mirror of
				https://github.com/acidanthera/audk.git
				synced 2025-11-04 13:35:48 +01:00 
			
		
		
		
	- Copy Brotli algorithm 3rd party source code for tool Cc: Liming Gao <liming.gao@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Bell Song <binx.song@intel.com> Reviewed-by: Liming Gao <liming.gao@intel.com>
		
			
				
	
	
		
			558 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			558 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Copyright 2015 Google Inc. All Rights Reserved.
 | 
						|
 | 
						|
   Distributed under MIT license.
 | 
						|
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
 | 
						|
*/
 | 
						|
 | 
						|
/* Function for fast encoding of an input fragment, independently from the input
 | 
						|
   history. This function uses two-pass processing: in the first pass we save
 | 
						|
   the found backward matches and literal bytes into a buffer, and in the
 | 
						|
   second pass we emit them into the bit stream using prefix codes built based
 | 
						|
   on the actual command and literal byte histograms. */
 | 
						|
 | 
						|
#include "./compress_fragment_two_pass.h"
 | 
						|
 | 
						|
#include <string.h>  /* memcmp, memcpy, memset */
 | 
						|
 | 
						|
#include "../common/types.h"
 | 
						|
#include "./bit_cost.h"
 | 
						|
#include "./brotli_bit_stream.h"
 | 
						|
#include "./entropy_encode.h"
 | 
						|
#include "./fast_log.h"
 | 
						|
#include "./find_match_length.h"
 | 
						|
#include "./memory.h"
 | 
						|
#include "./port.h"
 | 
						|
#include "./write_bits.h"
 | 
						|
 | 
						|
 | 
						|
#if defined(__cplusplus) || defined(c_plusplus)
 | 
						|
extern "C" {
 | 
						|
#endif
 | 
						|
 | 
						|
/* kHashMul32 multiplier has these properties:
 | 
						|
   * The multiplier must be odd. Otherwise we may lose the highest bit.
 | 
						|
   * No long streaks of 1s or 0s.
 | 
						|
   * There is no effort to ensure that it is a prime, the oddity is enough
 | 
						|
     for this use.
 | 
						|
   * The number has been tuned heuristically against compression benchmarks. */
 | 
						|
static const uint32_t kHashMul32 = 0x1e35a7bd;
 | 
						|
 | 
						|
static BROTLI_INLINE uint32_t Hash(const uint8_t* p, size_t shift) {
 | 
						|
  const uint64_t h = (BROTLI_UNALIGNED_LOAD64(p) << 16) * kHashMul32;
 | 
						|
  return (uint32_t)(h >> shift);
 | 
						|
}
 | 
						|
 | 
						|
static BROTLI_INLINE uint32_t HashBytesAtOffset(
 | 
						|
    uint64_t v, int offset, size_t shift) {
 | 
						|
  assert(offset >= 0);
 | 
						|
  assert(offset <= 2);
 | 
						|
  {
 | 
						|
    const uint64_t h = ((v >> (8 * offset)) << 16) * kHashMul32;
 | 
						|
    return (uint32_t)(h >> shift);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static BROTLI_INLINE BROTLI_BOOL IsMatch(const uint8_t* p1, const uint8_t* p2) {
 | 
						|
  return TO_BROTLI_BOOL(
 | 
						|
      BROTLI_UNALIGNED_LOAD32(p1) == BROTLI_UNALIGNED_LOAD32(p2) &&
 | 
						|
      p1[4] == p2[4] &&
 | 
						|
      p1[5] == p2[5]);
 | 
						|
}
 | 
						|
 | 
						|
/* Builds a command and distance prefix code (each 64 symbols) into "depth" and
 | 
						|
   "bits" based on "histogram" and stores it into the bit stream. */
 | 
						|
static void BuildAndStoreCommandPrefixCode(
 | 
						|
    const uint32_t histogram[128],
 | 
						|
    uint8_t depth[128], uint16_t bits[128],
 | 
						|
    size_t* storage_ix, uint8_t* storage) {
 | 
						|
  /* Tree size for building a tree over 64 symbols is 2 * 64 + 1. */
 | 
						|
  HuffmanTree tree[129];
 | 
						|
  uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS] = { 0 };
 | 
						|
  uint16_t cmd_bits[64];
 | 
						|
  BrotliCreateHuffmanTree(histogram, 64, 15, tree, depth);
 | 
						|
  BrotliCreateHuffmanTree(&histogram[64], 64, 14, tree, &depth[64]);
 | 
						|
  /* We have to jump through a few hoopes here in order to compute
 | 
						|
     the command bits because the symbols are in a different order than in
 | 
						|
     the full alphabet. This looks complicated, but having the symbols
 | 
						|
     in this order in the command bits saves a few branches in the Emit*
 | 
						|
     functions. */
 | 
						|
  memcpy(cmd_depth, depth + 24, 24);
 | 
						|
  memcpy(cmd_depth + 24, depth, 8);
 | 
						|
  memcpy(cmd_depth + 32, depth + 48, 8);
 | 
						|
  memcpy(cmd_depth + 40, depth + 8, 8);
 | 
						|
  memcpy(cmd_depth + 48, depth + 56, 8);
 | 
						|
  memcpy(cmd_depth + 56, depth + 16, 8);
 | 
						|
  BrotliConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits);
 | 
						|
  memcpy(bits, cmd_bits + 24, 16);
 | 
						|
  memcpy(bits + 8, cmd_bits + 40, 16);
 | 
						|
  memcpy(bits + 16, cmd_bits + 56, 16);
 | 
						|
  memcpy(bits + 24, cmd_bits, 48);
 | 
						|
  memcpy(bits + 48, cmd_bits + 32, 16);
 | 
						|
  memcpy(bits + 56, cmd_bits + 48, 16);
 | 
						|
  BrotliConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]);
 | 
						|
  {
 | 
						|
    /* Create the bit length array for the full command alphabet. */
 | 
						|
    size_t i;
 | 
						|
    memset(cmd_depth, 0, 64);  /* only 64 first values were used */
 | 
						|
    memcpy(cmd_depth, depth + 24, 8);
 | 
						|
    memcpy(cmd_depth + 64, depth + 32, 8);
 | 
						|
    memcpy(cmd_depth + 128, depth + 40, 8);
 | 
						|
    memcpy(cmd_depth + 192, depth + 48, 8);
 | 
						|
    memcpy(cmd_depth + 384, depth + 56, 8);
 | 
						|
    for (i = 0; i < 8; ++i) {
 | 
						|
      cmd_depth[128 + 8 * i] = depth[i];
 | 
						|
      cmd_depth[256 + 8 * i] = depth[8 + i];
 | 
						|
      cmd_depth[448 + 8 * i] = depth[16 + i];
 | 
						|
    }
 | 
						|
    BrotliStoreHuffmanTree(
 | 
						|
        cmd_depth, BROTLI_NUM_COMMAND_SYMBOLS, tree, storage_ix, storage);
 | 
						|
  }
 | 
						|
  BrotliStoreHuffmanTree(&depth[64], 64, tree, storage_ix, storage);
 | 
						|
}
 | 
						|
 | 
						|
static BROTLI_INLINE void EmitInsertLen(
 | 
						|
    uint32_t insertlen, uint32_t** commands) {
 | 
						|
  if (insertlen < 6) {
 | 
						|
    **commands = insertlen;
 | 
						|
  } else if (insertlen < 130) {
 | 
						|
    const uint32_t tail = insertlen - 2;
 | 
						|
    const uint32_t nbits = Log2FloorNonZero(tail) - 1u;
 | 
						|
    const uint32_t prefix = tail >> nbits;
 | 
						|
    const uint32_t inscode = (nbits << 1) + prefix + 2;
 | 
						|
    const uint32_t extra = tail - (prefix << nbits);
 | 
						|
    **commands = inscode | (extra << 8);
 | 
						|
  } else if (insertlen < 2114) {
 | 
						|
    const uint32_t tail = insertlen - 66;
 | 
						|
    const uint32_t nbits = Log2FloorNonZero(tail);
 | 
						|
    const uint32_t code = nbits + 10;
 | 
						|
    const uint32_t extra = tail - (1u << nbits);
 | 
						|
    **commands = code | (extra << 8);
 | 
						|
  } else if (insertlen < 6210) {
 | 
						|
    const uint32_t extra = insertlen - 2114;
 | 
						|
    **commands = 21 | (extra << 8);
 | 
						|
  } else if (insertlen < 22594) {
 | 
						|
    const uint32_t extra = insertlen - 6210;
 | 
						|
    **commands = 22 | (extra << 8);
 | 
						|
  } else {
 | 
						|
    const uint32_t extra = insertlen - 22594;
 | 
						|
    **commands = 23 | (extra << 8);
 | 
						|
  }
 | 
						|
  ++(*commands);
 | 
						|
}
 | 
						|
 | 
						|
static BROTLI_INLINE void EmitCopyLen(size_t copylen, uint32_t** commands) {
 | 
						|
  if (copylen < 10) {
 | 
						|
    **commands = (uint32_t)(copylen + 38);
 | 
						|
  } else if (copylen < 134) {
 | 
						|
    const size_t tail = copylen - 6;
 | 
						|
    const size_t nbits = Log2FloorNonZero(tail) - 1;
 | 
						|
    const size_t prefix = tail >> nbits;
 | 
						|
    const size_t code = (nbits << 1) + prefix + 44;
 | 
						|
    const size_t extra = tail - (prefix << nbits);
 | 
						|
    **commands = (uint32_t)(code | (extra << 8));
 | 
						|
  } else if (copylen < 2118) {
 | 
						|
    const size_t tail = copylen - 70;
 | 
						|
    const size_t nbits = Log2FloorNonZero(tail);
 | 
						|
    const size_t code = nbits + 52;
 | 
						|
    const size_t extra = tail - ((size_t)1 << nbits);
 | 
						|
    **commands = (uint32_t)(code | (extra << 8));
 | 
						|
  } else {
 | 
						|
    const size_t extra = copylen - 2118;
 | 
						|
    **commands = (uint32_t)(63 | (extra << 8));
 | 
						|
  }
 | 
						|
  ++(*commands);
 | 
						|
}
 | 
						|
 | 
						|
static BROTLI_INLINE void EmitCopyLenLastDistance(
 | 
						|
    size_t copylen, uint32_t** commands) {
 | 
						|
  if (copylen < 12) {
 | 
						|
    **commands = (uint32_t)(copylen + 20);
 | 
						|
    ++(*commands);
 | 
						|
  } else if (copylen < 72) {
 | 
						|
    const size_t tail = copylen - 8;
 | 
						|
    const size_t nbits = Log2FloorNonZero(tail) - 1;
 | 
						|
    const size_t prefix = tail >> nbits;
 | 
						|
    const size_t code = (nbits << 1) + prefix + 28;
 | 
						|
    const size_t extra = tail - (prefix << nbits);
 | 
						|
    **commands = (uint32_t)(code | (extra << 8));
 | 
						|
    ++(*commands);
 | 
						|
  } else if (copylen < 136) {
 | 
						|
    const size_t tail = copylen - 8;
 | 
						|
    const size_t code = (tail >> 5) + 54;
 | 
						|
    const size_t extra = tail & 31;
 | 
						|
    **commands = (uint32_t)(code | (extra << 8));
 | 
						|
    ++(*commands);
 | 
						|
    **commands = 64;
 | 
						|
    ++(*commands);
 | 
						|
  } else if (copylen < 2120) {
 | 
						|
    const size_t tail = copylen - 72;
 | 
						|
    const size_t nbits = Log2FloorNonZero(tail);
 | 
						|
    const size_t code = nbits + 52;
 | 
						|
    const size_t extra = tail - ((size_t)1 << nbits);
 | 
						|
    **commands = (uint32_t)(code | (extra << 8));
 | 
						|
    ++(*commands);
 | 
						|
    **commands = 64;
 | 
						|
    ++(*commands);
 | 
						|
  } else {
 | 
						|
    const size_t extra = copylen - 2120;
 | 
						|
    **commands = (uint32_t)(63 | (extra << 8));
 | 
						|
    ++(*commands);
 | 
						|
    **commands = 64;
 | 
						|
    ++(*commands);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static BROTLI_INLINE void EmitDistance(uint32_t distance, uint32_t** commands) {
 | 
						|
  uint32_t d = distance + 3;
 | 
						|
  uint32_t nbits = Log2FloorNonZero(d) - 1;
 | 
						|
  const uint32_t prefix = (d >> nbits) & 1;
 | 
						|
  const uint32_t offset = (2 + prefix) << nbits;
 | 
						|
  const uint32_t distcode = 2 * (nbits - 1) + prefix + 80;
 | 
						|
  uint32_t extra = d - offset;
 | 
						|
  **commands = distcode | (extra << 8);
 | 
						|
  ++(*commands);
 | 
						|
}
 | 
						|
 | 
						|
/* REQUIRES: len <= 1 << 20. */
 | 
						|
static void BrotliStoreMetaBlockHeader(
 | 
						|
    size_t len, BROTLI_BOOL is_uncompressed, size_t* storage_ix,
 | 
						|
    uint8_t* storage) {
 | 
						|
  /* ISLAST */
 | 
						|
  BrotliWriteBits(1, 0, storage_ix, storage);
 | 
						|
  if (len <= (1U << 16)) {
 | 
						|
    /* MNIBBLES is 4 */
 | 
						|
    BrotliWriteBits(2, 0, storage_ix, storage);
 | 
						|
    BrotliWriteBits(16, len - 1, storage_ix, storage);
 | 
						|
  } else {
 | 
						|
    /* MNIBBLES is 5 */
 | 
						|
    BrotliWriteBits(2, 1, storage_ix, storage);
 | 
						|
    BrotliWriteBits(20, len - 1, storage_ix, storage);
 | 
						|
  }
 | 
						|
  /* ISUNCOMPRESSED */
 | 
						|
  BrotliWriteBits(1, (uint64_t)is_uncompressed, storage_ix, storage);
 | 
						|
}
 | 
						|
 | 
						|
static void CreateCommands(const uint8_t* input, size_t block_size,
 | 
						|
    size_t input_size, const uint8_t* base_ip, int* table, size_t table_size,
 | 
						|
    uint8_t** literals, uint32_t** commands) {
 | 
						|
  /* "ip" is the input pointer. */
 | 
						|
  const uint8_t* ip = input;
 | 
						|
  const size_t shift = 64u - Log2FloorNonZero(table_size);
 | 
						|
  const uint8_t* ip_end = input + block_size;
 | 
						|
  /* "next_emit" is a pointer to the first byte that is not covered by a
 | 
						|
     previous copy. Bytes between "next_emit" and the start of the next copy or
 | 
						|
     the end of the input will be emitted as literal bytes. */
 | 
						|
  const uint8_t* next_emit = input;
 | 
						|
 | 
						|
  int last_distance = -1;
 | 
						|
  const size_t kInputMarginBytes = 16;
 | 
						|
  const size_t kMinMatchLen = 6;
 | 
						|
 | 
						|
  assert(table_size);
 | 
						|
  assert(table_size <= (1u << 31));
 | 
						|
  /* table must be power of two */
 | 
						|
  assert((table_size & (table_size - 1)) == 0);
 | 
						|
  assert(table_size - 1 ==
 | 
						|
      (size_t)(MAKE_UINT64_T(0xFFFFFFFF, 0xFFFFFF) >> shift));
 | 
						|
 | 
						|
  if (PREDICT_TRUE(block_size >= kInputMarginBytes)) {
 | 
						|
    /* For the last block, we need to keep a 16 bytes margin so that we can be
 | 
						|
       sure that all distances are at most window size - 16.
 | 
						|
       For all other blocks, we only need to keep a margin of 5 bytes so that
 | 
						|
       we don't go over the block size with a copy. */
 | 
						|
    const size_t len_limit = BROTLI_MIN(size_t, block_size - kMinMatchLen,
 | 
						|
                                        input_size - kInputMarginBytes);
 | 
						|
    const uint8_t* ip_limit = input + len_limit;
 | 
						|
 | 
						|
    uint32_t next_hash;
 | 
						|
    for (next_hash = Hash(++ip, shift); ; ) {
 | 
						|
      /* Step 1: Scan forward in the input looking for a 6-byte-long match.
 | 
						|
         If we get close to exhausting the input then goto emit_remainder.
 | 
						|
 | 
						|
         Heuristic match skipping: If 32 bytes are scanned with no matches
 | 
						|
         found, start looking only at every other byte. If 32 more bytes are
 | 
						|
         scanned, look at every third byte, etc.. When a match is found,
 | 
						|
         immediately go back to looking at every byte. This is a small loss
 | 
						|
         (~5% performance, ~0.1% density) for compressible data due to more
 | 
						|
         bookkeeping, but for non-compressible data (such as JPEG) it's a huge
 | 
						|
         win since the compressor quickly "realizes" the data is incompressible
 | 
						|
         and doesn't bother looking for matches everywhere.
 | 
						|
 | 
						|
         The "skip" variable keeps track of how many bytes there are since the
 | 
						|
         last match; dividing it by 32 (ie. right-shifting by five) gives the
 | 
						|
         number of bytes to move ahead for each iteration. */
 | 
						|
      uint32_t skip = 32;
 | 
						|
 | 
						|
      const uint8_t* next_ip = ip;
 | 
						|
      const uint8_t* candidate;
 | 
						|
 | 
						|
      assert(next_emit < ip);
 | 
						|
 | 
						|
      do {
 | 
						|
        uint32_t hash = next_hash;
 | 
						|
        uint32_t bytes_between_hash_lookups = skip++ >> 5;
 | 
						|
        ip = next_ip;
 | 
						|
        assert(hash == Hash(ip, shift));
 | 
						|
        next_ip = ip + bytes_between_hash_lookups;
 | 
						|
        if (PREDICT_FALSE(next_ip > ip_limit)) {
 | 
						|
          goto emit_remainder;
 | 
						|
        }
 | 
						|
        next_hash = Hash(next_ip, shift);
 | 
						|
        candidate = ip - last_distance;
 | 
						|
        if (IsMatch(ip, candidate)) {
 | 
						|
          if (PREDICT_TRUE(candidate < ip)) {
 | 
						|
            table[hash] = (int)(ip - base_ip);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        candidate = base_ip + table[hash];
 | 
						|
        assert(candidate >= base_ip);
 | 
						|
        assert(candidate < ip);
 | 
						|
 | 
						|
        table[hash] = (int)(ip - base_ip);
 | 
						|
      } while (PREDICT_TRUE(!IsMatch(ip, candidate)));
 | 
						|
 | 
						|
      /* Step 2: Emit the found match together with the literal bytes from
 | 
						|
         "next_emit", and then see if we can find a next macth immediately
 | 
						|
         afterwards. Repeat until we find no match for the input
 | 
						|
         without emitting some literal bytes. */
 | 
						|
 | 
						|
      {
 | 
						|
        /* We have a 6-byte match at ip, and we need to emit bytes in
 | 
						|
           [next_emit, ip). */
 | 
						|
        const uint8_t* base = ip;
 | 
						|
        size_t matched = 6 + FindMatchLengthWithLimit(
 | 
						|
            candidate + 6, ip + 6, (size_t)(ip_end - ip) - 6);
 | 
						|
        int distance = (int)(base - candidate);  /* > 0 */
 | 
						|
        int insert = (int)(base - next_emit);
 | 
						|
        ip += matched;
 | 
						|
        assert(0 == memcmp(base, candidate, matched));
 | 
						|
        EmitInsertLen((uint32_t)insert, commands);
 | 
						|
        memcpy(*literals, next_emit, (size_t)insert);
 | 
						|
        *literals += insert;
 | 
						|
        if (distance == last_distance) {
 | 
						|
          **commands = 64;
 | 
						|
          ++(*commands);
 | 
						|
        } else {
 | 
						|
          EmitDistance((uint32_t)distance, commands);
 | 
						|
          last_distance = distance;
 | 
						|
        }
 | 
						|
        EmitCopyLenLastDistance(matched, commands);
 | 
						|
 | 
						|
        next_emit = ip;
 | 
						|
        if (PREDICT_FALSE(ip >= ip_limit)) {
 | 
						|
          goto emit_remainder;
 | 
						|
        }
 | 
						|
        {
 | 
						|
          /* We could immediately start working at ip now, but to improve
 | 
						|
             compression we first update "table" with the hashes of some
 | 
						|
             positions within the last copy. */
 | 
						|
          uint64_t input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5);
 | 
						|
          uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
 | 
						|
          uint32_t cur_hash;
 | 
						|
          table[prev_hash] = (int)(ip - base_ip - 5);
 | 
						|
          prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
 | 
						|
          table[prev_hash] = (int)(ip - base_ip - 4);
 | 
						|
          prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
 | 
						|
          table[prev_hash] = (int)(ip - base_ip - 3);
 | 
						|
          input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2);
 | 
						|
          cur_hash = HashBytesAtOffset(input_bytes, 2, shift);
 | 
						|
          prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
 | 
						|
          table[prev_hash] = (int)(ip - base_ip - 2);
 | 
						|
          prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
 | 
						|
          table[prev_hash] = (int)(ip - base_ip - 1);
 | 
						|
 | 
						|
          candidate = base_ip + table[cur_hash];
 | 
						|
          table[cur_hash] = (int)(ip - base_ip);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      while (IsMatch(ip, candidate)) {
 | 
						|
        /* We have a 6-byte match at ip, and no need to emit any
 | 
						|
           literal bytes prior to ip. */
 | 
						|
        const uint8_t* base = ip;
 | 
						|
        size_t matched = 6 + FindMatchLengthWithLimit(
 | 
						|
            candidate + 6, ip + 6, (size_t)(ip_end - ip) - 6);
 | 
						|
        ip += matched;
 | 
						|
        last_distance = (int)(base - candidate);  /* > 0 */
 | 
						|
        assert(0 == memcmp(base, candidate, matched));
 | 
						|
        EmitCopyLen(matched, commands);
 | 
						|
        EmitDistance((uint32_t)last_distance, commands);
 | 
						|
 | 
						|
        next_emit = ip;
 | 
						|
        if (PREDICT_FALSE(ip >= ip_limit)) {
 | 
						|
          goto emit_remainder;
 | 
						|
        }
 | 
						|
        {
 | 
						|
          /* We could immediately start working at ip now, but to improve
 | 
						|
             compression we first update "table" with the hashes of some
 | 
						|
             positions within the last copy. */
 | 
						|
          uint64_t input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5);
 | 
						|
          uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
 | 
						|
          uint32_t cur_hash;
 | 
						|
          table[prev_hash] = (int)(ip - base_ip - 5);
 | 
						|
          prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
 | 
						|
          table[prev_hash] = (int)(ip - base_ip - 4);
 | 
						|
          prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
 | 
						|
          table[prev_hash] = (int)(ip - base_ip - 3);
 | 
						|
          input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2);
 | 
						|
          cur_hash = HashBytesAtOffset(input_bytes, 2, shift);
 | 
						|
          prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
 | 
						|
          table[prev_hash] = (int)(ip - base_ip - 2);
 | 
						|
          prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
 | 
						|
          table[prev_hash] = (int)(ip - base_ip - 1);
 | 
						|
 | 
						|
          candidate = base_ip + table[cur_hash];
 | 
						|
          table[cur_hash] = (int)(ip - base_ip);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      next_hash = Hash(++ip, shift);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
emit_remainder:
 | 
						|
  assert(next_emit <= ip_end);
 | 
						|
  /* Emit the remaining bytes as literals. */
 | 
						|
  if (next_emit < ip_end) {
 | 
						|
    const uint32_t insert = (uint32_t)(ip_end - next_emit);
 | 
						|
    EmitInsertLen(insert, commands);
 | 
						|
    memcpy(*literals, next_emit, insert);
 | 
						|
    *literals += insert;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void StoreCommands(MemoryManager* m,
 | 
						|
                          const uint8_t* literals, const size_t num_literals,
 | 
						|
                          const uint32_t* commands, const size_t num_commands,
 | 
						|
                          size_t* storage_ix, uint8_t* storage) {
 | 
						|
  static const uint32_t kNumExtraBits[128] = {
 | 
						|
    0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 12, 14, 24,
 | 
						|
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4,
 | 
						|
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 24,
 | 
						|
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | 
						|
    1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
 | 
						|
    9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16,
 | 
						|
    17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24,
 | 
						|
  };
 | 
						|
  static const uint32_t kInsertOffset[24] = {
 | 
						|
    0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 18, 26, 34, 50, 66, 98, 130, 194, 322, 578,
 | 
						|
    1090, 2114, 6210, 22594,
 | 
						|
  };
 | 
						|
 | 
						|
  uint8_t lit_depths[256];
 | 
						|
  uint16_t lit_bits[256];
 | 
						|
  uint32_t lit_histo[256] = { 0 };
 | 
						|
  uint8_t cmd_depths[128] = { 0 };
 | 
						|
  uint16_t cmd_bits[128] = { 0 };
 | 
						|
  uint32_t cmd_histo[128] = { 0 };
 | 
						|
  size_t i;
 | 
						|
  for (i = 0; i < num_literals; ++i) {
 | 
						|
    ++lit_histo[literals[i]];
 | 
						|
  }
 | 
						|
  BrotliBuildAndStoreHuffmanTreeFast(m, lit_histo, num_literals,
 | 
						|
                                     /* max_bits = */ 8,
 | 
						|
                                     lit_depths, lit_bits,
 | 
						|
                                     storage_ix, storage);
 | 
						|
  if (BROTLI_IS_OOM(m)) return;
 | 
						|
 | 
						|
  for (i = 0; i < num_commands; ++i) {
 | 
						|
    ++cmd_histo[commands[i] & 0xff];
 | 
						|
  }
 | 
						|
  cmd_histo[1] += 1;
 | 
						|
  cmd_histo[2] += 1;
 | 
						|
  cmd_histo[64] += 1;
 | 
						|
  cmd_histo[84] += 1;
 | 
						|
  BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depths, cmd_bits,
 | 
						|
                                 storage_ix, storage);
 | 
						|
 | 
						|
  for (i = 0; i < num_commands; ++i) {
 | 
						|
    const uint32_t cmd = commands[i];
 | 
						|
    const uint32_t code = cmd & 0xff;
 | 
						|
    const uint32_t extra = cmd >> 8;
 | 
						|
    BrotliWriteBits(cmd_depths[code], cmd_bits[code], storage_ix, storage);
 | 
						|
    BrotliWriteBits(kNumExtraBits[code], extra, storage_ix, storage);
 | 
						|
    if (code < 24) {
 | 
						|
      const uint32_t insert = kInsertOffset[code] + extra;
 | 
						|
      uint32_t j;
 | 
						|
      for (j = 0; j < insert; ++j) {
 | 
						|
        const uint8_t lit = *literals;
 | 
						|
        BrotliWriteBits(lit_depths[lit], lit_bits[lit], storage_ix, storage);
 | 
						|
        ++literals;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Acceptable loss for uncompressible speedup is 2% */
 | 
						|
#define MIN_RATIO 0.98
 | 
						|
#define SAMPLE_RATE 43
 | 
						|
 | 
						|
static BROTLI_BOOL ShouldCompress(
 | 
						|
    const uint8_t* input, size_t input_size, size_t num_literals) {
 | 
						|
  double corpus_size = (double)input_size;
 | 
						|
  if (num_literals < MIN_RATIO * corpus_size) {
 | 
						|
    return BROTLI_TRUE;
 | 
						|
  } else {
 | 
						|
    uint32_t literal_histo[256] = { 0 };
 | 
						|
    const double max_total_bit_cost = corpus_size * 8 * MIN_RATIO / SAMPLE_RATE;
 | 
						|
    size_t i;
 | 
						|
    for (i = 0; i < input_size; i += SAMPLE_RATE) {
 | 
						|
      ++literal_histo[input[i]];
 | 
						|
    }
 | 
						|
    return TO_BROTLI_BOOL(BitsEntropy(literal_histo, 256) < max_total_bit_cost);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BrotliCompressFragmentTwoPass(MemoryManager* m,
 | 
						|
                                   const uint8_t* input, size_t input_size,
 | 
						|
                                   BROTLI_BOOL is_last,
 | 
						|
                                   uint32_t* command_buf, uint8_t* literal_buf,
 | 
						|
                                   int* table, size_t table_size,
 | 
						|
                                   size_t* storage_ix, uint8_t* storage) {
 | 
						|
  /* Save the start of the first block for position and distance computations.
 | 
						|
  */
 | 
						|
  const uint8_t* base_ip = input;
 | 
						|
 | 
						|
  while (input_size > 0) {
 | 
						|
    size_t block_size =
 | 
						|
        BROTLI_MIN(size_t, input_size, kCompressFragmentTwoPassBlockSize);
 | 
						|
    uint32_t* commands = command_buf;
 | 
						|
    uint8_t* literals = literal_buf;
 | 
						|
    size_t num_literals;
 | 
						|
    CreateCommands(input, block_size, input_size, base_ip, table, table_size,
 | 
						|
                   &literals, &commands);
 | 
						|
    num_literals = (size_t)(literals - literal_buf);
 | 
						|
    if (ShouldCompress(input, block_size, num_literals)) {
 | 
						|
      const size_t num_commands = (size_t)(commands - command_buf);
 | 
						|
      BrotliStoreMetaBlockHeader(block_size, 0, storage_ix, storage);
 | 
						|
      /* No block splits, no contexts. */
 | 
						|
      BrotliWriteBits(13, 0, storage_ix, storage);
 | 
						|
      StoreCommands(m, literal_buf, num_literals, command_buf, num_commands,
 | 
						|
                    storage_ix, storage);
 | 
						|
      if (BROTLI_IS_OOM(m)) return;
 | 
						|
    } else {
 | 
						|
      /* Since we did not find many backward references and the entropy of
 | 
						|
         the data is close to 8 bits, we can simply emit an uncompressed block.
 | 
						|
         This makes compression speed of uncompressible data about 3x faster. */
 | 
						|
      BrotliStoreMetaBlockHeader(block_size, 1, storage_ix, storage);
 | 
						|
      *storage_ix = (*storage_ix + 7u) & ~7u;
 | 
						|
      memcpy(&storage[*storage_ix >> 3], input, block_size);
 | 
						|
      *storage_ix += block_size << 3;
 | 
						|
      storage[*storage_ix >> 3] = 0;
 | 
						|
    }
 | 
						|
    input += block_size;
 | 
						|
    input_size -= block_size;
 | 
						|
  }
 | 
						|
 | 
						|
  if (is_last) {
 | 
						|
    BrotliWriteBits(1, 1, storage_ix, storage);  /* islast */
 | 
						|
    BrotliWriteBits(1, 1, storage_ix, storage);  /* isempty */
 | 
						|
    *storage_ix = (*storage_ix + 7u) & ~7u;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(__cplusplus) || defined(c_plusplus)
 | 
						|
}  /* extern "C" */
 | 
						|
#endif
 |