audk/MdeModulePkg/Include/Library/NetLib.h

1374 lines
37 KiB
C

/** @file
This library provides basic functiosn for UEFI network stack.
Copyright (c) 2005 - 2008, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _NET_LIB_H_
#define _NET_LIB_H_
#include <PiDxe.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Protocol/DriverBinding.h>
#include <Protocol/ComponentName.h>
#include <Protocol/DriverConfiguration.h>
#include <Protocol/DriverDiagnostics.h>
#include <Protocol/Dpc.h>
typedef UINT32 IP4_ADDR;
typedef UINT32 TCP_SEQNO;
typedef UINT16 TCP_PORTNO;
enum {
NET_ETHER_ADDR_LEN = 6,
NET_IFTYPE_ETHERNET = 0x01,
EFI_IP_PROTO_UDP = 0x11,
EFI_IP_PROTO_TCP = 0x06,
EFI_IP_PROTO_ICMP = 0x01,
//
// The address classfication
//
IP4_ADDR_CLASSA = 1,
IP4_ADDR_CLASSB,
IP4_ADDR_CLASSC,
IP4_ADDR_CLASSD,
IP4_ADDR_CLASSE,
IP4_MASK_NUM = 33,
};
#pragma pack(1)
//
// Ethernet head definition
//
typedef struct {
UINT8 DstMac [NET_ETHER_ADDR_LEN];
UINT8 SrcMac [NET_ETHER_ADDR_LEN];
UINT16 EtherType;
} ETHER_HEAD;
//
// The EFI_IP4_HEADER is hard to use because the source and
// destination address are defined as EFI_IPv4_ADDRESS, which
// is a structure. Two structures can't be compared or masked
// directly. This is why there is an internal representation.
//
typedef struct {
UINT8 HeadLen : 4;
UINT8 Ver : 4;
UINT8 Tos;
UINT16 TotalLen;
UINT16 Id;
UINT16 Fragment;
UINT8 Ttl;
UINT8 Protocol;
UINT16 Checksum;
IP4_ADDR Src;
IP4_ADDR Dst;
} IP4_HEAD;
//
// ICMP head definition. ICMP message is categoried as either an error
// message or query message. Two message types have their own head format.
//
typedef struct {
UINT8 Type;
UINT8 Code;
UINT16 Checksum;
} IP4_ICMP_HEAD;
typedef struct {
IP4_ICMP_HEAD Head;
UINT32 Fourth; // 4th filed of the head, it depends on Type.
IP4_HEAD IpHead;
} IP4_ICMP_ERROR_HEAD;
typedef struct {
IP4_ICMP_HEAD Head;
UINT16 Id;
UINT16 Seq;
} IP4_ICMP_QUERY_HEAD;
//
// UDP header definition
//
typedef struct {
UINT16 SrcPort;
UINT16 DstPort;
UINT16 Length;
UINT16 Checksum;
} EFI_UDP4_HEADER;
//
// TCP header definition
//
typedef struct {
TCP_PORTNO SrcPort;
TCP_PORTNO DstPort;
TCP_SEQNO Seq;
TCP_SEQNO Ack;
UINT8 Res : 4;
UINT8 HeadLen : 4;
UINT8 Flag;
UINT16 Wnd;
UINT16 Checksum;
UINT16 Urg;
} TCP_HEAD;
#pragma pack()
#define NET_MAC_EQUAL(pMac1, pMac2, Len) \
(CompareMem ((pMac1), (pMac2), Len) == 0)
#define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
(((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
#define NTOHL(x) (UINT32)((((UINT32) (x) & 0xff) << 24) | \
(((UINT32) (x) & 0xff00) << 8) | \
(((UINT32) (x) & 0xff0000) >> 8) | \
(((UINT32) (x) & 0xff000000) >> 24))
#define HTONL(x) NTOHL(x)
#define NTOHS(x) (UINT16)((((UINT16) (x) & 0xff) << 8) | \
(((UINT16) (x) & 0xff00) >> 8))
#define HTONS(x) NTOHS(x)
//
// Test the IP's attribute, All the IPs are in host byte order.
//
#define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
#define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
#define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
#define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)
//
// Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
//
#define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
#define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
#define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
/**
Return the length of the mask. If the mask is invalid,
return the invalid length 33, which is IP4_MASK_NUM.
NetMask is in the host byte order.
@param NetMask The netmask to get the length from
@return The length of the netmask, IP4_MASK_NUM if the mask isn't
@return supported.
**/
INTN
EFIAPI
NetGetMaskLength (
IN IP4_ADDR Mask
);
/**
Return the class of the address, such as class a, b, c.
Addr is in host byte order.
@param Addr The address to get the class from
@return IP address class, such as IP4_ADDR_CLASSA
**/
INTN
EFIAPI
NetGetIpClass (
IN IP4_ADDR Addr
);
/**
Check whether the IP is a valid unicast address according to
the netmask. If NetMask is zero, use the IP address's class to
get the default mask.
@param Ip The IP to check againist
@param NetMask The mask of the IP
@return TRUE if IP is a valid unicast address on the network, otherwise FALSE
**/
BOOLEAN
Ip4IsUnicast (
IN IP4_ADDR Ip,
IN IP4_ADDR NetMask
);
extern IP4_ADDR mIp4AllMasks [IP4_MASK_NUM];
extern EFI_IPv4_ADDRESS mZeroIp4Addr;
#define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
#define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
#define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
#define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
#define TICKS_PER_MS 10000U
#define TICKS_PER_SECOND 10000000U
#define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
/**
Extract a UINT32 from a byte stream, then convert it to host
byte order. Use this function to avoid alignment error.
@param Buf The buffer to extract the UINT32.
@return The UINT32 extracted.
**/
UINT32
EFIAPI
NetGetUint32 (
IN UINT8 *Buf
);
/**
Put a UINT32 to the byte stream. Convert it from host byte order
to network byte order before putting.
@param Buf The buffer to put the UINT32
@param Data The data to put
@return None
**/
VOID
EFIAPI
NetPutUint32 (
IN UINT8 *Buf,
IN UINT32 Data
);
/**
Initialize a random seed using current time.
None
@return The random seed initialized with current time.
**/
UINT32
EFIAPI
NetRandomInitSeed (
VOID
);
#define NET_LIST_USER_STRUCT(Entry, Type, Field) \
_CR(Entry, Type, Field)
#define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
CR(Entry, Type, Field, Sig)
//
// Iterate through the doule linked list. It is NOT delete safe
//
#define NET_LIST_FOR_EACH(Entry, ListHead) \
for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
//
// Iterate through the doule linked list. This is delete-safe.
// Don't touch NextEntry. Also, don't use this macro if list
// entries other than the Entry may be deleted when processing
// the current Entry.
//
#define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
Entry != (ListHead); \
Entry = NextEntry, NextEntry = Entry->ForwardLink \
)
//
// Make sure the list isn't empty before get the frist/last record.
//
#define NET_LIST_HEAD(ListHead, Type, Field) \
NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
#define NET_LIST_TAIL(ListHead, Type, Field) \
NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
/**
Remove the first entry on the list
@param Head The list header
@return The entry that is removed from the list, NULL if the list is empty.
**/
LIST_ENTRY *
EFIAPI
NetListRemoveHead (
LIST_ENTRY *Head
);
/**
Remove the last entry on the list
@param Head The list head
@return The entry that is removed from the list, NULL if the list is empty.
**/
LIST_ENTRY *
EFIAPI
NetListRemoveTail (
LIST_ENTRY *Head
);
/**
Insert the NewEntry after the PrevEntry
@param PrevEntry The previous entry to insert after
@param NewEntry The new entry to insert
@return None
**/
VOID
EFIAPI
NetListInsertAfter (
IN LIST_ENTRY *PrevEntry,
IN LIST_ENTRY *NewEntry
);
/**
Insert the NewEntry before the PostEntry
@param PostEntry The entry to insert before
@param NewEntry The new entry to insert
@return None
**/
VOID
EFIAPI
NetListInsertBefore (
IN LIST_ENTRY *PostEntry,
IN LIST_ENTRY *NewEntry
);
//
// Object container: EFI network stack spec defines various kinds of
// tokens. The drivers can share code to manage those objects.
//
typedef struct {
LIST_ENTRY Link;
VOID *Key;
VOID *Value;
} NET_MAP_ITEM;
typedef struct {
LIST_ENTRY Used;
LIST_ENTRY Recycled;
UINTN Count;
} NET_MAP;
#define NET_MAP_INCREAMENT 64
/**
Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
@param Map The netmap to initialize
@return None
**/
VOID
EFIAPI
NetMapInit (
IN NET_MAP *Map
);
/**
To clean up the netmap, that is, release allocated memories.
@param Map The netmap to clean up.
@return None
**/
VOID
EFIAPI
NetMapClean (
IN NET_MAP *Map
);
/**
Test whether the netmap is empty
@param Map The net map to test
@return TRUE if the netmap is empty, otherwise FALSE.
**/
BOOLEAN
EFIAPI
NetMapIsEmpty (
IN NET_MAP *Map
);
/**
Return the number of the <Key, Value> pairs in the netmap.
@param Map The netmap to get the entry number
@return The entry number in the netmap.
**/
UINTN
EFIAPI
NetMapGetCount (
IN NET_MAP *Map
);
/**
Allocate an item to save the <Key, Value> pair to the head of the netmap.
@param Map The netmap to insert into
@param Key The user's key
@param Value The user's value for the key
@retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item
@retval EFI_SUCCESS The item is inserted to the head
**/
EFI_STATUS
EFIAPI
NetMapInsertHead (
IN NET_MAP *Map,
IN VOID *Key,
IN VOID *Value OPTIONAL
);
/**
Allocate an item to save the <Key, Value> pair to the tail of the netmap.
@param Map The netmap to insert into
@param Key The user's key
@param Value The user's value for the key
@retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item
@retval EFI_SUCCESS The item is inserted to the tail
**/
EFI_STATUS
EFIAPI
NetMapInsertTail (
IN NET_MAP *Map,
IN VOID *Key,
IN VOID *Value OPTIONAL
);
/**
Find the key in the netmap
@param Map The netmap to search within
@param Key The key to search
@return The point to the item contains the Key, or NULL if Key isn't in the map.
**/
NET_MAP_ITEM *
EFIAPI
NetMapFindKey (
IN NET_MAP *Map,
IN VOID *Key
);
/**
Remove the item from the netmap
@param Map The netmap to remove the item from
@param Item The item to remove
@param Value The variable to receive the value if not NULL
@return The key of the removed item.
**/
VOID *
EFIAPI
NetMapRemoveItem (
IN NET_MAP *Map,
IN NET_MAP_ITEM *Item,
OUT VOID **Value OPTIONAL
);
/**
Remove the first entry on the netmap
@param Map The netmap to remove the head from
@param Value The variable to receive the value if not NULL
@return The key of the item removed
**/
VOID *
EFIAPI
NetMapRemoveHead (
IN NET_MAP *Map,
OUT VOID **Value OPTIONAL
);
/**
Remove the last entry on the netmap
@param Map The netmap to remove the tail from
@param Value The variable to receive the value if not NULL
@return The key of the item removed
**/
VOID *
EFIAPI
NetMapRemoveTail (
IN NET_MAP *Map,
OUT VOID **Value OPTIONAL
);
typedef
EFI_STATUS
(*NET_MAP_CALLBACK) (
IN NET_MAP *Map,
IN NET_MAP_ITEM *Item,
IN VOID *Arg
);
/**
Iterate through the netmap and call CallBack for each item. It will
contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
from the loop. It returns the CallBack's last return value. This
function is delete safe for the current item.
@param Map The Map to iterate through
@param CallBack The callback function to call for each item.
@param Arg The opaque parameter to the callback
@return It returns the CallBack's last return value.
**/
EFI_STATUS
EFIAPI
NetMapIterate (
IN NET_MAP *Map,
IN NET_MAP_CALLBACK CallBack,
IN VOID *Arg OPTIONAL
);
//
// Helper functions to implement driver binding and service binding protocols.
//
/**
Create a child of the service that is identified by ServiceBindingGuid.
@param Controller The controller which has the service installed.
@param Image The image handle used to open service.
@param ServiceBindingGuid The service's Guid.
@param ChildHandle The handle to receive the create child
@retval EFI_SUCCESS The child is successfully created.
@retval Others Failed to create the child.
**/
EFI_STATUS
EFIAPI
NetLibCreateServiceChild (
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ImageHandle,
IN EFI_GUID *ServiceBindingGuid,
OUT EFI_HANDLE *ChildHandle
);
/**
Destory a child of the service that is identified by ServiceBindingGuid.
@param Controller The controller which has the service installed.
@param Image The image handle used to open service.
@param ServiceBindingGuid The service's Guid.
@param ChildHandle The child to destory
@retval EFI_SUCCESS The child is successfully destoried.
@retval Others Failed to destory the child.
**/
EFI_STATUS
EFIAPI
NetLibDestroyServiceChild (
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ImageHandle,
IN EFI_GUID *ServiceBindingGuid,
IN EFI_HANDLE ChildHandle
);
/**
Convert the mac address of the simple network protocol installed on
SnpHandle to a unicode string. Callers are responsible for freeing the
string storage.
@param SnpHandle The handle where the simple network protocol is
installed on.
@param ImageHandle The image handle used to act as the agent handle to
get the simple network protocol.
@param MacString The pointer to store the address of the string
representation of the mac address.
@retval EFI_OUT_OF_RESOURCES There are not enough memory resource.
@retval other Failed to open the simple network protocol.
**/
EFI_STATUS
EFIAPI
NetLibGetMacString (
IN EFI_HANDLE SnpHandle,
IN EFI_HANDLE ImageHandle,
IN OUT CHAR16 **MacString
);
/**
Create an IPv4 device path node.
@param Node Pointer to the IPv4 device path node.
@param Controller The handle where the NIC IP4 config protocol resides.
@param LocalIp The local IPv4 address.
@param LocalPort The local port.
@param RemoteIp The remote IPv4 address.
@param RemotePort The remote port.
@param Protocol The protocol type in the IP header.
@param UseDefaultAddress Whether this instance is using default address or not.
@retval None
**/
VOID
EFIAPI
NetLibCreateIPv4DPathNode (
IN OUT IPv4_DEVICE_PATH *Node,
IN EFI_HANDLE Controller,
IN IP4_ADDR LocalIp,
IN UINT16 LocalPort,
IN IP4_ADDR RemoteIp,
IN UINT16 RemotePort,
IN UINT16 Protocol,
IN BOOLEAN UseDefaultAddress
);
/**
Find the UNDI/SNP handle from controller and protocol GUID.
For example, IP will open a MNP child to transmit/receive
packets, when MNP is stopped, IP should also be stopped. IP
needs to find its own private data which is related the IP's
service binding instance that is install on UNDI/SNP handle.
Now, the controller is either a MNP or ARP child handle. But
IP opens these handle BY_DRIVER, use that info, we can get the
UNDI/SNP handle.
@param Controller Then protocol handle to check
@param ProtocolGuid The protocol that is related with the handle.
@return The UNDI/SNP handle or NULL.
**/
EFI_HANDLE
EFIAPI
NetLibGetNicHandle (
IN EFI_HANDLE Controller,
IN EFI_GUID *ProtocolGuid
);
/**
Add a Deferred Procedure Call to the end of the DPC queue.
@DpcTpl The EFI_TPL that the DPC should be invoked.
@DpcProcedure Pointer to the DPC's function.
@DpcContext Pointer to the DPC's context. Passed to DpcProcedure
when DpcProcedure is invoked.
@retval EFI_SUCCESS The DPC was queued.
@retval EFI_INVALID_PARAMETER DpcTpl is not a valid EFI_TPL.
DpcProcedure is NULL.
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to
add the DPC to the queue.
**/
EFI_STATUS
EFIAPI
NetLibQueueDpc (
IN EFI_TPL DpcTpl,
IN EFI_DPC_PROCEDURE DpcProcedure,
IN VOID *DpcContext OPTIONAL
);
/**
Add a Deferred Procedure Call to the end of the DPC queue.
@retval EFI_SUCCESS One or more DPCs were invoked.
@retval EFI_NOT_FOUND No DPCs were invoked.
**/
EFI_STATUS
EFIAPI
NetLibDispatchDpc (
VOID
);
/**
The constructor function caches the pointer to DPC protocol.
The constructor function locates DPC protocol from protocol database.
It will ASSERT() if that operation fails and it will always return EFI_SUCCESS.
@param ImageHandle The firmware allocated handle for the EFI image.
@param SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The constructor always returns EFI_SUCCESS.
**/
EFI_STATUS
EFIAPI
NetLibDefaultUnload (
IN EFI_HANDLE ImageHandle
);
enum {
//
//Various signatures
//
NET_BUF_SIGNATURE = EFI_SIGNATURE_32 ('n', 'b', 'u', 'f'),
NET_VECTOR_SIGNATURE = EFI_SIGNATURE_32 ('n', 'v', 'e', 'c'),
NET_QUE_SIGNATURE = EFI_SIGNATURE_32 ('n', 'b', 'q', 'u'),
NET_PROTO_DATA = 64, // Opaque buffer for protocols
NET_BUF_HEAD = 1, // Trim or allocate space from head
NET_BUF_TAIL = 0, // Trim or allocate space from tail
NET_VECTOR_OWN_FIRST = 0x01, // We allocated the 1st block in the vector
};
#define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
#define NET_SWAP_SHORT(Value) \
((((Value) & 0xff) << 8) | (((Value) >> 8) & 0xff))
//
// Single memory block in the vector.
//
typedef struct {
UINT32 Len; // The block's length
UINT8 *Bulk; // The block's Data
} NET_BLOCK;
typedef VOID (*NET_VECTOR_EXT_FREE) (VOID *Arg);
//
//NET_VECTOR contains several blocks to hold all packet's
//fragments and other house-keeping stuff for sharing. It
//doesn't specify the where actual packet fragment begins.
//
typedef struct {
UINT32 Signature;
INTN RefCnt; // Reference count to share NET_VECTOR.
NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
VOID *Arg; // opeque argument to Free
UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
UINT32 Len; // Total length of the assocated BLOCKs
UINT32 BlockNum;
NET_BLOCK Block[1];
} NET_VECTOR;
//
//NET_BLOCK_OP operate on the NET_BLOCK, It specifies
//where the actual fragment begins and where it ends
//
typedef struct {
UINT8 *BlockHead; // Block's head, or the smallest valid Head
UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
UINT8 *Head; // 1st byte of the data in the block
UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
UINT32 Size; // The size of the data
} NET_BLOCK_OP;
//
//NET_BUF is the buffer manage structure used by the
//network stack. Every network packet may be fragmented,
//and contains multiple fragments. The Vector points to
//memory blocks used by the each fragment, and BlockOp
//specifies where each fragment begins and ends.
//
//It also contains a opaque area for protocol to store
//per-packet informations. Protocol must be caution not
//to overwrite the members after that.
//
typedef struct {
UINT32 Signature;
INTN RefCnt;
LIST_ENTRY List; // The List this NET_BUF is on
IP4_HEAD *Ip; // Network layer header, for fast access
TCP_HEAD *Tcp; // Transport layer header, for fast access
UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
NET_VECTOR *Vector; // The vector containing the packet
UINT32 BlockOpNum; // Total number of BlockOp in the buffer
UINT32 TotalSize; // Total size of the actual packet
NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
} NET_BUF;
//
//A queue of NET_BUFs, It is just a thin extension of
//NET_BUF functions.
//
typedef struct {
UINT32 Signature;
INTN RefCnt;
LIST_ENTRY List; // The List this buffer queue is on
LIST_ENTRY BufList; // list of queued buffers
UINT32 BufSize; // total length of DATA in the buffers
UINT32 BufNum; // total number of buffers on the chain
} NET_BUF_QUEUE;
//
// Pseudo header for TCP and UDP checksum
//
#pragma pack(1)
typedef struct {
IP4_ADDR SrcIp;
IP4_ADDR DstIp;
UINT8 Reserved;
UINT8 Protocol;
UINT16 Len;
} NET_PSEUDO_HDR;
#pragma pack()
//
// The fragment entry table used in network interfaces. This is
// the same as NET_BLOCK now. Use two different to distinguish
// the two in case that NET_BLOCK be enhanced later.
//
typedef struct {
UINT32 Len;
UINT8 *Bulk;
} NET_FRAGMENT;
#define NET_GET_REF(PData) ((PData)->RefCnt++)
#define NET_PUT_REF(PData) ((PData)->RefCnt--)
#define NETBUF_FROM_PROTODATA(Info) _CR((Info), NET_BUF, ProtoData)
#define NET_BUF_SHARED(Buf) \
(((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
#define NET_VECTOR_SIZE(BlockNum) \
(sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
#define NET_BUF_SIZE(BlockOpNum) \
(sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
#define NET_HEADSPACE(BlockOp) \
(UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
#define NET_TAILSPACE(BlockOp) \
(UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
/**
Allocate a single block NET_BUF. Upon allocation, all the
free space is in the tail room.
@param Len The length of the block.
@retval * Pointer to the allocated NET_BUF. If NULL the
allocation failed due to resource limit.
**/
NET_BUF *
EFIAPI
NetbufAlloc (
IN UINT32 Len
);
/**
Free the buffer and its associated NET_VECTOR.
@param Nbuf Pointer to the NET_BUF to be freed.
@return None.
**/
VOID
EFIAPI
NetbufFree (
IN NET_BUF *Nbuf
);
/**
Get the position of some byte in the net buffer. This can be used
to, for example, retrieve the IP header in the packet. It also
returns the fragment that contains the byte which is used mainly by
the buffer implementation itself.
@param Nbuf Pointer to the net buffer.
@param Offset The index or offset of the byte
@param Index Index of the fragment that contains the block
@retval * Pointer to the nth byte of data in the net buffer.
If NULL, there is no such data in the net buffer.
**/
UINT8 *
EFIAPI
NetbufGetByte (
IN NET_BUF *Nbuf,
IN UINT32 Offset,
OUT UINT32 *Index OPTIONAL
);
/**
Create a copy of NET_BUF that share the associated NET_DATA.
@param Nbuf Pointer to the net buffer to be cloned.
@retval * Pointer to the cloned net buffer.
**/
NET_BUF *
EFIAPI
NetbufClone (
IN NET_BUF *Nbuf
);
/**
Create a duplicated copy of Nbuf, data is copied. Also leave some
head space before the data.
@param Nbuf Pointer to the net buffer to be cloned.
@param Duplicate Pointer to the net buffer to duplicate to, if NULL
a new net buffer is allocated.
@param HeadSpace Length of the head space to reserve
@retval * Pointer to the duplicated net buffer.
**/
NET_BUF *
EFIAPI
NetbufDuplicate (
IN NET_BUF *Nbuf,
IN NET_BUF *Duplicate OPTIONAL,
IN UINT32 HeadSpace
);
/**
Create a NET_BUF structure which contains Len byte data of
Nbuf starting from Offset. A new NET_BUF structure will be
created but the associated data in NET_VECTOR is shared.
This function exists to do IP packet fragmentation.
@param Nbuf Pointer to the net buffer to be cloned.
@param Offset Starting point of the data to be included in new
buffer.
@param Len How many data to include in new data
@param HeadSpace How many bytes of head space to reserve for
protocol header
@retval * Pointer to the cloned net buffer.
**/
NET_BUF *
EFIAPI
NetbufGetFragment (
IN NET_BUF *Nbuf,
IN UINT32 Offset,
IN UINT32 Len,
IN UINT32 HeadSpace
);
/**
Reserve some space in the header room of the buffer.
Upon allocation, all the space are in the tail room
of the buffer. Call this function to move some space
to the header room. This function is quite limited in
that it can only reserver space from the first block
of an empty NET_BUF not built from the external. But
it should be enough for the network stack.
@param Nbuf Pointer to the net buffer.
@param Len The length of buffer to be reserverd.
@return None.
**/
VOID
EFIAPI
NetbufReserve (
IN NET_BUF *Nbuf,
IN UINT32 Len
);
/**
Allocate some space from the header or tail of the buffer.
@param Nbuf Pointer to the net buffer.
@param Len The length of the buffer to be allocated.
@param FromHead The flag to indicate whether reserve the data from
head or tail. TRUE for from head, and FALSE for
from tail.
@retval * Pointer to the first byte of the allocated buffer.
**/
UINT8 *
EFIAPI
NetbufAllocSpace (
IN NET_BUF *Nbuf,
IN UINT32 Len,
IN BOOLEAN FromHead
);
/**
Trim some data from the header or tail of the buffer.
@param Nbuf Pointer to the net buffer.
@param Len The length of the data to be trimmed.
@param FromHead The flag to indicate whether trim data from head or
tail. TRUE for from head, and FALSE for from tail.
@retval UINTN Length of the actually trimmed data.
**/
UINT32
EFIAPI
NetbufTrim (
IN NET_BUF *Nbuf,
IN UINT32 Len,
IN BOOLEAN FromHead
);
/**
Copy the data from the specific offset to the destination.
@param Nbuf Pointer to the net buffer.
@param Offset The sequence number of the first byte to copy.
@param Len Length of the data to copy.
@param Dest The destination of the data to copy to.
@retval UINTN The length of the copied data.
**/
UINT32
EFIAPI
NetbufCopy (
IN NET_BUF *Nbuf,
IN UINT32 Offset,
IN UINT32 Len,
IN UINT8 *Dest
);
/**
Build a NET_BUF from external blocks.
@param ExtFragment Pointer to the data block.
@param ExtNum The number of the data block.
@param HeadSpace The head space to be reserved.
@param HeadLen The length of the protocol header, This function
will pull that number of data into a linear block.
@param ExtFree Pointer to the caller provided free function.
@param Arg The argument passed to ExtFree when ExtFree is
called.
@retval * Pointer to the net buffer built from the data
blocks.
**/
NET_BUF *
EFIAPI
NetbufFromExt (
IN NET_FRAGMENT *ExtFragment,
IN UINT32 ExtNum,
IN UINT32 HeadSpace,
IN UINT32 HeadLen,
IN NET_VECTOR_EXT_FREE ExtFree,
IN VOID *Arg OPTIONAL
);
/**
Build a fragment table to contain the fragments in the
buffer. This is the opposite of the NetbufFromExt.
@param Nbuf Point to the net buffer
@param ExtFragment Pointer to the data block.
@param ExtNum The number of the data block.
@retval EFI_BUFFER_TOO_SMALL The number of non-empty block is bigger than ExtNum
@retval EFI_SUCCESS Fragment table built.
**/
EFI_STATUS
EFIAPI
NetbufBuildExt (
IN NET_BUF *Nbuf,
IN NET_FRAGMENT *ExtFragment,
IN UINT32 *ExtNum
);
/**
Build a NET_BUF from a list of NET_BUF.
@param BufList A List of NET_BUF.
@param HeadSpace The head space to be reserved.
@param HeaderLen The length of the protocol header, This function
will pull that number of data into a linear block.
@param ExtFree Pointer to the caller provided free function.
@param Arg The argument passed to ExtFree when ExtFree is
called.
@retval * Pointer to the net buffer built from the data
blocks.
**/
NET_BUF *
EFIAPI
NetbufFromBufList (
IN LIST_ENTRY *BufList,
IN UINT32 HeadSpace,
IN UINT32 HeaderLen,
IN NET_VECTOR_EXT_FREE ExtFree,
IN VOID *Arg OPTIONAL
);
/**
Free a list of net buffers.
@param Head Pointer to the head of linked net buffers.
@return None.
**/
VOID
EFIAPI
NetbufFreeList (
IN LIST_ENTRY *Head
);
/**
Initiate the net buffer queue.
@param NbufQue Pointer to the net buffer queue to be initiated.
@return None.
**/
VOID
EFIAPI
NetbufQueInit (
IN NET_BUF_QUEUE *NbufQue
);
/**
Allocate an initialized net buffer queue.
None.
@retval * Pointer to the allocated net buffer queue.
**/
NET_BUF_QUEUE *
EFIAPI
NetbufQueAlloc (
VOID
);
/**
Free a net buffer queue.
@param NbufQue Poitner to the net buffer queue to be freed.
@return None.
**/
VOID
EFIAPI
NetbufQueFree (
IN NET_BUF_QUEUE *NbufQue
);
/**
Remove a net buffer from head in the specific queue.
@param NbufQue Pointer to the net buffer queue.
@retval * Pointer to the net buffer removed from the specific
queue.
**/
NET_BUF *
EFIAPI
NetbufQueRemove (
IN NET_BUF_QUEUE *NbufQue
);
/**
Append a buffer to the end of the queue.
@param NbufQue Pointer to the net buffer queue.
@param Nbuf Pointer to the net buffer to be appended.
@return None.
**/
VOID
EFIAPI
NetbufQueAppend (
IN NET_BUF_QUEUE *NbufQue,
IN NET_BUF *Nbuf
);
/**
Copy some data from the buffer queue to the destination.
@param NbufQue Pointer to the net buffer queue.
@param Offset The sequence number of the first byte to copy.
@param Len Length of the data to copy.
@param Dest The destination of the data to copy to.
@retval UINTN The length of the copied data.
**/
UINT32
EFIAPI
NetbufQueCopy (
IN NET_BUF_QUEUE *NbufQue,
IN UINT32 Offset,
IN UINT32 Len,
IN UINT8 *Dest
);
/**
Copy some data from the buffer queue to the destination.
@param NbufQue Pointer to the net buffer queue.
@param Offset The sequence number of the first byte to copy.
@param Len Length of the data to copy.
@param Dest The destination of the data to copy to.
@retval UINTN The length of the copied data.
**/
UINT32
EFIAPI
NetbufQueTrim (
IN NET_BUF_QUEUE *NbufQue,
IN UINT32 Len
);
/**
Flush the net buffer queue.
@param NbufQue Pointer to the queue to be flushed.
@return None.
**/
VOID
EFIAPI
NetbufQueFlush (
IN NET_BUF_QUEUE *NbufQue
);
/**
Compute checksum for a bulk of data.
@param Bulk Pointer to the data.
@param Len Length of the data, in bytes.
@retval UINT16 The computed checksum.
**/
UINT16
EFIAPI
NetblockChecksum (
IN UINT8 *Bulk,
IN UINT32 Len
);
/**
Add two checksums.
@param Checksum1 The first checksum to be added.
@param Checksum2 The second checksum to be added.
@retval UINT16 The new checksum.
**/
UINT16
EFIAPI
NetAddChecksum (
IN UINT16 Checksum1,
IN UINT16 Checksum2
);
/**
Compute the checksum for a NET_BUF.
@param Nbuf Pointer to the net buffer.
@retval UINT16 The computed checksum.
**/
UINT16
EFIAPI
NetbufChecksum (
IN NET_BUF *Nbuf
);
/**
Compute the checksum for TCP/UDP pseudo header.
Src, Dst are in network byte order. and Len is
in host byte order.
@param Src The source address of the packet.
@param Dst The destination address of the packet.
@param Proto The protocol type of the packet.
@param Len The length of the packet.
@retval UINT16 The computed checksum.
**/
UINT16
EFIAPI
NetPseudoHeadChecksum (
IN IP4_ADDR Src,
IN IP4_ADDR Dst,
IN UINT8 Proto,
IN UINT16 Len
);
#endif