audk/MdePkg/Include/Protocol/Mtftp6.h

819 lines
35 KiB
C

/** @file
UEFI Multicast Trivial File Transfer Protocol v6 Definition, which is built upon
the EFI UDPv6 Protocol and provides basic services for client-side unicast and/or
multicast TFTP operations.
Copyright (c) 2008 - 2011, Intel Corporation. All rights reserved.<BR>
(C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
@par Revision Reference:
This Protocol is introduced in UEFI Specification 2.2
**/
#ifndef __EFI_MTFTP6_PROTOCOL_H__
#define __EFI_MTFTP6_PROTOCOL_H__
#define EFI_MTFTP6_SERVICE_BINDING_PROTOCOL_GUID \
{ \
0xd9760ff3, 0x3cca, 0x4267, {0x80, 0xf9, 0x75, 0x27, 0xfa, 0xfa, 0x42, 0x23 } \
}
#define EFI_MTFTP6_PROTOCOL_GUID \
{ \
0xbf0a78ba, 0xec29, 0x49cf, {0xa1, 0xc9, 0x7a, 0xe5, 0x4e, 0xab, 0x6a, 0x51 } \
}
typedef struct _EFI_MTFTP6_PROTOCOL EFI_MTFTP6_PROTOCOL;
typedef struct _EFI_MTFTP6_TOKEN EFI_MTFTP6_TOKEN;
///
/// MTFTP Packet OpCodes
///@{
#define EFI_MTFTP6_OPCODE_RRQ 1 ///< The MTFTPv6 packet is a read request.
#define EFI_MTFTP6_OPCODE_WRQ 2 ///< The MTFTPv6 packet is a write request.
#define EFI_MTFTP6_OPCODE_DATA 3 ///< The MTFTPv6 packet is a data packet.
#define EFI_MTFTP6_OPCODE_ACK 4 ///< The MTFTPv6 packet is an acknowledgement packet.
#define EFI_MTFTP6_OPCODE_ERROR 5 ///< The MTFTPv6 packet is an error packet.
#define EFI_MTFTP6_OPCODE_OACK 6 ///< The MTFTPv6 packet is an option acknowledgement packet.
#define EFI_MTFTP6_OPCODE_DIR 7 ///< The MTFTPv6 packet is a directory query packet.
#define EFI_MTFTP6_OPCODE_DATA8 8 ///< The MTFTPv6 packet is a data packet with a big block number.
#define EFI_MTFTP6_OPCODE_ACK8 9 ///< The MTFTPv6 packet is an acknowledgement packet with a big block number.
///@}
///
/// MTFTP ERROR Packet ErrorCodes
///@{
///
/// The error code is not defined. See the error message in the packet (if any) for details.
///
#define EFI_MTFTP6_ERRORCODE_NOT_DEFINED 0
///
/// The file was not found.
///
#define EFI_MTFTP6_ERRORCODE_FILE_NOT_FOUND 1
///
/// There was an access violation.
///
#define EFI_MTFTP6_ERRORCODE_ACCESS_VIOLATION 2
///
/// The disk was full or its allocation was exceeded.
///
#define EFI_MTFTP6_ERRORCODE_DISK_FULL 3
///
/// The MTFTPv6 operation was illegal.
///
#define EFI_MTFTP6_ERRORCODE_ILLEGAL_OPERATION 4
///
/// The transfer ID is unknown.
///
#define EFI_MTFTP6_ERRORCODE_UNKNOWN_TRANSFER_ID 5
///
/// The file already exists.
///
#define EFI_MTFTP6_ERRORCODE_FILE_ALREADY_EXISTS 6
///
/// There is no such user.
///
#define EFI_MTFTP6_ERRORCODE_NO_SUCH_USER 7
///
/// The request has been denied due to option negotiation.
///
#define EFI_MTFTP6_ERRORCODE_REQUEST_DENIED 8
///@}
#pragma pack(1)
///
/// EFI_MTFTP6_REQ_HEADER
///
typedef struct {
///
/// For this packet type, OpCode = EFI_MTFTP6_OPCODE_RRQ for a read request
/// or OpCode = EFI_MTFTP6_OPCODE_WRQ for a write request.
///
UINT16 OpCode;
///
/// The file name to be downloaded or uploaded.
///
UINT8 Filename[1];
} EFI_MTFTP6_REQ_HEADER;
///
/// EFI_MTFTP6_OACK_HEADER
///
typedef struct {
///
/// For this packet type, OpCode = EFI_MTFTP6_OPCODE_OACK.
///
UINT16 OpCode;
///
/// The option strings in the option acknowledgement packet.
///
UINT8 Data[1];
} EFI_MTFTP6_OACK_HEADER;
///
/// EFI_MTFTP6_DATA_HEADER
///
typedef struct {
///
/// For this packet type, OpCode = EFI_MTFTP6_OPCODE_DATA.
///
UINT16 OpCode;
///
/// Block number of this data packet.
///
UINT16 Block;
///
/// The content of this data packet.
///
UINT8 Data[1];
} EFI_MTFTP6_DATA_HEADER;
///
/// EFI_MTFTP6_ACK_HEADER
///
typedef struct {
///
/// For this packet type, OpCode = EFI_MTFTP6_OPCODE_ACK.
///
UINT16 OpCode;
///
/// The block number of the data packet that is being acknowledged.
///
UINT16 Block[1];
} EFI_MTFTP6_ACK_HEADER;
///
/// EFI_MTFTP6_DATA8_HEADER
///
typedef struct {
///
/// For this packet type, OpCode = EFI_MTFTP6_OPCODE_DATA8.
///
UINT16 OpCode;
///
/// The block number of data packet.
///
UINT64 Block;
///
/// The content of this data packet.
///
UINT8 Data[1];
} EFI_MTFTP6_DATA8_HEADER;
///
/// EFI_MTFTP6_ACK8_HEADER
///
typedef struct {
///
/// For this packet type, OpCode = EFI_MTFTP6_OPCODE_ACK8.
///
UINT16 OpCode;
///
/// The block number of the data packet that is being acknowledged.
///
UINT64 Block[1];
} EFI_MTFTP6_ACK8_HEADER;
///
/// EFI_MTFTP6_ERROR_HEADER
///
typedef struct {
///
/// For this packet type, OpCode = EFI_MTFTP6_OPCODE_ERROR.
///
UINT16 OpCode;
///
/// The error number as defined by the MTFTPv6 packet error codes.
///
UINT16 ErrorCode;
///
/// Error message string.
///
UINT8 ErrorMessage[1];
} EFI_MTFTP6_ERROR_HEADER;
///
/// EFI_MTFTP6_PACKET
///
typedef union {
UINT16 OpCode; ///< Type of packets as defined by the MTFTPv6 packet opcodes.
EFI_MTFTP6_REQ_HEADER Rrq; ///< Read request packet header.
EFI_MTFTP6_REQ_HEADER Wrq; ///< write request packet header.
EFI_MTFTP6_OACK_HEADER Oack; ///< Option acknowledge packet header.
EFI_MTFTP6_DATA_HEADER Data; ///< Data packet header.
EFI_MTFTP6_ACK_HEADER Ack; ///< Acknowledgement packet header.
EFI_MTFTP6_DATA8_HEADER Data8; ///< Data packet header with big block number.
EFI_MTFTP6_ACK8_HEADER Ack8; ///< Acknowledgement header with big block number.
EFI_MTFTP6_ERROR_HEADER Error; ///< Error packet header.
} EFI_MTFTP6_PACKET;
#pragma pack()
///
/// EFI_MTFTP6_CONFIG_DATA
///
typedef struct {
///
/// The local IP address to use. Set to zero to let the underlying IPv6
/// driver choose a source address. If not zero it must be one of the
/// configured IP addresses in the underlying IPv6 driver.
///
EFI_IPv6_ADDRESS StationIp;
///
/// Local port number. Set to zero to use the automatically assigned port number.
///
UINT16 LocalPort;
///
/// The IP address of the MTFTPv6 server.
///
EFI_IPv6_ADDRESS ServerIp;
///
/// The initial MTFTPv6 server port number. Request packets are
/// sent to this port. This number is almost always 69 and using zero
/// defaults to 69.
UINT16 InitialServerPort;
///
/// The number of times to transmit MTFTPv6 request packets and wait for a response.
///
UINT16 TryCount;
///
/// The number of seconds to wait for a response after sending the MTFTPv6 request packet.
///
UINT16 TimeoutValue;
} EFI_MTFTP6_CONFIG_DATA;
///
/// EFI_MTFTP6_MODE_DATA
///
typedef struct {
///
/// The configuration data of this instance.
///
EFI_MTFTP6_CONFIG_DATA ConfigData;
///
/// The number of option strings in the following SupportedOptions array.
///
UINT8 SupportedOptionCount;
///
/// An array of null-terminated ASCII option strings that are recognized and supported by
/// this EFI MTFTPv6 Protocol driver implementation. The buffer is
/// read only to the caller and the caller should NOT free the buffer.
///
UINT8 **SupportedOptions;
} EFI_MTFTP6_MODE_DATA;
///
/// EFI_MTFTP_OVERRIDE_DATA
///
typedef struct {
///
/// IP address of the MTFTPv6 server. If set to all zero, the value that
/// was set by the EFI_MTFTP6_PROTOCOL.Configure() function will be used.
///
EFI_IPv6_ADDRESS ServerIp;
///
/// MTFTPv6 server port number. If set to zero, it will use the value
/// that was set by the EFI_MTFTP6_PROTOCOL.Configure() function.
///
UINT16 ServerPort;
///
/// Number of times to transmit MTFTPv6 request packets and wait
/// for a response. If set to zero, the value that was set by
/// theEFI_MTFTP6_PROTOCOL.Configure() function will be used.
///
UINT16 TryCount;
///
/// Number of seconds to wait for a response after sending the
/// MTFTPv6 request packet. If set to zero, the value that was set by
/// the EFI_MTFTP6_PROTOCOL.Configure() function will be used.
///
UINT16 TimeoutValue;
} EFI_MTFTP6_OVERRIDE_DATA;
///
/// EFI_MTFTP6_OPTION
///
typedef struct {
UINT8 *OptionStr; ///< Pointer to the null-terminated ASCII MTFTPv6 option string.
UINT8 *ValueStr; ///< Pointer to the null-terminated ASCII MTFTPv6 value string.
} EFI_MTFTP6_OPTION;
/**
EFI_MTFTP6_TIMEOUT_CALLBACK is a callback function that the caller provides to capture the
timeout event in the EFI_MTFTP6_PROTOCOL.ReadFile(), EFI_MTFTP6_PROTOCOL.WriteFile() or
EFI_MTFTP6_PROTOCOL.ReadDirectory() functions.
Whenever a timeout occurs, the EFI MTFTPv6 Protocol driver will call the EFI_MTFTP6_TIMEOUT_CALLBACK
function to notify the caller of the timeout event. Any status code other than EFI_SUCCESS
that is returned from this function will abort the current download process.
@param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
@param[in] Token The token that the caller provided in the EFI_MTFTP6_PROTOCOl.ReadFile(),
WriteFile() or ReadDirectory() function.
@param[in] PacketLen Indicates the length of the packet.
@param[in] Packet Pointer to an MTFTPv6 packet.
@retval EFI_SUCCESS Operation success.
@retval Others Aborts session.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_CHECK_PACKET)(
IN EFI_MTFTP6_PROTOCOL *This,
IN EFI_MTFTP6_TOKEN *Token,
IN UINT16 PacketLen,
IN EFI_MTFTP6_PACKET *Packet
);
/**
EFI_MTFTP6_TIMEOUT_CALLBACK is a callback function that the caller provides to capture the
timeout event in the EFI_MTFTP6_PROTOCOL.ReadFile(), EFI_MTFTP6_PROTOCOL.WriteFile() or
EFI_MTFTP6_PROTOCOL.ReadDirectory() functions.
Whenever a timeout occurs, the EFI MTFTPv6 Protocol driver will call the EFI_MTFTP6_TIMEOUT_CALLBACK
function to notify the caller of the timeout event. Any status code other than EFI_SUCCESS
that is returned from this function will abort the current download process.
@param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
@param[in] Token The token that is provided in the EFI_MTFTP6_PROTOCOL.ReadFile() or
EFI_MTFTP6_PROTOCOL.WriteFile() or EFI_MTFTP6_PROTOCOL.ReadDirectory()
functions by the caller.
@retval EFI_SUCCESS Operation success.
@retval Others Aborts session.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_TIMEOUT_CALLBACK)(
IN EFI_MTFTP6_PROTOCOL *This,
IN EFI_MTFTP6_TOKEN *Token
);
/**
EFI_MTFTP6_PACKET_NEEDED is a callback function that the caller provides to feed data to the
EFI_MTFTP6_PROTOCOL.WriteFile() function.
EFI_MTFTP6_PACKET_NEEDED provides another mechanism for the caller to provide data to upload
other than a static buffer. The EFI MTFTP6 Protocol driver always calls EFI_MTFTP6_PACKET_NEEDED
to get packet data from the caller if no static buffer was given in the initial call to
EFI_MTFTP6_PROTOCOL.WriteFile() function. Setting *Length to zero signals the end of the session.
Returning a status code other than EFI_SUCCESS aborts the session.
@param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
@param[in] Token The token provided in the EFI_MTFTP6_PROTOCOL.WriteFile() by the caller.
@param[in, out] Length Indicates the length of the raw data wanted on input, and the
length the data available on output.
@param[out] Buffer Pointer to the buffer where the data is stored.
@retval EFI_SUCCESS Operation success.
@retval Others Aborts session.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_PACKET_NEEDED)(
IN EFI_MTFTP6_PROTOCOL *This,
IN EFI_MTFTP6_TOKEN *Token,
IN OUT UINT16 *Length,
OUT VOID **Buffer
);
struct _EFI_MTFTP6_TOKEN {
///
/// The status that is returned to the caller at the end of the operation
/// to indicate whether this operation completed successfully.
/// Defined Status values are listed below.
///
EFI_STATUS Status;
///
/// The event that will be signaled when the operation completes. If
/// set to NULL, the corresponding function will wait until the read or
/// write operation finishes. The type of Event must be EVT_NOTIFY_SIGNAL.
///
EFI_EVENT Event;
///
/// If not NULL, the data that will be used to override the existing
/// configure data.
///
EFI_MTFTP6_OVERRIDE_DATA *OverrideData;
///
/// Pointer to the null-terminated ASCII file name string.
///
UINT8 *Filename;
///
/// Pointer to the null-terminated ASCII mode string. If NULL, octet is used.
///
UINT8 *ModeStr;
///
/// Number of option/value string pairs.
///
UINT32 OptionCount;
///
/// Pointer to an array of option/value string pairs. Ignored if
/// OptionCount is zero. Both a remote server and this driver
/// implementation should support these options. If one or more
/// options are unrecognized by this implementation, it is sent to the
/// remote server without being changed.
///
EFI_MTFTP6_OPTION *OptionList;
///
/// On input, the size, in bytes, of Buffer. On output, the number
/// of bytes transferred.
///
UINT64 BufferSize;
///
/// Pointer to the data buffer. Data that is downloaded from the
/// MTFTPv6 server is stored here. Data that is uploaded to the
/// MTFTPv6 server is read from here. Ignored if BufferSize is zero.
///
VOID *Buffer;
///
/// Pointer to the context that will be used by CheckPacket,
/// TimeoutCallback and PacketNeeded.
///
VOID *Context;
///
/// Pointer to the callback function to check the contents of the
/// received packet.
///
EFI_MTFTP6_CHECK_PACKET CheckPacket;
///
/// Pointer to the function to be called when a timeout occurs.
///
EFI_MTFTP6_TIMEOUT_CALLBACK TimeoutCallback;
///
/// Pointer to the function to provide the needed packet contents.
/// Only used in WriteFile() operation.
///
EFI_MTFTP6_PACKET_NEEDED PacketNeeded;
};
/**
Read the current operational settings.
The GetModeData() function reads the current operational settings of this EFI MTFTPv6
Protocol driver instance.
@param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
@param[out] ModeData The buffer in which the EFI MTFTPv6 Protocol driver mode
data is returned.
@retval EFI_SUCCESS The configuration data was successfully returned.
@retval EFI_OUT_OF_RESOURCES The required mode data could not be allocated.
@retval EFI_INVALID_PARAMETER This is NULL or ModeData is NULL.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_GET_MODE_DATA)(
IN EFI_MTFTP6_PROTOCOL *This,
OUT EFI_MTFTP6_MODE_DATA *ModeData
);
/**
Initializes, changes, or resets the default operational setting for this EFI MTFTPv6
Protocol driver instance.
The Configure() function is used to set and change the configuration data for this EFI
MTFTPv6 Protocol driver instance. The configuration data can be reset to startup defaults by calling
Configure() with MtftpConfigData set to NULL. Whenever the instance is reset, any
pending operation is aborted. By changing the EFI MTFTPv6 Protocol driver instance configuration
data, the client can connect to different MTFTPv6 servers. The configuration parameters in
MtftpConfigData are used as the default parameters in later MTFTPv6 operations and can be
overridden in later operations.
@param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
@param[in] MtftpConfigData Pointer to the configuration data structure.
@retval EFI_SUCCESS The EFI MTFTPv6 Protocol instance was configured successfully.
@retval EFI_INVALID_PARAMETER One or more following conditions are TRUE:
- This is NULL.
- MtftpConfigData.StationIp is neither zero nor one
of the configured IP addresses in the underlying IPv6 driver.
- MtftpCofigData.ServerIp is not a valid IPv6 unicast address.
@retval EFI_ACCESS_DENIED - The configuration could not be changed at this time because there
is some MTFTP background operation in progress.
- MtftpCofigData.LocalPort is already in use.
@retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for use.
@retval EFI_OUT_OF_RESOURCES The EFI MTFTPv6 Protocol driver instance data could not be
allocated.
@retval EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI
MTFTPv6 Protocol driver instance is not configured.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_CONFIGURE)(
IN EFI_MTFTP6_PROTOCOL *This,
IN EFI_MTFTP6_CONFIG_DATA *MtftpConfigData OPTIONAL
);
/**
Get information about a file from an MTFTPv6 server.
The GetInfo() function assembles an MTFTPv6 request packet with options, sends it to the
MTFTPv6 server, and may return an MTFTPv6 OACK, MTFTPv6 ERROR, or ICMP ERROR packet.
Retries occur only if no response packets are received from the MTFTPv6 server before the
timeout expires.
@param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
@param[in] OverrideData Data that is used to override the existing parameters. If NULL, the
default parameters that were set in the EFI_MTFTP6_PROTOCOL.Configure()
function are used.
@param[in] Filename Pointer to null-terminated ASCII file name string.
@param[in] ModeStr Pointer to null-terminated ASCII mode string. If NULL, octet will be used
@param[in] OptionCount Number of option/value string pairs in OptionList.
@param[in] OptionList Pointer to array of option/value string pairs. Ignored if
OptionCount is zero.
@param[out] PacketLength The number of bytes in the returned packet.
@param[out] Packet The pointer to the received packet. This buffer must be freed by
the caller.
@retval EFI_SUCCESS An MTFTPv6 OACK packet was received and is in the Packet.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
- This is NULL.
- Filename is NULL
- OptionCount is not zero and OptionList is NULL.
- One or more options in OptionList have wrong format.
- PacketLength is NULL.
- OverrideData.ServerIp is not valid unicast IPv6 addresses.
@retval EFI_UNSUPPORTED One or more options in the OptionList are unsupported by
this implementation.
@retval EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.
@retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for use.
@retval EFI_ACCESS_DENIED The previous operation has not completed yet.
@retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
@retval EFI_TFTP_ERROR An MTFTPv6 ERROR packet was received and is in the Packet.
@retval EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received and the Packet is set to NULL.
@retval EFI_HOST_UNREACHABLE An ICMP host unreachable error packet was received and the Packet is set to NULL.
@retval EFI_PROTOCOL_UNREACHABLE An ICMP protocol unreachable error packet was received and the Packet is set to NULL.
@retval EFI_PORT_UNREACHABLE An ICMP port unreachable error packet was received and the Packet is set to NULL.
@retval EFI_ICMP_ERROR Some other ICMP ERROR packet was received and the Packet is set to NULL.
@retval EFI_PROTOCOL_ERROR An unexpected MTFTPv6 packet was received and is in the Packet.
@retval EFI_TIMEOUT No responses were received from the MTFTPv6 server.
@retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
@retval EFI_NO_MEDIA There was a media error.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_GET_INFO)(
IN EFI_MTFTP6_PROTOCOL *This,
IN EFI_MTFTP6_OVERRIDE_DATA *OverrideData OPTIONAL,
IN UINT8 *Filename,
IN UINT8 *ModeStr OPTIONAL,
IN UINT8 OptionCount,
IN EFI_MTFTP6_OPTION *OptionList OPTIONAL,
OUT UINT32 *PacketLength,
OUT EFI_MTFTP6_PACKET **Packet OPTIONAL
);
/**
Parse the options in an MTFTPv6 OACK packet.
The ParseOptions() function parses the option fields in an MTFTPv6 OACK packet and
returns the number of options that were found and optionally a list of pointers to
the options in the packet.
If one or more of the option fields are not valid, then EFI_PROTOCOL_ERROR is returned
and *OptionCount and *OptionList stop at the last valid option.
@param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
@param[in] PacketLen Length of the OACK packet to be parsed.
@param[in] Packet Pointer to the OACK packet to be parsed.
@param[out] OptionCount Pointer to the number of options in the following OptionList.
@param[out] OptionList Pointer to EFI_MTFTP6_OPTION storage. Each pointer in the
OptionList points to the corresponding MTFTP option buffer
in the Packet. Call the EFI Boot Service FreePool() to
release the OptionList if the options in this OptionList
are not needed any more.
@retval EFI_SUCCESS The OACK packet was valid and the OptionCount and
OptionList parameters have been updated.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
- PacketLen is 0.
- Packet is NULL or Packet is not a valid MTFTPv6 packet.
- OptionCount is NULL.
@retval EFI_NOT_FOUND No options were found in the OACK packet.
@retval EFI_OUT_OF_RESOURCES Storage for the OptionList array can not be allocated.
@retval EFI_PROTOCOL_ERROR One or more of the option fields is invalid.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_PARSE_OPTIONS)(
IN EFI_MTFTP6_PROTOCOL *This,
IN UINT32 PacketLen,
IN EFI_MTFTP6_PACKET *Packet,
OUT UINT32 *OptionCount,
OUT EFI_MTFTP6_OPTION **OptionList OPTIONAL
);
/**
Download a file from an MTFTPv6 server.
The ReadFile() function is used to initialize and start an MTFTPv6 download process and
optionally wait for completion. When the download operation completes, whether successfully or
not, the Token.Status field is updated by the EFI MTFTPv6 Protocol driver and then
Token.Event is signaled if it is not NULL.
Data can be downloaded from the MTFTPv6 server into either of the following locations:
- A fixed buffer that is pointed to by Token.Buffer
- A download service function that is pointed to by Token.CheckPacket
If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket
will be called first. If the call is successful, the packet will be stored in Token.Buffer.
@param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
@param[in] Token Pointer to the token structure to provide the parameters that are
used in this operation.
@retval EFI_SUCCESS The data file has been transferred successfully.
@retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
@retval EFI_BUFFER_TOO_SMALL BufferSize is not zero but not large enough to hold the
downloaded data in downloading process.
@retval EFI_ABORTED Current operation is aborted by user.
@retval EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received.
@retval EFI_HOST_UNREACHABLE An ICMP host unreachable error packet was received.
@retval EFI_PROTOCOL_UNREACHABLE An ICMP protocol unreachable error packet was received.
@retval EFI_PORT_UNREACHABLE An ICMP port unreachable error packet was received.
@retval EFI_ICMP_ERROR An ICMP ERROR packet was received.
@retval EFI_TIMEOUT No responses were received from the MTFTPv6 server.
@retval EFI_TFTP_ERROR An MTFTPv6 ERROR packet was received.
@retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
@retval EFI_NO_MEDIA There was a media error.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_READ_FILE)(
IN EFI_MTFTP6_PROTOCOL *This,
IN EFI_MTFTP6_TOKEN *Token
);
/**
Send a file to an MTFTPv6 server. May be unsupported in some implementations.
The WriteFile() function is used to initialize an uploading operation with the given option list
and optionally wait for completion. If one or more of the options is not supported by the server, the
unsupported options are ignored and a standard TFTP process starts instead. When the upload
process completes, whether successfully or not, Token.Event is signaled, and the EFI MTFTPv6
Protocol driver updates Token.Status.
The caller can supply the data to be uploaded in the following two modes:
- Through the user-provided buffer
- Through a callback function
With the user-provided buffer, the Token.BufferSize field indicates the length of the buffer,
and the driver will upload the data in the buffer. With an EFI_MTFTP6_PACKET_NEEDED
callback function, the driver will call this callback function to get more data from the user to upload.
See the definition of EFI_MTFTP6_PACKET_NEEDED for more information. These two modes
cannot be used at the same time. The callback function will be ignored if the user provides the
buffer.
@param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
@param[in] Token Pointer to the token structure to provide the parameters that are
used in this operation.
@retval EFI_SUCCESS The upload session has started.
@retval EFI_UNSUPPORTED The operation is not supported by this implementation.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
- This is NULL.
- Token is NULL.
- Token.Filename is NULL.
- Token.OptionCount is not zero and Token.OptionList is NULL.
- One or more options in Token.OptionList have wrong format.
- Token.Buffer and Token.PacketNeeded are both NULL.
- Token.OverrideData.ServerIp is not valid unicast IPv6 addresses.
@retval EFI_UNSUPPORTED One or more options in the Token.OptionList are not
supported by this implementation.
@retval EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.
@retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for use.
@retval EFI_ALREADY_STARTED This Token is already being used in another MTFTPv6 session.
@retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
@retval EFI_ACCESS_DENIED The previous operation has not completed yet.
@retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_WRITE_FILE)(
IN EFI_MTFTP6_PROTOCOL *This,
IN EFI_MTFTP6_TOKEN *Token
);
/**
Download a data file directory from an MTFTPv6 server. May be unsupported in some implementations.
The ReadDirectory() function is used to return a list of files on the MTFTPv6 server that are
logically (or operationally) related to Token.Filename. The directory request packet that is sent
to the server is built with the option list that was provided by caller, if present.
The file information that the server returns is put into either of the following locations:
- A fixed buffer that is pointed to by Token.Buffer
- A download service function that is pointed to by Token.CheckPacket
If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket
will be called first. If the call is successful, the packet will be stored in Token.Buffer.
The returned directory listing in the Token.Buffer or EFI_MTFTP6_PACKET consists of a list
of two or three variable-length ASCII strings, each terminated by a null character, for each file in the
directory. If the multicast option is involved, the first field of each directory entry is the static
multicast IP address and UDP port number that is associated with the file name. The format of the
field is ip:ip:ip:ip:port. If the multicast option is not involved, this field and its terminating
null character are not present.
The next field of each directory entry is the file name and the last field is the file information string.
The information string contains the file size and the create/modify timestamp. The format of the
information string is filesize yyyy-mm-dd hh:mm:ss:ffff. The timestamp is
Coordinated Universal Time (UTC; also known as Greenwich Mean Time [GMT]).
@param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
@param[in] Token Pointer to the token structure to provide the parameters that are
used in this operation.
@retval EFI_SUCCESS The MTFTPv6 related file "directory" has been downloaded.
@retval EFI_UNSUPPORTED The EFI MTFTPv6 Protocol driver does not support this function.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
- This is NULL.
- Token is NULL.
- Token.Filename is NULL.
- Token.OptionCount is not zero and Token.OptionList is NULL.
- One or more options in Token.OptionList have wrong format.
- Token.Buffer and Token.CheckPacket are both NULL.
- Token.OverrideData.ServerIp is not valid unicast IPv6 addresses.
@retval EFI_UNSUPPORTED One or more options in the Token.OptionList are not
supported by this implementation.
@retval EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.
@retval EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for use.
@retval EFI_ALREADY_STARTED This Token is already being used in another MTFTPv6 session.
@retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
@retval EFI_ACCESS_DENIED The previous operation has not completed yet.
@retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_READ_DIRECTORY)(
IN EFI_MTFTP6_PROTOCOL *This,
IN EFI_MTFTP6_TOKEN *Token
);
/**
Polls for incoming data packets and processes outgoing data packets.
The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.
In some systems, the periodic timer event in the managed network driver may not poll the
underlying communications device fast enough to transmit and/or receive all data packets without
missing incoming packets or dropping outgoing packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function more often.
@param[in] This Pointer to the EFI_MTFTP6_PROTOCOL instance.
@retval EFI_SUCCESS Incoming or outgoing data was processed.
@retval EFI_NOT_STARTED This EFI MTFTPv6 Protocol instance has not been started.
@retval EFI_INVALID_PARAMETER This is NULL.
@retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
@retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_POLL)(
IN EFI_MTFTP6_PROTOCOL *This
);
///
/// The EFI_MTFTP6_PROTOCOL is designed to be used by UEFI drivers and applications to transmit
/// and receive data files. The EFI MTFTPv6 Protocol driver uses the underlying EFI UDPv6 Protocol
/// driver and EFI IPv6 Protocol driver.
///
struct _EFI_MTFTP6_PROTOCOL {
EFI_MTFTP6_GET_MODE_DATA GetModeData;
EFI_MTFTP6_CONFIGURE Configure;
EFI_MTFTP6_GET_INFO GetInfo;
EFI_MTFTP6_PARSE_OPTIONS ParseOptions;
EFI_MTFTP6_READ_FILE ReadFile;
EFI_MTFTP6_WRITE_FILE WriteFile;
EFI_MTFTP6_READ_DIRECTORY ReadDirectory;
EFI_MTFTP6_POLL Poll;
};
extern EFI_GUID gEfiMtftp6ServiceBindingProtocolGuid;
extern EFI_GUID gEfiMtftp6ProtocolGuid;
#endif