mirror of https://github.com/acidanthera/audk.git
888 lines
34 KiB
C
888 lines
34 KiB
C
/*++
|
|
|
|
Copyright (c) 2009, Hewlett-Packard Company. All rights reserved.<BR>
|
|
Portions copyright (c) 2010, Apple Inc. All rights reserved.<BR>
|
|
Portions copyright (c) 2013, ARM Ltd. All rights reserved.<BR>
|
|
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
|
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
|
|
--*/
|
|
|
|
#include <Library/MemoryAllocationLib.h>
|
|
#include "CpuDxe.h"
|
|
|
|
// First Level Descriptors
|
|
typedef UINT32 ARM_FIRST_LEVEL_DESCRIPTOR;
|
|
|
|
// Second Level Descriptors
|
|
typedef UINT32 ARM_PAGE_TABLE_ENTRY;
|
|
|
|
EFI_STATUS
|
|
SectionToGcdAttributes (
|
|
IN UINT32 SectionAttributes,
|
|
OUT UINT64 *GcdAttributes
|
|
)
|
|
{
|
|
*GcdAttributes = 0;
|
|
|
|
// determine cacheability attributes
|
|
switch(SectionAttributes & TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK) {
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_SHAREABLE_DEVICE:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WT;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_NO_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WB;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE:
|
|
*GcdAttributes |= EFI_MEMORY_WC;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WB;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_SHAREABLE_DEVICE:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// determine protection attributes
|
|
switch(SectionAttributes & TT_DESCRIPTOR_SECTION_AP_MASK) {
|
|
case TT_DESCRIPTOR_SECTION_AP_NO_NO: // no read, no write
|
|
//*GcdAttributes |= EFI_MEMORY_RO | EFI_MEMORY_RP;
|
|
break;
|
|
|
|
case TT_DESCRIPTOR_SECTION_AP_RW_NO:
|
|
case TT_DESCRIPTOR_SECTION_AP_RW_RW:
|
|
// normal read/write access, do not add additional attributes
|
|
break;
|
|
|
|
// read only cases map to write-protect
|
|
case TT_DESCRIPTOR_SECTION_AP_RO_NO:
|
|
case TT_DESCRIPTOR_SECTION_AP_RO_RO:
|
|
*GcdAttributes |= EFI_MEMORY_RO;
|
|
break;
|
|
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// now process eXectue Never attribute
|
|
if ((SectionAttributes & TT_DESCRIPTOR_SECTION_XN_MASK) != 0 ) {
|
|
*GcdAttributes |= EFI_MEMORY_XP;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
PageToGcdAttributes (
|
|
IN UINT32 PageAttributes,
|
|
OUT UINT64 *GcdAttributes
|
|
)
|
|
{
|
|
*GcdAttributes = 0;
|
|
|
|
// determine cacheability attributes
|
|
switch(PageAttributes & TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK) {
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_STRONGLY_ORDERED:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_SHAREABLE_DEVICE:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WT;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_NO_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WB;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE:
|
|
*GcdAttributes |= EFI_MEMORY_WC;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WB;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_SHAREABLE_DEVICE:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// determine protection attributes
|
|
switch(PageAttributes & TT_DESCRIPTOR_PAGE_AP_MASK) {
|
|
case TT_DESCRIPTOR_PAGE_AP_NO_NO: // no read, no write
|
|
//*GcdAttributes |= EFI_MEMORY_RO | EFI_MEMORY_RP;
|
|
break;
|
|
|
|
case TT_DESCRIPTOR_PAGE_AP_RW_NO:
|
|
case TT_DESCRIPTOR_PAGE_AP_RW_RW:
|
|
// normal read/write access, do not add additional attributes
|
|
break;
|
|
|
|
// read only cases map to write-protect
|
|
case TT_DESCRIPTOR_PAGE_AP_RO_NO:
|
|
case TT_DESCRIPTOR_PAGE_AP_RO_RO:
|
|
*GcdAttributes |= EFI_MEMORY_RO;
|
|
break;
|
|
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// now process eXectue Never attribute
|
|
if ((PageAttributes & TT_DESCRIPTOR_PAGE_XN_MASK) != 0 ) {
|
|
*GcdAttributes |= EFI_MEMORY_XP;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
SyncCacheConfigPage (
|
|
IN UINT32 SectionIndex,
|
|
IN UINT32 FirstLevelDescriptor,
|
|
IN UINTN NumberOfDescriptors,
|
|
IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
|
|
IN OUT EFI_PHYSICAL_ADDRESS *NextRegionBase,
|
|
IN OUT UINT64 *NextRegionLength,
|
|
IN OUT UINT32 *NextSectionAttributes
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT32 i;
|
|
volatile ARM_PAGE_TABLE_ENTRY *SecondLevelTable;
|
|
UINT32 NextPageAttributes = 0;
|
|
UINT32 PageAttributes = 0;
|
|
UINT32 BaseAddress;
|
|
UINT64 GcdAttributes;
|
|
|
|
// Get the Base Address from FirstLevelDescriptor;
|
|
BaseAddress = TT_DESCRIPTOR_PAGE_BASE_ADDRESS(SectionIndex << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
|
|
// Convert SectionAttributes into PageAttributes
|
|
NextPageAttributes =
|
|
TT_DESCRIPTOR_CONVERT_TO_PAGE_CACHE_POLICY(*NextSectionAttributes,0) |
|
|
TT_DESCRIPTOR_CONVERT_TO_PAGE_AP(*NextSectionAttributes);
|
|
|
|
// obtain page table base
|
|
SecondLevelTable = (ARM_PAGE_TABLE_ENTRY *)(FirstLevelDescriptor & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK);
|
|
|
|
for (i=0; i < TRANSLATION_TABLE_PAGE_COUNT; i++) {
|
|
if ((SecondLevelTable[i] & TT_DESCRIPTOR_PAGE_TYPE_MASK) == TT_DESCRIPTOR_PAGE_TYPE_PAGE) {
|
|
// extract attributes (cacheability and permissions)
|
|
PageAttributes = SecondLevelTable[i] & (TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK | TT_DESCRIPTOR_PAGE_AP_MASK);
|
|
|
|
if (NextPageAttributes == 0) {
|
|
// start on a new region
|
|
*NextRegionLength = 0;
|
|
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
|
|
NextPageAttributes = PageAttributes;
|
|
} else if (PageAttributes != NextPageAttributes) {
|
|
// Convert Section Attributes into GCD Attributes
|
|
Status = PageToGcdAttributes (NextPageAttributes, &GcdAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
|
|
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, *NextRegionBase, *NextRegionLength, GcdAttributes);
|
|
|
|
// start on a new region
|
|
*NextRegionLength = 0;
|
|
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
|
|
NextPageAttributes = PageAttributes;
|
|
}
|
|
} else if (NextPageAttributes != 0) {
|
|
// Convert Page Attributes into GCD Attributes
|
|
Status = PageToGcdAttributes (NextPageAttributes, &GcdAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
|
|
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, *NextRegionBase, *NextRegionLength, GcdAttributes);
|
|
|
|
*NextRegionLength = 0;
|
|
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
|
|
NextPageAttributes = 0;
|
|
}
|
|
*NextRegionLength += TT_DESCRIPTOR_PAGE_SIZE;
|
|
}
|
|
|
|
// Convert back PageAttributes into SectionAttributes
|
|
*NextSectionAttributes =
|
|
TT_DESCRIPTOR_CONVERT_TO_SECTION_CACHE_POLICY(NextPageAttributes,0) |
|
|
TT_DESCRIPTOR_CONVERT_TO_SECTION_AP(NextPageAttributes);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
SyncCacheConfig (
|
|
IN EFI_CPU_ARCH_PROTOCOL *CpuProtocol
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT32 i;
|
|
EFI_PHYSICAL_ADDRESS NextRegionBase;
|
|
UINT64 NextRegionLength;
|
|
UINT32 NextSectionAttributes = 0;
|
|
UINT32 SectionAttributes = 0;
|
|
UINT64 GcdAttributes;
|
|
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
|
|
UINTN NumberOfDescriptors;
|
|
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
|
|
|
|
|
|
DEBUG ((EFI_D_PAGE, "SyncCacheConfig()\n"));
|
|
|
|
// This code assumes MMU is enabled and filed with section translations
|
|
ASSERT (ArmMmuEnabled ());
|
|
|
|
//
|
|
// Get the memory space map from GCD
|
|
//
|
|
MemorySpaceMap = NULL;
|
|
Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
|
|
// The GCD implementation maintains its own copy of the state of memory space attributes. GCD needs
|
|
// to know what the initial memory space attributes are. The CPU Arch. Protocol does not provide a
|
|
// GetMemoryAttributes function for GCD to get this so we must resort to calling GCD (as if we were
|
|
// a client) to update its copy of the attributes. This is bad architecture and should be replaced
|
|
// with a way for GCD to query the CPU Arch. driver of the existing memory space attributes instead.
|
|
|
|
// obtain page table base
|
|
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)(ArmGetTTBR0BaseAddress ());
|
|
|
|
// Get the first region
|
|
NextSectionAttributes = FirstLevelTable[0] & (TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK | TT_DESCRIPTOR_SECTION_AP_MASK);
|
|
|
|
// iterate through each 1MB descriptor
|
|
NextRegionBase = NextRegionLength = 0;
|
|
for (i=0; i < TRANSLATION_TABLE_SECTION_COUNT; i++) {
|
|
if ((FirstLevelTable[i] & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) {
|
|
// extract attributes (cacheability and permissions)
|
|
SectionAttributes = FirstLevelTable[i] & (TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK | TT_DESCRIPTOR_SECTION_AP_MASK);
|
|
|
|
if (NextSectionAttributes == 0) {
|
|
// start on a new region
|
|
NextRegionLength = 0;
|
|
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
NextSectionAttributes = SectionAttributes;
|
|
} else if (SectionAttributes != NextSectionAttributes) {
|
|
// Convert Section Attributes into GCD Attributes
|
|
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
|
|
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
|
|
|
|
// start on a new region
|
|
NextRegionLength = 0;
|
|
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
NextSectionAttributes = SectionAttributes;
|
|
}
|
|
NextRegionLength += TT_DESCRIPTOR_SECTION_SIZE;
|
|
} else if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(FirstLevelTable[i])) {
|
|
// In this case any bits set in the 'NextSectionAttributes' are garbage and were set from
|
|
// bits that are actually part of the pagetable address. We clear it out to zero so that
|
|
// the SyncCacheConfigPage will use the page attributes instead of trying to convert the
|
|
// section attributes into page attributes
|
|
NextSectionAttributes = 0;
|
|
Status = SyncCacheConfigPage (
|
|
i,FirstLevelTable[i],
|
|
NumberOfDescriptors, MemorySpaceMap,
|
|
&NextRegionBase,&NextRegionLength,&NextSectionAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
} else {
|
|
// We do not support yet 16MB sections
|
|
ASSERT ((FirstLevelTable[i] & TT_DESCRIPTOR_SECTION_TYPE_MASK) != TT_DESCRIPTOR_SECTION_TYPE_SUPERSECTION);
|
|
|
|
// start on a new region
|
|
if (NextSectionAttributes != 0) {
|
|
// Convert Section Attributes into GCD Attributes
|
|
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
|
|
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
|
|
|
|
NextRegionLength = 0;
|
|
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
NextSectionAttributes = 0;
|
|
}
|
|
NextRegionLength += TT_DESCRIPTOR_SECTION_SIZE;
|
|
}
|
|
} // section entry loop
|
|
|
|
if (NextSectionAttributes != 0) {
|
|
// Convert Section Attributes into GCD Attributes
|
|
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
|
|
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
|
|
}
|
|
|
|
FreePool (MemorySpaceMap);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
UpdatePageEntries (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
IN UINT64 Attributes,
|
|
IN EFI_PHYSICAL_ADDRESS VirtualMask
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT32 EntryValue;
|
|
UINT32 EntryMask;
|
|
UINT32 FirstLevelIdx;
|
|
UINT32 Offset;
|
|
UINT32 NumPageEntries;
|
|
UINT32 Descriptor;
|
|
UINT32 p;
|
|
UINT32 PageTableIndex;
|
|
UINT32 PageTableEntry;
|
|
UINT32 CurrentPageTableEntry;
|
|
VOID *Mva;
|
|
|
|
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
|
|
volatile ARM_PAGE_TABLE_ENTRY *PageTable;
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
// EntryMask: bitmask of values to change (1 = change this value, 0 = leave alone)
|
|
// EntryValue: values at bit positions specified by EntryMask
|
|
EntryMask = TT_DESCRIPTOR_PAGE_TYPE_MASK;
|
|
EntryValue = TT_DESCRIPTOR_PAGE_TYPE_PAGE;
|
|
// Although the PI spec is unclear on this the GCD guarantees that only
|
|
// one Attribute bit is set at a time, so we can safely use a switch statement
|
|
switch (Attributes) {
|
|
case EFI_MEMORY_UC:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
|
|
// map to strongly ordered
|
|
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WC:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
|
|
// map to normal non-cachable
|
|
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WT:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
|
|
// write through with no-allocate
|
|
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WB:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
|
|
// write back (with allocate)
|
|
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
|
|
break;
|
|
|
|
case EFI_MEMORY_WP:
|
|
case EFI_MEMORY_XP:
|
|
case EFI_MEMORY_UCE:
|
|
// cannot be implemented UEFI definition unclear for ARM
|
|
// Cause a page fault if these ranges are accessed.
|
|
EntryValue = TT_DESCRIPTOR_PAGE_TYPE_FAULT;
|
|
DEBUG ((EFI_D_PAGE, "SetMemoryAttributes(): setting page %lx with unsupported attribute %x will page fault on access\n", BaseAddress, Attributes));
|
|
break;
|
|
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// Obtain page table base
|
|
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
|
|
|
|
// Calculate number of 4KB page table entries to change
|
|
NumPageEntries = Length / TT_DESCRIPTOR_PAGE_SIZE;
|
|
|
|
// Iterate for the number of 4KB pages to change
|
|
Offset = 0;
|
|
for(p = 0; p < NumPageEntries; p++) {
|
|
// Calculate index into first level translation table for page table value
|
|
|
|
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress + Offset) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
|
|
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
|
|
|
|
// Read the descriptor from the first level page table
|
|
Descriptor = FirstLevelTable[FirstLevelIdx];
|
|
|
|
// Does this descriptor need to be converted from section entry to 4K pages?
|
|
if (!TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(Descriptor)) {
|
|
Status = ConvertSectionToPages (FirstLevelIdx << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
if (EFI_ERROR(Status)) {
|
|
// Exit for loop
|
|
break;
|
|
}
|
|
|
|
// Re-read descriptor
|
|
Descriptor = FirstLevelTable[FirstLevelIdx];
|
|
}
|
|
|
|
// Obtain page table base address
|
|
PageTable = (ARM_PAGE_TABLE_ENTRY *)TT_DESCRIPTOR_PAGE_BASE_ADDRESS(Descriptor);
|
|
|
|
// Calculate index into the page table
|
|
PageTableIndex = ((BaseAddress + Offset) & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
|
|
ASSERT (PageTableIndex < TRANSLATION_TABLE_PAGE_COUNT);
|
|
|
|
// Get the entry
|
|
CurrentPageTableEntry = PageTable[PageTableIndex];
|
|
|
|
// Mask off appropriate fields
|
|
PageTableEntry = CurrentPageTableEntry & ~EntryMask;
|
|
|
|
// Mask in new attributes and/or permissions
|
|
PageTableEntry |= EntryValue;
|
|
|
|
if (VirtualMask != 0) {
|
|
// Make this virtual address point at a physical page
|
|
PageTableEntry &= ~VirtualMask;
|
|
}
|
|
|
|
if (CurrentPageTableEntry != PageTableEntry) {
|
|
Mva = (VOID *)(UINTN)((((UINTN)FirstLevelIdx) << TT_DESCRIPTOR_SECTION_BASE_SHIFT) + (PageTableIndex << TT_DESCRIPTOR_PAGE_BASE_SHIFT));
|
|
if ((CurrentPageTableEntry & TT_DESCRIPTOR_PAGE_CACHEABLE_MASK) == TT_DESCRIPTOR_PAGE_CACHEABLE_MASK) {
|
|
// The current section mapping is cacheable so Clean/Invalidate the MVA of the page
|
|
// Note assumes switch(Attributes), not ARMv7 possibilities
|
|
WriteBackInvalidateDataCacheRange (Mva, TT_DESCRIPTOR_PAGE_SIZE);
|
|
}
|
|
|
|
// Only need to update if we are changing the entry
|
|
PageTable[PageTableIndex] = PageTableEntry;
|
|
ArmUpdateTranslationTableEntry ((VOID *)&PageTable[PageTableIndex], Mva);
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
Offset += TT_DESCRIPTOR_PAGE_SIZE;
|
|
|
|
} // End first level translation table loop
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
UpdateSectionEntries (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
IN UINT64 Attributes,
|
|
IN EFI_PHYSICAL_ADDRESS VirtualMask
|
|
)
|
|
{
|
|
EFI_STATUS Status = EFI_SUCCESS;
|
|
UINT32 EntryMask;
|
|
UINT32 EntryValue;
|
|
UINT32 FirstLevelIdx;
|
|
UINT32 NumSections;
|
|
UINT32 i;
|
|
UINT32 CurrentDescriptor;
|
|
UINT32 Descriptor;
|
|
VOID *Mva;
|
|
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
|
|
|
|
// EntryMask: bitmask of values to change (1 = change this value, 0 = leave alone)
|
|
// EntryValue: values at bit positions specified by EntryMask
|
|
|
|
// Make sure we handle a section range that is unmapped
|
|
EntryMask = TT_DESCRIPTOR_SECTION_TYPE_MASK;
|
|
EntryValue = TT_DESCRIPTOR_SECTION_TYPE_SECTION;
|
|
|
|
// Although the PI spec is unclear on this the GCD guarantees that only
|
|
// one Attribute bit is set at a time, so we can safely use a switch statement
|
|
switch(Attributes) {
|
|
case EFI_MEMORY_UC:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
|
|
// map to strongly ordered
|
|
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WC:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
|
|
// map to normal non-cachable
|
|
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WT:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
|
|
// write through with no-allocate
|
|
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WB:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
|
|
// write back (with allocate)
|
|
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
|
|
break;
|
|
|
|
case EFI_MEMORY_WP:
|
|
case EFI_MEMORY_XP:
|
|
case EFI_MEMORY_RP:
|
|
case EFI_MEMORY_UCE:
|
|
// cannot be implemented UEFI definition unclear for ARM
|
|
// Cause a page fault if these ranges are accessed.
|
|
EntryValue = TT_DESCRIPTOR_SECTION_TYPE_FAULT;
|
|
DEBUG ((EFI_D_PAGE, "SetMemoryAttributes(): setting section %lx with unsupported attribute %x will page fault on access\n", BaseAddress, Attributes));
|
|
break;
|
|
|
|
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// obtain page table base
|
|
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
|
|
|
|
// calculate index into first level translation table for start of modification
|
|
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
|
|
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
|
|
|
|
// calculate number of 1MB first level entries this applies to
|
|
NumSections = Length / TT_DESCRIPTOR_SECTION_SIZE;
|
|
|
|
// iterate through each descriptor
|
|
for(i=0; i<NumSections; i++) {
|
|
CurrentDescriptor = FirstLevelTable[FirstLevelIdx + i];
|
|
|
|
// has this descriptor already been coverted to pages?
|
|
if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(CurrentDescriptor)) {
|
|
// forward this 1MB range to page table function instead
|
|
Status = UpdatePageEntries ((FirstLevelIdx + i) << TT_DESCRIPTOR_SECTION_BASE_SHIFT, TT_DESCRIPTOR_SECTION_SIZE, Attributes, VirtualMask);
|
|
} else {
|
|
// still a section entry
|
|
|
|
// mask off appropriate fields
|
|
Descriptor = CurrentDescriptor & ~EntryMask;
|
|
|
|
// mask in new attributes and/or permissions
|
|
Descriptor |= EntryValue;
|
|
if (VirtualMask != 0) {
|
|
Descriptor &= ~VirtualMask;
|
|
}
|
|
|
|
if (CurrentDescriptor != Descriptor) {
|
|
Mva = (VOID *)(UINTN)(((UINTN)FirstLevelTable) << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
if ((CurrentDescriptor & TT_DESCRIPTOR_SECTION_CACHEABLE_MASK) == TT_DESCRIPTOR_SECTION_CACHEABLE_MASK) {
|
|
// The current section mapping is cacheable so Clean/Invalidate the MVA of the section
|
|
// Note assumes switch(Attributes), not ARMv7 possabilities
|
|
WriteBackInvalidateDataCacheRange (Mva, SIZE_1MB);
|
|
}
|
|
|
|
// Only need to update if we are changing the descriptor
|
|
FirstLevelTable[FirstLevelIdx + i] = Descriptor;
|
|
ArmUpdateTranslationTableEntry ((VOID *)&FirstLevelTable[FirstLevelIdx + i], Mva);
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
EFI_STATUS
|
|
ConvertSectionToPages (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS PageTableAddr;
|
|
UINT32 FirstLevelIdx;
|
|
UINT32 SectionDescriptor;
|
|
UINT32 PageTableDescriptor;
|
|
UINT32 PageDescriptor;
|
|
UINT32 Index;
|
|
|
|
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
|
|
volatile ARM_PAGE_TABLE_ENTRY *PageTable;
|
|
|
|
DEBUG ((EFI_D_PAGE, "Converting section at 0x%x to pages\n", (UINTN)BaseAddress));
|
|
|
|
// Obtain page table base
|
|
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
|
|
|
|
// Calculate index into first level translation table for start of modification
|
|
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
|
|
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
|
|
|
|
// Get section attributes and convert to page attributes
|
|
SectionDescriptor = FirstLevelTable[FirstLevelIdx];
|
|
PageDescriptor = TT_DESCRIPTOR_PAGE_TYPE_PAGE | ConvertSectionAttributesToPageAttributes (SectionDescriptor, FALSE);
|
|
|
|
// Allocate a page table for the 4KB entries (we use up a full page even though we only need 1KB)
|
|
Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesData, 1, &PageTableAddr);
|
|
if (EFI_ERROR(Status)) {
|
|
return Status;
|
|
}
|
|
|
|
PageTable = (volatile ARM_PAGE_TABLE_ENTRY *)(UINTN)PageTableAddr;
|
|
|
|
// Write the page table entries out
|
|
for (Index = 0; Index < TRANSLATION_TABLE_PAGE_COUNT; Index++) {
|
|
PageTable[Index] = TT_DESCRIPTOR_PAGE_BASE_ADDRESS(BaseAddress + (Index << 12)) | PageDescriptor;
|
|
}
|
|
|
|
// Flush d-cache so descriptors make it back to uncached memory for subsequent table walks
|
|
WriteBackInvalidateDataCacheRange ((VOID *)(UINTN)PageTableAddr, TT_DESCRIPTOR_PAGE_SIZE);
|
|
|
|
// Formulate page table entry, Domain=0, NS=0
|
|
PageTableDescriptor = (((UINTN)PageTableAddr) & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK) | TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE;
|
|
|
|
// Write the page table entry out, replacing section entry
|
|
FirstLevelTable[FirstLevelIdx] = PageTableDescriptor;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
SetMemoryAttributes (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
IN UINT64 Attributes,
|
|
IN EFI_PHYSICAL_ADDRESS VirtualMask
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// Ignore invocations that only modify permission bits
|
|
//
|
|
if ((Attributes & EFI_MEMORY_CACHETYPE_MASK) == 0) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
if(((BaseAddress & 0xFFFFF) == 0) && ((Length & 0xFFFFF) == 0)) {
|
|
// Is the base and length a multiple of 1 MB?
|
|
DEBUG ((EFI_D_PAGE, "SetMemoryAttributes(): MMU section 0x%x length 0x%x to %lx\n", (UINTN)BaseAddress, (UINTN)Length, Attributes));
|
|
Status = UpdateSectionEntries (BaseAddress, Length, Attributes, VirtualMask);
|
|
} else {
|
|
// Base and/or length is not a multiple of 1 MB
|
|
DEBUG ((EFI_D_PAGE, "SetMemoryAttributes(): MMU page 0x%x length 0x%x to %lx\n", (UINTN)BaseAddress, (UINTN)Length, Attributes));
|
|
Status = UpdatePageEntries (BaseAddress, Length, Attributes, VirtualMask);
|
|
}
|
|
|
|
// Flush d-cache so descriptors make it back to uncached memory for subsequent table walks
|
|
// flush and invalidate pages
|
|
//TODO: Do we really need to invalidate the caches everytime we change the memory attributes ?
|
|
ArmCleanInvalidateDataCache ();
|
|
|
|
ArmInvalidateInstructionCache ();
|
|
|
|
// Invalidate all TLB entries so changes are synced
|
|
ArmInvalidateTlb ();
|
|
|
|
return Status;
|
|
}
|
|
|
|
UINT64
|
|
EfiAttributeToArmAttribute (
|
|
IN UINT64 EfiAttributes
|
|
)
|
|
{
|
|
UINT64 ArmAttributes;
|
|
|
|
switch (EfiAttributes & EFI_MEMORY_CACHETYPE_MASK) {
|
|
case EFI_MEMORY_UC:
|
|
// Map to strongly ordered
|
|
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WC:
|
|
// Map to normal non-cachable
|
|
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WT:
|
|
// Write through with no-allocate
|
|
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WB:
|
|
// Write back (with allocate)
|
|
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
|
|
break;
|
|
|
|
case EFI_MEMORY_UCE:
|
|
default:
|
|
ArmAttributes = TT_DESCRIPTOR_SECTION_TYPE_FAULT;
|
|
break;
|
|
}
|
|
|
|
// Determine protection attributes
|
|
if (EfiAttributes & EFI_MEMORY_RO) {
|
|
ArmAttributes |= TT_DESCRIPTOR_SECTION_AP_RO_RO;
|
|
} else {
|
|
ArmAttributes |= TT_DESCRIPTOR_SECTION_AP_RW_RW;
|
|
}
|
|
|
|
// Determine eXecute Never attribute
|
|
if (EfiAttributes & EFI_MEMORY_XP) {
|
|
ArmAttributes |= TT_DESCRIPTOR_SECTION_XN_MASK;
|
|
}
|
|
|
|
return ArmAttributes;
|
|
}
|
|
|
|
EFI_STATUS
|
|
GetMemoryRegionPage (
|
|
IN UINT32 *PageTable,
|
|
IN OUT UINTN *BaseAddress,
|
|
OUT UINTN *RegionLength,
|
|
OUT UINTN *RegionAttributes
|
|
)
|
|
{
|
|
UINT32 PageAttributes;
|
|
UINT32 TableIndex;
|
|
UINT32 PageDescriptor;
|
|
|
|
// Convert the section attributes into page attributes
|
|
PageAttributes = ConvertSectionAttributesToPageAttributes (*RegionAttributes, 0);
|
|
|
|
// Calculate index into first level translation table for start of modification
|
|
TableIndex = ((*BaseAddress) & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
|
|
ASSERT (TableIndex < TRANSLATION_TABLE_PAGE_COUNT);
|
|
|
|
// Go through the page table to find the end of the section
|
|
for (; TableIndex < TRANSLATION_TABLE_PAGE_COUNT; TableIndex++) {
|
|
// Get the section at the given index
|
|
PageDescriptor = PageTable[TableIndex];
|
|
|
|
if ((PageDescriptor & TT_DESCRIPTOR_PAGE_TYPE_MASK) == TT_DESCRIPTOR_PAGE_TYPE_FAULT) {
|
|
// Case: End of the boundary of the region
|
|
return EFI_SUCCESS;
|
|
} else if ((PageDescriptor & TT_DESCRIPTOR_PAGE_TYPE_PAGE) == TT_DESCRIPTOR_PAGE_TYPE_PAGE) {
|
|
if ((PageDescriptor & TT_DESCRIPTOR_PAGE_ATTRIBUTE_MASK) == PageAttributes) {
|
|
*RegionLength = *RegionLength + TT_DESCRIPTOR_PAGE_SIZE;
|
|
} else {
|
|
// Case: End of the boundary of the region
|
|
return EFI_SUCCESS;
|
|
}
|
|
} else {
|
|
// We do not support Large Page yet. We return EFI_SUCCESS that means end of the region.
|
|
ASSERT(0);
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
EFI_STATUS
|
|
GetMemoryRegion (
|
|
IN OUT UINTN *BaseAddress,
|
|
OUT UINTN *RegionLength,
|
|
OUT UINTN *RegionAttributes
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT32 TableIndex;
|
|
UINT32 PageAttributes;
|
|
UINT32 PageTableIndex;
|
|
UINT32 SectionDescriptor;
|
|
ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
|
|
UINT32 *PageTable;
|
|
|
|
// Initialize the arguments
|
|
*RegionLength = 0;
|
|
|
|
// Obtain page table base
|
|
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
|
|
|
|
// Calculate index into first level translation table for start of modification
|
|
TableIndex = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (*BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
|
|
ASSERT (TableIndex < TRANSLATION_TABLE_SECTION_COUNT);
|
|
|
|
// Get the section at the given index
|
|
SectionDescriptor = FirstLevelTable[TableIndex];
|
|
|
|
// If 'BaseAddress' belongs to the section then round it to the section boundary
|
|
if (((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) ||
|
|
((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SUPERSECTION))
|
|
{
|
|
*BaseAddress = (*BaseAddress) & TT_DESCRIPTOR_SECTION_BASE_ADDRESS_MASK;
|
|
*RegionAttributes = SectionDescriptor & TT_DESCRIPTOR_SECTION_ATTRIBUTE_MASK;
|
|
} else {
|
|
// Otherwise, we round it to the page boundary
|
|
*BaseAddress = (*BaseAddress) & TT_DESCRIPTOR_PAGE_BASE_ADDRESS_MASK;
|
|
|
|
// Get the attribute at the page table level (Level 2)
|
|
PageTable = (UINT32*)(SectionDescriptor & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK);
|
|
|
|
// Calculate index into first level translation table for start of modification
|
|
PageTableIndex = ((*BaseAddress) & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
|
|
ASSERT (PageTableIndex < TRANSLATION_TABLE_PAGE_COUNT);
|
|
|
|
PageAttributes = PageTable[PageTableIndex] & TT_DESCRIPTOR_PAGE_ATTRIBUTE_MASK;
|
|
*RegionAttributes = TT_DESCRIPTOR_CONVERT_TO_SECTION_CACHE_POLICY (PageAttributes, 0) |
|
|
TT_DESCRIPTOR_CONVERT_TO_SECTION_AP (PageAttributes);
|
|
}
|
|
|
|
for (;TableIndex < TRANSLATION_TABLE_SECTION_COUNT; TableIndex++) {
|
|
// Get the section at the given index
|
|
SectionDescriptor = FirstLevelTable[TableIndex];
|
|
|
|
// If the entry is a level-2 page table then we scan it to find the end of the region
|
|
if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE (SectionDescriptor)) {
|
|
// Extract the page table location from the descriptor
|
|
PageTable = (UINT32*)(SectionDescriptor & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK);
|
|
|
|
// Scan the page table to find the end of the region.
|
|
Status = GetMemoryRegionPage (PageTable, BaseAddress, RegionLength, RegionAttributes);
|
|
|
|
// If we have found the end of the region (Status == EFI_SUCCESS) then we exit the for-loop
|
|
if (Status == EFI_SUCCESS) {
|
|
break;
|
|
}
|
|
} else if (((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) ||
|
|
((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SUPERSECTION)) {
|
|
if ((SectionDescriptor & TT_DESCRIPTOR_SECTION_ATTRIBUTE_MASK) != *RegionAttributes) {
|
|
// If the attributes of the section differ from the one targeted then we exit the loop
|
|
break;
|
|
} else {
|
|
*RegionLength = *RegionLength + TT_DESCRIPTOR_SECTION_SIZE;
|
|
}
|
|
} else {
|
|
// If we are on an invalid section then it means it is the end of our section.
|
|
break;
|
|
}
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|