_(B) \
 | |
| static BROTLI_NOINLINE void BrotliCompressFragmentFastImpl ## B(             \
 | |
|     MemoryManager* m, const uint8_t* input, size_t input_size,               \
 | |
|     BROTLI_BOOL is_last, int* table, uint8_t cmd_depth[128],                 \
 | |
|     uint16_t cmd_bits[128], size_t* cmd_code_numbits, uint8_t* cmd_code,     \
 | |
|     size_t* storage_ix, uint8_t* storage) {                                  \
 | |
|   BrotliCompressFragmentFastImpl(m, input, input_size, is_last, table, B,    \
 | |
|       cmd_depth, cmd_bits, cmd_code_numbits, cmd_code, storage_ix, storage); \
 | |
| }
 | |
| FOR_TABLE_BITS_(BAKE_METHOD_PARAM_)
 | |
| #undef BAKE_METHOD_PARAM_
 | |
| 
 | |
| void BrotliCompressFragmentFast(
 | |
|     MemoryManager* m, const uint8_t* input, size_t input_size,
 | |
|     BROTLI_BOOL is_last, int* table, size_t table_size, uint8_t cmd_depth[128],
 | |
|     uint16_t cmd_bits[128], size_t* cmd_code_numbits, uint8_t* cmd_code,
 | |
|     size_t* storage_ix, uint8_t* storage) {
 | |
|   const size_t initial_storage_ix = *storage_ix;
 | |
|   const size_t table_bits = Log2FloorNonZero(table_size);
 | |
| 
 | |
|   if (input_size == 0) {
 | |
|     BROTLI_DCHECK(is_last);
 | |
|     BrotliWriteBits(1, 1, storage_ix, storage);  /* islast */
 | |
|     BrotliWriteBits(1, 1, storage_ix, storage);  /* isempty */
 | |
|     *storage_ix = (*storage_ix + 7u) & ~7u;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   switch (table_bits) {
 | |
| #define CASE_(B)                                                     \
 | |
|     case B:                                                          \
 | |
|       BrotliCompressFragmentFastImpl ## B(                           \
 | |
|           m, input, input_size, is_last, table, cmd_depth, cmd_bits, \
 | |
|           cmd_code_numbits, cmd_code, storage_ix, storage);          \
 | |
|       break;
 | |
|     FOR_TABLE_BITS_(CASE_)
 | |
| #undef CASE_
 | |
|     default: BROTLI_DCHECK(0); break;
 | |
|   }
 | |
| 
 | |
|   /* If output is larger than single uncompressed block, rewrite it. */
 | |
|   if (*storage_ix - initial_storage_ix > 31 + (input_size << 3)) {
 | |
|     EmitUncompressedMetaBlock(input, input + input_size, initial_storage_ix,
 | |
|                               storage_ix, storage);
 | |
|   }
 | |
| 
 | |
|   if (is_last) {
 | |
|     BrotliWriteBits(1, 1, storage_ix, storage);  /* islast */
 | |
|     BrotliWriteBits(1, 1, storage_ix, storage);  /* isempty */
 | |
|     *storage_ix = (*storage_ix + 7u) & ~7u;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #undef FOR_TABLE_BITS_
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| }  /* extern "C" */
 | |
| #endif
 |