audk/EmbeddedPkg/Drivers/Lan91xDxe/Lan91xDxe.c

2230 lines
59 KiB
C

/** @file
* SMSC LAN91x series Network Controller Driver.
*
* Copyright (c) 2013-2017 Linaro.org
*
* Derived from the LAN9118 driver. Original sources
* Copyright (c) 2012-2013, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Uefi.h>
#include <Uefi/UefiSpec.h>
#include <Base.h>
// Protocols used by this driver
#include <Protocol/SimpleNetwork.h>
#include <Protocol/ComponentName2.h>
#include <Protocol/PxeBaseCode.h>
#include <Protocol/DevicePath.h>
// Libraries used by this driver
#include <Library/UefiLib.h>
#include <Library/DebugLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/IoLib.h>
#include <Library/PcdLib.h>
#include <Library/NetLib.h>
#include <Library/DevicePathLib.h>
// Hardware register definitions
#include "Lan91xDxeHw.h"
// Debugging output options
//#define LAN91X_PRINT_REGISTERS 1
//#define LAN91X_PRINT_PACKET_HEADERS 1
//#define LAN91X_PRINT_RECEIVE_FILTERS 1
// Chip power-down option -- UNTESTED
//#define LAN91X_POWER_DOWN 1
/*---------------------------------------------------------------------------------------------------------------------
LAN91x Information Structure
---------------------------------------------------------------------------------------------------------------------*/
typedef struct _LAN91X_DRIVER {
// Driver signature
UINT32 Signature;
EFI_HANDLE ControllerHandle;
// EFI SNP protocol instances
EFI_SIMPLE_NETWORK_PROTOCOL Snp;
EFI_SIMPLE_NETWORK_MODE SnpMode;
// EFI Snp statistics instance
EFI_NETWORK_STATISTICS Stats;
// Transmit Buffer recycle queue
LIST_ENTRY TransmitQueueHead;
// Register access variables
UINTN IoBase; // I/O Base Address
UINT8 Revision; // Chip Revision Number
INT8 PhyAd; // Phy Address
UINT8 BankSel; // Currently selected register bank
} LAN91X_DRIVER;
#define LAN91X_NO_PHY (-1) // PhyAd value if PHY not detected
#define LAN91X_SIGNATURE SIGNATURE_32('S', 'M', '9', '1')
#define INSTANCE_FROM_SNP_THIS(a) CR(a, LAN91X_DRIVER, Snp, LAN91X_SIGNATURE)
#define LAN91X_STALL 2
#define LAN91X_MEMORY_ALLOC_POLLS 100 // Max times to poll for memory allocation
#define LAN91X_PKT_OVERHEAD 6 // Overhead bytes in packet buffer
// Synchronization TPLs
#define LAN91X_TPL TPL_CALLBACK
// Most common CRC32 Polynomial for little endian machines
#define CRC_POLYNOMIAL 0xEDB88320
typedef struct {
MAC_ADDR_DEVICE_PATH Lan91x;
EFI_DEVICE_PATH_PROTOCOL End;
} LAN91X_DEVICE_PATH;
LAN91X_DEVICE_PATH Lan91xPathTemplate = {
{
{
MESSAGING_DEVICE_PATH, MSG_MAC_ADDR_DP,
{ (UINT8) (sizeof(MAC_ADDR_DEVICE_PATH)), (UINT8) ((sizeof(MAC_ADDR_DEVICE_PATH)) >> 8) }
},
{ { 0 } },
0
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{ sizeof(EFI_DEVICE_PATH_PROTOCOL), 0 }
}
};
// Chip ID numbers and name strings
#define CHIP_9192 3
#define CHIP_9194 4
#define CHIP_9195 5
#define CHIP_9196 6
#define CHIP_91100 7
#define CHIP_91100FD 8
#define CHIP_91111FD 9
STATIC CHAR16 CONST * CONST ChipIds[ 16 ] = {
NULL, NULL, NULL,
/* 3 */ L"SMC91C90/91C92",
/* 4 */ L"SMC91C94",
/* 5 */ L"SMC91C95",
/* 6 */ L"SMC91C96",
/* 7 */ L"SMC91C100",
/* 8 */ L"SMC91C100FD",
/* 9 */ L"SMC91C11xFD",
NULL, NULL, NULL,
NULL, NULL, NULL
};
/* ------------------ TxBuffer Queue structures ------------------- */
typedef struct {
VOID *Buf;
UINTN Length;
} MSK_SYSTEM_BUF;
typedef struct {
UINTN Signature;
LIST_ENTRY Link;
MSK_SYSTEM_BUF SystemBuf;
} MSK_LINKED_SYSTEM_BUF;
#define TX_MBUF_SIGNATURE SIGNATURE_32 ('t','x','m','b')
/* ------------------ MAC Address Hash Calculations ------------------- */
/*
** Generate a hash value from a multicast address
**
** This uses the Ethernet standard CRC32 algorithm
**
** INFO USED:
** 1: http://en.wikipedia.org/wiki/Cyclic_redundancy_check
**
** 2: http://www.erg.abdn.ac.uk/~gorry/eg3567/dl-pages/crc.html
**
** 3: http://en.wikipedia.org/wiki/Computation_of_CRC
*/
STATIC
UINT32
MulticastHash (
IN EFI_MAC_ADDRESS *Mac,
IN UINT32 AddrLen
)
{
UINT32 Iter;
UINT32 Remainder;
UINT32 Crc32;
UINT8 *Addr;
// 0xFFFFFFFF is standard seed for Ethernet
Remainder = 0xFFFFFFFF;
// Generate the remainder byte-by-byte (LSB first)
Addr = &Mac->Addr[0];
while (AddrLen-- > 0) {
Remainder ^= *Addr++;
for (Iter = 0; Iter < 8; ++Iter) {
// Check if exponent is set
if ((Remainder & 1) != 0) {
Remainder = (Remainder >> 1) ^ CRC_POLYNOMIAL;
} else {
Remainder = (Remainder >> 1) ^ 0;
}
}
}
// Reverse the bits of the remainder
Crc32 = 0;
for (Iter = 0; Iter < 32; ++Iter) {
Crc32 <<= 1;
Crc32 |= Remainder & 1;
Remainder >>= 1;
}
return Crc32;
}
/* ---------------- Banked Register Operations ------------------ */
// Select the proper I/O bank
STATIC
VOID
SelectIoBank (
LAN91X_DRIVER *LanDriver,
UINTN Register
)
{
UINT8 Bank;
Bank = RegisterToBank (Register);
// Select the proper I/O bank
if (LanDriver->BankSel != Bank) {
MmioWrite16 (LanDriver->IoBase + LAN91X_BANK_OFFSET, Bank);
LanDriver->BankSel = Bank;
}
}
// Read a 16-bit I/O-space register
STATIC
UINT16
ReadIoReg16 (
LAN91X_DRIVER *LanDriver,
UINTN Register
)
{
UINT8 Offset;
// Select the proper I/O bank
SelectIoBank (LanDriver, Register);
// Read the requested register
Offset = RegisterToOffset (Register);
return MmioRead16 (LanDriver->IoBase + Offset);
}
// Write a 16-bit I/O-space register
STATIC
UINT16
WriteIoReg16 (
LAN91X_DRIVER *LanDriver,
UINTN Register,
UINT16 Value
)
{
UINT8 Offset;
// Select the proper I/O bank
SelectIoBank (LanDriver, Register);
// Write the requested register
Offset = RegisterToOffset (Register);
return MmioWrite16 (LanDriver->IoBase + Offset, Value);
}
// Read an 8-bit I/O-space register
STATIC
UINT8
ReadIoReg8 (
LAN91X_DRIVER *LanDriver,
UINTN Register
)
{
UINT8 Offset;
// Select the proper I/O bank
SelectIoBank (LanDriver, Register);
// Read the requested register
Offset = RegisterToOffset (Register);
return MmioRead8 (LanDriver->IoBase + Offset);
}
// Write an 8-bit I/O-space register
STATIC
UINT8
WriteIoReg8 (
LAN91X_DRIVER *LanDriver,
UINTN Register,
UINT8 Value
)
{
UINT8 Offset;
// Select the proper I/O bank
SelectIoBank (LanDriver, Register);
// Write the requested register
Offset = RegisterToOffset (Register);
return MmioWrite8 (LanDriver->IoBase + Offset, Value);
}
/* ---------------- MII/PHY Access Operations ------------------ */
#define LAN91X_MDIO_STALL 1
STATIC
VOID
MdioOutput (
LAN91X_DRIVER *LanDriver,
UINTN Bits,
UINT32 Value
)
{
UINT16 MgmtReg;
UINT32 Mask;
MgmtReg = ReadIoReg16 (LanDriver, LAN91X_MGMT);
MgmtReg &= ~MGMT_MCLK;
MgmtReg |= MGMT_MDOE;
for (Mask = (1 << (Bits - 1)); Mask != 0; Mask >>= 1) {
if ((Value & Mask) != 0) {
MgmtReg |= MGMT_MDO;
} else {
MgmtReg &= ~MGMT_MDO;
}
WriteIoReg16 (LanDriver, LAN91X_MGMT, MgmtReg);
gBS->Stall (LAN91X_MDIO_STALL);
WriteIoReg16 (LanDriver, LAN91X_MGMT, MgmtReg | MGMT_MCLK);
gBS->Stall (LAN91X_MDIO_STALL);
}
}
#define PHY_OUTPUT_TIME (2 * LAN91X_MDIO_STALL)
STATIC
UINT32
MdioInput (
LAN91X_DRIVER *LanDriver,
UINTN Bits
)
{
UINT16 MgmtReg;
UINT32 Mask;
UINT32 Value;
MgmtReg = ReadIoReg16 (LanDriver, LAN91X_MGMT);
MgmtReg &= ~(MGMT_MDOE | MGMT_MCLK | MGMT_MDO);
WriteIoReg16 (LanDriver, LAN91X_MGMT, MgmtReg);
Value = 0;
for (Mask = (1 << (Bits - 1)); Mask != 0; Mask >>= 1) {
if ((ReadIoReg16 (LanDriver, LAN91X_MGMT) & MGMT_MDI) != 0) {
Value |= Mask;
}
WriteIoReg16 (LanDriver, LAN91X_MGMT, MgmtReg);
gBS->Stall (LAN91X_MDIO_STALL);
WriteIoReg16 (LanDriver, LAN91X_MGMT, MgmtReg | MGMT_MCLK);
gBS->Stall (LAN91X_MDIO_STALL);
}
return Value;
}
#define PHY_INPUT_TIME (2 * LAN91X_MDIO_STALL)
STATIC
VOID
MdioIdle (
LAN91X_DRIVER *LanDriver
)
{
UINT16 MgmtReg;
MgmtReg = ReadIoReg16 (LanDriver, LAN91X_MGMT);
MgmtReg &= ~(MGMT_MDOE | MGMT_MCLK | MGMT_MDO);
WriteIoReg16 (LanDriver, LAN91X_MGMT, MgmtReg);
}
// Write to a PHY register
STATIC
VOID
WritePhyReg16 (
LAN91X_DRIVER *LanDriver,
UINTN RegAd,
UINT16 Value
)
{
// Bit-bang the MII Serial Frame write operation
MdioOutput (LanDriver, 32, 0xffffffff); // Send 32 Ones as a preamble
MdioOutput (LanDriver, 2, 0x01); // Send Start (01)
MdioOutput (LanDriver, 2, 0x01); // Send Write (01)
MdioOutput (LanDriver, 5, LanDriver->PhyAd); // Send PHYAD[4:0]
MdioOutput (LanDriver, 5, RegAd); // Send REGAD[4:0]
MdioOutput (LanDriver, 2, 0x02); // Send TurnAround (10)
MdioOutput (LanDriver, 16, Value); // Write 16 data bits
// Idle the MDIO bus
MdioIdle (LanDriver);
}
// Calculate approximate time to write a PHY register in microseconds
#define PHY_WRITE_TIME ((32 + 2 + 2 + 5 + 5 + 2 + 16) * PHY_OUTPUT_TIME)
// Read from a PHY register
STATIC
UINT16
ReadPhyReg16 (
LAN91X_DRIVER *LanDriver,
UINTN RegAd
)
{
UINT32 Value;
// Bit-bang the MII Serial Frame read operation
MdioOutput (LanDriver, 32, 0xffffffff); // Send 32 Ones as a preamble
MdioOutput (LanDriver, 2, 0x01); // Send Start (01)
MdioOutput (LanDriver, 2, 0x02); // Send Read (10)
MdioOutput (LanDriver, 5, LanDriver->PhyAd); // Send PHYAD[4:0]
MdioOutput (LanDriver, 5, RegAd); // Send REGAD[4:0]
(VOID) MdioInput (LanDriver, 2); // Discard TurnAround bits
Value = MdioInput (LanDriver, 16); // Read 16 data bits
// Idle the MDIO bus
MdioIdle (LanDriver);
return (Value & 0xffff);
}
// Calculate approximate time to read a PHY register in microseconds
#define PHY_READ_TIME (((32 + 2 + 2 + 5 + 5) * PHY_OUTPUT_TIME) + \
((2 + 16) * PHY_INPUT_TIME))
/* ---------------- Debug Functions ------------------ */
#ifdef LAN91X_PRINT_REGISTERS
STATIC
VOID
PrintIoRegisters (
IN LAN91X_DRIVER *LanDriver
)
{
UINTN Bank;
UINTN Offset;
UINT16 Value;
DEBUG ((DEBUG_ERROR, "\nLAN91x I/O Register Dump:\n"));
// Print currrent bank select register
Value = MmioRead16 (LanDriver->IoBase + LAN91X_BANK_OFFSET);
DEBUG ((DEBUG_ERROR, " BankSel: %d Bank Register %04x (%d)\n",
LanDriver->BankSel, Value, Value & 0x0007));
// Print all I/O registers
for (Offset = 0; Offset < 0x0e; Offset += 2) {
DEBUG ((DEBUG_ERROR, " %02x:", Offset));
for (Bank = 0; Bank <= 3; ++Bank) {
DEBUG ((DEBUG_ERROR, " %04x", ReadIoReg16 (LanDriver, MakeRegister (Bank, Offset))));
}
DEBUG ((DEBUG_ERROR, "\n"));
}
}
STATIC
VOID
PrintPhyRegisters (
IN LAN91X_DRIVER *LanDriver
)
{
UINTN RegNum;
DEBUG ((DEBUG_ERROR, "\nLAN91x Phy %d Register Dump:\n", LanDriver->PhyAd));
// Print all Phy registers
for (RegNum = 0; RegNum <= 5; ++RegNum) {
DEBUG ((DEBUG_ERROR, " %2d: %04x\n",
RegNum,
ReadPhyReg16 (LanDriver, RegNum)
));
}
for (RegNum = 16; RegNum <= 20; ++RegNum) {
DEBUG ((DEBUG_ERROR, " %2d: %04x\n",
RegNum,
ReadPhyReg16 (LanDriver, RegNum)
));
}
}
#endif
#if LAN91X_PRINT_PACKET_HEADERS
STATIC
VOID
PrintIpDgram (
IN CONST VOID *DstMac,
IN CONST VOID *SrcMac,
IN CONST VOID *Proto,
IN CONST VOID *IpDgram
)
{
CONST UINT8 *Ptr;
UINT16 SrcPort;
UINT16 DstPort;
Ptr = DstMac;
DEBUG ((DEBUG_ERROR, " Dst: %02x-%02x-%02x",
Ptr[0], Ptr[1], Ptr[2]));
DEBUG ((DEBUG_ERROR, "-%02x-%02x-%02x",
Ptr[3], Ptr[4], Ptr[5]));
Ptr = SrcMac;
DEBUG ((DEBUG_ERROR, " Src: %02x-%02x-%02x",
Ptr[0], Ptr[1], Ptr[2]));
DEBUG ((DEBUG_ERROR, "-%02x-%02x-%02x",
Ptr[3], Ptr[4], Ptr[5]));
Ptr = Proto;
DEBUG ((DEBUG_ERROR, " Proto: %02x%02x\n",
Ptr[0], Ptr[1]));
Ptr = IpDgram;
switch (Ptr[9]) {
case EFI_IP_PROTO_ICMP:
DEBUG ((DEBUG_ERROR, " ICMP"));
break;
case EFI_IP_PROTO_TCP:
DEBUG ((DEBUG_ERROR, " TCP"));
break;
case EFI_IP_PROTO_UDP:
DEBUG ((DEBUG_ERROR, " UDP"));
break;
default:
DEBUG ((DEBUG_ERROR, " IpProto %d\n", Ptr[9]));
return;
}
DEBUG ((DEBUG_ERROR, " SrcIp: %d.%d.%d.%d",
Ptr[12], Ptr[13], Ptr[14], Ptr[15]));
DEBUG ((DEBUG_ERROR, " DstIp: %d.%d.%d.%d",
Ptr[16], Ptr[17], Ptr[18], Ptr[19]));
SrcPort = (Ptr[20] << 8) | Ptr[21];
DstPort = (Ptr[22] << 8) | Ptr[23];
DEBUG ((DEBUG_ERROR, " SrcPort: %d DstPort: %d\n", SrcPort, DstPort));
}
#endif
/* ---------------- PHY Management Operations ----------------- */
STATIC
EFI_STATUS
PhyDetect (
IN LAN91X_DRIVER *LanDriver
)
{
UINT16 PhyId1;
UINT16 PhyId2;
for (LanDriver->PhyAd = 0x1f; LanDriver->PhyAd >= 0 ; --LanDriver->PhyAd) {
PhyId1 = ReadPhyReg16 (LanDriver, PHY_INDEX_ID1);
PhyId2 = ReadPhyReg16 (LanDriver, PHY_INDEX_ID2);
if ((PhyId1 != 0x0000) && (PhyId1 != 0xffff) &&
(PhyId2 != 0x0000) && (PhyId2 != 0xffff)) {
if ((PhyId1 == 0x0016) && ((PhyId2 & 0xfff0) == 0xf840)) {
DEBUG ((DEBUG_ERROR, "LAN91x: PHY type LAN83C183 (LAN91C111 Internal)\n"));
} else if ((PhyId1 == 0x0282) && ((PhyId2 & 0xfff0) == 0x1c50)) {
DEBUG ((DEBUG_ERROR, "LAN91x: PHY type LAN83C180\n"));
} else {
DEBUG ((DEBUG_ERROR, "LAN91x: PHY id %04x:%04x\n", PhyId1, PhyId2));
}
return EFI_SUCCESS;
}
}
DEBUG ((DEBUG_ERROR, "LAN91x: PHY detection failed\n"));
return EFI_NO_MEDIA;
}
// Check the Link Status and take appropriate action
STATIC
BOOLEAN
CheckLinkStatus (
IN LAN91X_DRIVER *LanDriver
)
{
UINT16 PhyStatus;
// Get the PHY Status
PhyStatus = ReadPhyReg16 (LanDriver, PHY_INDEX_BASIC_STATUS);
return (PhyStatus & PHYSTS_LINK_STS) != 0;
}
// Do auto-negotiation
STATIC
EFI_STATUS
PhyAutoNegotiate (
IN LAN91X_DRIVER *LanDriver
)
{
UINTN Retries;
UINT16 PhyControl;
UINT16 PhyStatus;
UINT16 PhyAdvert;
// If there isn't a PHY, don't try to reset it
if (LanDriver->PhyAd == LAN91X_NO_PHY) {
return EFI_SUCCESS;
}
// Next check that auto-negotiation is supported
PhyStatus = ReadPhyReg16 (LanDriver, PHY_INDEX_BASIC_STATUS);
if ((PhyStatus & PHYSTS_AUTO_CAP) == 0) {
return EFI_SUCCESS;
}
// Translate capabilities to advertise
PhyAdvert = PHYANA_CSMA;
if ((PhyStatus & PHYSTS_10BASET_HDPLX) != 0) {
PhyAdvert |= PHYANA_10BASET;
}
if ((PhyStatus & PHYSTS_10BASET_FDPLX) != 0) {
PhyAdvert |= PHYANA_10BASETFD;
}
if ((PhyStatus & PHYSTS_100BASETX_HDPLX) != 0) {
PhyAdvert |= PHYANA_100BASETX;
}
if ((PhyStatus & PHYSTS_100BASETX_FDPLX) != 0) {
PhyAdvert |= PHYANA_100BASETXFD;
}
if ((PhyStatus & PHYSTS_100BASE_T4) != 0) {
PhyAdvert |= PHYANA_100BASET4;
}
// Set the capabilities to advertise
WritePhyReg16 (LanDriver, PHY_INDEX_AUTO_NEG_ADVERT, PhyAdvert);
(VOID) ReadPhyReg16 (LanDriver, PHY_INDEX_AUTO_NEG_ADVERT);
// Restart Auto-Negotiation
PhyControl = ReadPhyReg16 (LanDriver, PHY_INDEX_BASIC_CTRL);
PhyControl &= ~(PHYCR_SPEED_SEL | PHYCR_DUPLEX_MODE);
PhyControl |= PHYCR_AUTO_EN | PHYCR_RST_AUTO;
WritePhyReg16 (LanDriver, PHY_INDEX_BASIC_CTRL, PhyControl);
// Wait up to 2 seconds for the process to complete
Retries = 2000000 / (PHY_READ_TIME + 100);
while ((ReadPhyReg16 (LanDriver, PHY_INDEX_BASIC_STATUS) & PHYSTS_AUTO_COMP) == 0) {
if (--Retries == 0) {
DEBUG ((DEBUG_ERROR, "LAN91x: PHY auto-negotiation timed-out\n"));
return EFI_TIMEOUT;
}
gBS->Stall (100);
}
return EFI_SUCCESS;
}
// Perform PHY software reset
STATIC
EFI_STATUS
PhySoftReset (
IN LAN91X_DRIVER *LanDriver
)
{
UINTN Retries;
// If there isn't a PHY, don't try to reset it
if (LanDriver->PhyAd == LAN91X_NO_PHY) {
return EFI_SUCCESS;
}
// Request a PHY reset
WritePhyReg16 (LanDriver, PHY_INDEX_BASIC_CTRL, PHYCR_RESET);
// The internal PHY will reset within 50ms. Allow 100ms.
Retries = 100000 / (PHY_READ_TIME + 100);
while (ReadPhyReg16 (LanDriver, PHY_INDEX_BASIC_CTRL) & PHYCR_RESET) {
if (--Retries == 0) {
DEBUG ((DEBUG_ERROR, "LAN91x: PHY reset timed-out\n"));
return EFI_TIMEOUT;
}
gBS->Stall (100);
}
return EFI_SUCCESS;
}
/* ---------------- General Operations ----------------- */
STATIC
EFI_MAC_ADDRESS
GetCurrentMacAddress (
IN LAN91X_DRIVER *LanDriver
)
{
UINTN RegNum;
UINT8 *Addr;
EFI_MAC_ADDRESS MacAddress;
SetMem (&MacAddress, sizeof(MacAddress), 0);
Addr = &MacAddress.Addr[0];
for (RegNum = LAN91X_IAR0; RegNum <= LAN91X_IAR5; ++RegNum) {
*Addr = ReadIoReg8 (LanDriver, RegNum);
++Addr;
}
return MacAddress;
}
STATIC
EFI_STATUS
SetCurrentMacAddress (
IN LAN91X_DRIVER *LanDriver,
IN EFI_MAC_ADDRESS *MacAddress
)
{
UINTN RegNum;
UINT8 *Addr;
Addr = &MacAddress->Addr[0];
for (RegNum = LAN91X_IAR0; RegNum <= LAN91X_IAR5; ++RegNum) {
WriteIoReg8 (LanDriver, RegNum, *Addr);
++Addr;
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
MmuOperation (
IN LAN91X_DRIVER *LanDriver,
IN UINTN MmuOp
)
{
UINTN Polls;
WriteIoReg16 (LanDriver, LAN91X_MMUCR, MmuOp);
Polls = 100;
while ((ReadIoReg16 (LanDriver, LAN91X_MMUCR) & MMUCR_BUSY) != 0) {
if (--Polls == 0) {
DEBUG ((DEBUG_ERROR, "LAN91x: MMU operation %04x timed-out\n", MmuOp));
return EFI_TIMEOUT;
}
gBS->Stall (LAN91X_STALL);
}
return EFI_SUCCESS;
}
// Read bytes from the DATA register
STATIC
EFI_STATUS
ReadIoData (
IN LAN91X_DRIVER *LanDriver,
IN VOID *Buffer,
IN UINTN BufLen
)
{
UINT8 *Ptr;
Ptr = Buffer;
for (; BufLen > 0; --BufLen) {
*Ptr = ReadIoReg8 (LanDriver, LAN91X_DATA0);
++Ptr;
}
return EFI_SUCCESS;
}
// Write bytes to the DATA register
STATIC
EFI_STATUS
WriteIoData (
IN LAN91X_DRIVER *LanDriver,
IN VOID *Buffer,
IN UINTN BufLen
)
{
UINT8 *Ptr;
Ptr = Buffer;
for (; BufLen > 0; --BufLen) {
WriteIoReg8 (LanDriver, LAN91X_DATA0, *Ptr);
++Ptr;
}
return EFI_SUCCESS;
}
// Disable the interface
STATIC
EFI_STATUS
ChipDisable (
IN LAN91X_DRIVER *LanDriver
)
{
#ifdef LAN91X_POWER_DOWN
UINT16 Val16;
#endif
// Stop Rx and Tx operations
WriteIoReg16 (LanDriver, LAN91X_RCR, RCR_CLEAR);
WriteIoReg16 (LanDriver, LAN91X_TCR, TCR_CLEAR);
#ifdef LAN91X_POWER_DOWN
// Power-down the chip
Val16 = ReadIoReg16 (LanDriver, LAN91X_CR);
Val16 &= ~CR_EPH_POWER_EN;
WriteIoReg16 (LanDriver, LAN91X_CR, Val16);
#endif
return EFI_SUCCESS;
}
// Enable the interface
STATIC
EFI_STATUS
ChipEnable (
IN LAN91X_DRIVER *LanDriver
)
{
#ifdef LAN91X_POWER_DOWN
UINT16 Val16;
// Power-up the chip
Val16 = ReadIoReg16 (LanDriver, LAN91X_CR);
Val16 |= CR_EPH_POWER_EN;
WriteIoReg16 (LanDriver, LAN91X_CR, Val16);
gBS->Stall (LAN91X_STALL);
#endif
// Start Rx and Tx operations
WriteIoReg16 (LanDriver, LAN91X_TCR, TCR_DEFAULT);
WriteIoReg16 (LanDriver, LAN91X_RCR, RCR_DEFAULT);
return EFI_SUCCESS;
}
// Perform software reset on the LAN91x
STATIC
EFI_STATUS
SoftReset (
IN LAN91X_DRIVER *LanDriver
)
{
UINT16 Val16;
// Issue the reset
WriteIoReg16 (LanDriver, LAN91X_RCR, RCR_SOFT_RST);
gBS->Stall (LAN91X_STALL);
WriteIoReg16 (LanDriver, LAN91X_RCR, RCR_CLEAR);
// Set the configuration register
WriteIoReg16 (LanDriver, LAN91X_CR, CR_DEFAULT);
gBS->Stall (LAN91X_STALL);
// Stop Rx and Tx
WriteIoReg16 (LanDriver, LAN91X_RCR, RCR_CLEAR);
WriteIoReg16 (LanDriver, LAN91X_TCR, TCR_CLEAR);
// Initialize the Control Register
Val16 = ReadIoReg16 (LanDriver, LAN91X_CTR);
Val16 |= CTR_AUTO_REL;
WriteIoReg16 (LanDriver, LAN91X_CTR, Val16);
// Reset the MMU
MmuOperation (LanDriver, MMUCR_OP_RESET_MMU);
return EFI_SUCCESS;
}
/*
** Probe()
**
** Validate that there is a LAN91x device.
**
*/
STATIC
EFI_STATUS
Probe (
IN LAN91X_DRIVER *LanDriver
)
{
UINT16 Bank;
UINT16 Val16;
CHAR16 CONST *ChipId;
UINTN ResetTime;
// First check that the Bank Select register is valid
Bank = MmioRead16 (LanDriver->IoBase + LAN91X_BANK_OFFSET);
if ((Bank & 0xff00) != 0x3300) {
DEBUG ((DEBUG_ERROR, "LAN91x: signature error: expecting 33xx, read %04x\n", Bank));
return EFI_DEVICE_ERROR;
}
// Try reading the revision register next
LanDriver->BankSel = 0xff;
Val16 = ReadIoReg16 (LanDriver, LAN91X_REV);
Bank = MmioRead16 (LanDriver->IoBase + LAN91X_BANK_OFFSET);
if ((Bank & 0xff03) != 0x3303) {
DEBUG ((DEBUG_ERROR, "LAN91x: signature error: expecting 33x3, read %04x\n", Bank));
return EFI_DEVICE_ERROR;
}
// Validate the revision register
if ((Val16 & 0xff00) != 0x3300) {
DEBUG ((DEBUG_ERROR, "LAN91x: revision error: expecting 33xx, read %04x\n", Val16));
return EFI_DEVICE_ERROR;
}
ChipId = ChipIds[(Val16 >> 4) & 0x0f];
if (ChipId == NULL) {
DEBUG ((DEBUG_ERROR, "LAN91x: unrecognized revision: %04x\n", Val16));
return EFI_DEVICE_ERROR;
}
DEBUG ((DEBUG_ERROR, "LAN91x: detected chip %s rev %d\n", ChipId, Val16 & 0xf));
LanDriver->Revision = Val16 & 0xff;
// Reload from EEPROM to get the hardware MAC address
WriteIoReg16 (LanDriver, LAN91X_CTR, CTR_RESERVED | CTR_RELOAD);
ResetTime = 1000;
while ((ReadIoReg16 (LanDriver, LAN91X_CTR) & CTR_RELOAD) != 0) {
if (--ResetTime == 0) {
DEBUG ((DEBUG_ERROR, "LAN91x: reload from EEPROM timed-out\n"));
WriteIoReg16 (LanDriver, LAN91X_CTR, CTR_RESERVED);
return EFI_DEVICE_ERROR;
}
gBS->Stall (LAN91X_STALL);
}
// Read and save the Permanent MAC Address
LanDriver->SnpMode.PermanentAddress = GetCurrentMacAddress (LanDriver);
LanDriver->SnpMode.CurrentAddress = LanDriver->SnpMode.PermanentAddress;
DEBUG ((DEBUG_ERROR, //DEBUG_NET | DEBUG_INFO,
"LAN91x: HW MAC Address: %02x-%02x-%02x-%02x-%02x-%02x\n",
LanDriver->SnpMode.PermanentAddress.Addr[0],
LanDriver->SnpMode.PermanentAddress.Addr[1],
LanDriver->SnpMode.PermanentAddress.Addr[2],
LanDriver->SnpMode.PermanentAddress.Addr[3],
LanDriver->SnpMode.PermanentAddress.Addr[4],
LanDriver->SnpMode.PermanentAddress.Addr[5]
));
// Reset the device
SoftReset (LanDriver);
// Try to detect a PHY
if (LanDriver->Revision > (CHIP_91100 << 4)) {
PhyDetect (LanDriver);
} else {
LanDriver->PhyAd = LAN91X_NO_PHY;
}
return EFI_SUCCESS;
}
/*------------------ Simple Network Driver entry point functions ------------------*/
// Refer to the Simple Network Protocol section (21.1)
// in the UEFI 2.3.1 Specification for documentation.
#define ReturnUnlock(s) do { Status = (s); goto exit_unlock; } while(0)
/*
** UEFI Start() function
**
*/
EFI_STATUS
EFIAPI
SnpStart (
IN EFI_SIMPLE_NETWORK_PROTOCOL* Snp
)
{
EFI_SIMPLE_NETWORK_MODE *Mode;
EFI_TPL SavedTpl;
EFI_STATUS Status;
// Check Snp instance
if (Snp == NULL) {
return EFI_INVALID_PARAMETER;
}
// Serialize access to data and registers
SavedTpl = gBS->RaiseTPL (LAN91X_TPL);
Mode = Snp->Mode;
// Check state of the driver
switch (Mode->State) {
case EfiSimpleNetworkStopped:
break;
case EfiSimpleNetworkStarted:
case EfiSimpleNetworkInitialized:
DEBUG ((DEBUG_WARN, "LAN91x: Driver already started\n"));
ReturnUnlock (EFI_ALREADY_STARTED);
default:
DEBUG ((DEBUG_ERROR, "LAN91x: Driver in an invalid state: %u\n",
(UINTN)Snp->Mode->State));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Change state
Mode->State = EfiSimpleNetworkStarted;
Status = EFI_SUCCESS;
// Restore TPL and return
exit_unlock:
gBS->RestoreTPL (SavedTpl);
return Status;
}
/*
** UEFI Stop() function
**
*/
EFI_STATUS
EFIAPI
SnpStop (
IN EFI_SIMPLE_NETWORK_PROTOCOL* Snp
)
{
LAN91X_DRIVER *LanDriver;
EFI_TPL SavedTpl;
EFI_STATUS Status;
// Check Snp Instance
if (Snp == NULL) {
return EFI_INVALID_PARAMETER;
}
// Serialize access to data and registers
SavedTpl = gBS->RaiseTPL (LAN91X_TPL);
// Check state of the driver
switch (Snp->Mode->State) {
case EfiSimpleNetworkStarted:
case EfiSimpleNetworkInitialized:
break;
case EfiSimpleNetworkStopped:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not started\n"));
ReturnUnlock (EFI_NOT_STARTED);
default:
DEBUG ((DEBUG_ERROR, "LAN91x: Driver in an invalid state: %u\n",
(UINTN)Snp->Mode->State));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Find the LanDriver structure
LanDriver = INSTANCE_FROM_SNP_THIS(Snp);
// Stop the Tx and Rx
ChipDisable (LanDriver);
// Change the state
Snp->Mode->State = EfiSimpleNetworkStopped;
Status = EFI_SUCCESS;
// Restore TPL and return
exit_unlock:
gBS->RestoreTPL (SavedTpl);
return Status;
}
/*
** UEFI Initialize() function
**
*/
EFI_STATUS
EFIAPI
SnpInitialize (
IN EFI_SIMPLE_NETWORK_PROTOCOL* Snp,
IN UINTN RxBufferSize OPTIONAL,
IN UINTN TxBufferSize OPTIONAL
)
{
LAN91X_DRIVER *LanDriver;
EFI_TPL SavedTpl;
EFI_STATUS Status;
// Check Snp Instance
if (Snp == NULL) {
return EFI_INVALID_PARAMETER;
}
// Serialize access to data and registers
SavedTpl = gBS->RaiseTPL (LAN91X_TPL);
// Check that driver was started but not initialised
switch (Snp->Mode->State) {
case EfiSimpleNetworkStarted:
break;
case EfiSimpleNetworkInitialized:
DEBUG ((DEBUG_WARN, "LAN91x: Driver already initialized\n"));
ReturnUnlock (EFI_SUCCESS);
case EfiSimpleNetworkStopped:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not started\n"));
ReturnUnlock (EFI_NOT_STARTED);
default:
DEBUG ((DEBUG_ERROR, "LAN91x: Driver in an invalid state: %u\n",
(UINTN)Snp->Mode->State));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Find the LanDriver structure
LanDriver = INSTANCE_FROM_SNP_THIS(Snp);
// Initiate a software reset
Status = SoftReset (LanDriver);
if (EFI_ERROR(Status)) {
DEBUG ((DEBUG_WARN, "LAN91x: Soft reset failed\n"));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Initiate a PHY reset
if (PhySoftReset (LanDriver) < 0) {
Snp->Mode->State = EfiSimpleNetworkStopped;
DEBUG ((DEBUG_WARN, "LAN91x: PHY soft reset timeout\n"));
ReturnUnlock (EFI_NOT_STARTED);
}
// Do auto-negotiation
Status = PhyAutoNegotiate (LanDriver);
if (EFI_ERROR(Status)) {
DEBUG ((DEBUG_WARN, "LAN91x: PHY auto-negotiation failed\n"));
}
// Enable the receiver and transmitter
ChipEnable (LanDriver);
// Now acknowledge all interrupts
WriteIoReg8 (LanDriver, LAN91X_IST, 0xFF);
// Declare the driver as initialized
Snp->Mode->State = EfiSimpleNetworkInitialized;
Status = EFI_SUCCESS;
// Restore TPL and return
exit_unlock:
gBS->RestoreTPL (SavedTpl);
return Status;
}
/*
** UEFI Reset () function
**
*/
EFI_STATUS
EFIAPI
SnpReset (
IN EFI_SIMPLE_NETWORK_PROTOCOL* Snp,
IN BOOLEAN Verification
)
{
LAN91X_DRIVER *LanDriver;
EFI_TPL SavedTpl;
EFI_STATUS Status;
// Check Snp Instance
if (Snp == NULL) {
return EFI_INVALID_PARAMETER;
}
// Serialize access to data and registers
SavedTpl = gBS->RaiseTPL (LAN91X_TPL);
// Check that driver was started and initialised
switch (Snp->Mode->State) {
case EfiSimpleNetworkInitialized:
break;
case EfiSimpleNetworkStarted:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not yet initialized\n"));
ReturnUnlock (EFI_DEVICE_ERROR);
case EfiSimpleNetworkStopped:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not started\n"));
ReturnUnlock (EFI_NOT_STARTED);
default:
DEBUG ((DEBUG_ERROR, "LAN91x: Driver in an invalid state: %u\n",
(UINTN)Snp->Mode->State));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Find the LanDriver structure
LanDriver = INSTANCE_FROM_SNP_THIS(Snp);
// Initiate a software reset
if (EFI_ERROR (SoftReset (LanDriver))) {
DEBUG ((DEBUG_WARN, "LAN91x: Soft reset failed\n"));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Initiate a PHY reset
if (EFI_ERROR (PhySoftReset (LanDriver))) {
DEBUG ((DEBUG_WARN, "LAN91x: PHY soft reset failed\n"));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Enable the receiver and transmitter
Status = ChipEnable (LanDriver);
// Restore TPL and return
exit_unlock:
gBS->RestoreTPL (SavedTpl);
return Status;
}
/*
** UEFI Shutdown () function
**
*/
EFI_STATUS
EFIAPI
SnpShutdown (
IN EFI_SIMPLE_NETWORK_PROTOCOL* Snp
)
{
LAN91X_DRIVER *LanDriver;
EFI_TPL SavedTpl;
EFI_STATUS Status;
// Check Snp Instance
if (Snp == NULL) {
return EFI_INVALID_PARAMETER;
}
// Serialize access to data and registers
SavedTpl = gBS->RaiseTPL (LAN91X_TPL);
// First check that driver has already been initialized
switch (Snp->Mode->State) {
case EfiSimpleNetworkInitialized:
break;
case EfiSimpleNetworkStarted:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not yet initialized\n"));
ReturnUnlock (EFI_DEVICE_ERROR);
case EfiSimpleNetworkStopped:
DEBUG ((DEBUG_WARN, "LAN91x: Driver in stopped state\n"));
ReturnUnlock (EFI_NOT_STARTED);
default:
DEBUG ((DEBUG_ERROR, "LAN91x: Driver in an invalid state: %u\n",
(UINTN)Snp->Mode->State));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Find the LanDriver structure
LanDriver = INSTANCE_FROM_SNP_THIS(Snp);
// Disable the interface
Status = ChipDisable (LanDriver);
// Restore TPL and return
exit_unlock:
gBS->RestoreTPL (SavedTpl);
return Status;
}
/*
** UEFI ReceiveFilters() function
**
*/
EFI_STATUS
EFIAPI
SnpReceiveFilters (
IN EFI_SIMPLE_NETWORK_PROTOCOL* Snp,
IN UINT32 Enable,
IN UINT32 Disable,
IN BOOLEAN Reset,
IN UINTN NumMfilter OPTIONAL,
IN EFI_MAC_ADDRESS *Mfilter OPTIONAL
)
{
#define MCAST_HASH_BYTES 8
LAN91X_DRIVER *LanDriver;
EFI_SIMPLE_NETWORK_MODE *SnpMode;
EFI_TPL SavedTpl;
EFI_STATUS Status;
UINTN i;
UINT32 Crc;
UINT16 RcvCtrl;
UINT8 McastHash[MCAST_HASH_BYTES];
// Check Snp Instance
if (Snp == NULL) {
return EFI_INVALID_PARAMETER;
}
// Serialize access to data and registers
SavedTpl = gBS->RaiseTPL (LAN91X_TPL);
// First check that driver has already been initialized
switch (Snp->Mode->State) {
case EfiSimpleNetworkInitialized:
break;
case EfiSimpleNetworkStarted:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not yet initialized\n"));
ReturnUnlock (EFI_DEVICE_ERROR);
case EfiSimpleNetworkStopped:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not started\n"));
ReturnUnlock (EFI_NOT_STARTED);
default:
DEBUG ((DEBUG_ERROR, "LAN91x: Driver in an invalid state: %u\n",
(UINTN)Snp->Mode->State));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Find the LanDriver structure
LanDriver = INSTANCE_FROM_SNP_THIS(Snp);
SnpMode = Snp->Mode;
#ifdef LAN91X_PRINT_RECEIVE_FILTERS
DEBUG ((DEBUG_ERROR, "LAN91x:SnpReceiveFilters()\n"));
DEBUG ((DEBUG_ERROR, " Enable = %08x\n", Enable));
DEBUG ((DEBUG_ERROR, " Disable = %08x\n", Disable));
DEBUG ((DEBUG_ERROR, " Reset = %d\n", Reset));
DEBUG ((DEBUG_ERROR, " NumMfilter = %d\n", NumMfilter));
for (i = 0; i < NumMfilter; ++i) {
DEBUG ((DEBUG_ERROR,
" [%2d] = %02x-%02x-%02x-%02x-%02x-%02x\n",
i,
Mfilter[i].Addr[0],
Mfilter[i].Addr[1],
Mfilter[i].Addr[2],
Mfilter[i].Addr[3],
Mfilter[i].Addr[4],
Mfilter[i].Addr[5]));
}
#endif
// Update the Multicast Hash registers
if (Reset) {
// Clear the hash table
SetMem (McastHash, MCAST_HASH_BYTES, 0);
SnpMode->MCastFilterCount = 0;
} else {
// Read the current hash table
for (i = 0; i < MCAST_HASH_BYTES; ++i) {
McastHash[i] = ReadIoReg8 (LanDriver, LAN91X_MT0 + i);
}
// Set the new additions
for (i = 0; i < NumMfilter; ++i) {
Crc = MulticastHash (&Mfilter[i], NET_ETHER_ADDR_LEN);
McastHash[(Crc >> 29) & 0x3] |= 1 << ((Crc >> 26) & 0x3);
}
SnpMode->MCastFilterCount = NumMfilter;
}
// If the hash registers need updating, write them
if (Reset || NumMfilter > 0) {
for (i = 0; i < MCAST_HASH_BYTES; ++i) {
WriteIoReg8 (LanDriver, LAN91X_MT0 + i, McastHash[i]);
}
}
RcvCtrl = ReadIoReg16 (LanDriver, LAN91X_RCR);
if ((Enable & EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS) != 0) {
RcvCtrl |= RCR_PRMS;
SnpMode->ReceiveFilterSetting |= EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS;
}
if ((Disable & EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS) != 0) {
RcvCtrl &= ~RCR_PRMS;
SnpMode->ReceiveFilterSetting &= ~EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS;
}
if ((Enable & EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST) != 0) {
RcvCtrl |= RCR_ALMUL;
SnpMode->ReceiveFilterSetting |= EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST;
}
if ((Disable & EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST) != 0) {
RcvCtrl &= ~RCR_ALMUL;
SnpMode->ReceiveFilterSetting &= ~EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST;
}
WriteIoReg16 (LanDriver, LAN91X_RCR, RcvCtrl);
Status = SetCurrentMacAddress (LanDriver, &SnpMode->CurrentAddress);
// Restore TPL and return
exit_unlock:
gBS->RestoreTPL (SavedTpl);
return Status;
}
/*
** UEFI StationAddress() function
**
*/
EFI_STATUS
EFIAPI
SnpStationAddress (
IN EFI_SIMPLE_NETWORK_PROTOCOL *Snp,
IN BOOLEAN Reset,
IN EFI_MAC_ADDRESS *NewMac
)
{
LAN91X_DRIVER *LanDriver;
EFI_TPL SavedTpl;
EFI_STATUS Status;
// Check Snp instance
if (Snp == NULL) {
return EFI_INVALID_PARAMETER;
}
// Serialize access to data and registers
SavedTpl = gBS->RaiseTPL (LAN91X_TPL);
// Check that driver was started and initialised
switch (Snp->Mode->State) {
case EfiSimpleNetworkInitialized:
break;
case EfiSimpleNetworkStarted:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not yet initialized\n"));
ReturnUnlock (EFI_DEVICE_ERROR);
case EfiSimpleNetworkStopped:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not started\n"));
ReturnUnlock (EFI_NOT_STARTED);
default:
DEBUG ((DEBUG_ERROR, "LAN91x: Driver in an invalid state: %u\n",
(UINTN)Snp->Mode->State));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Find the LanDriver structure
LanDriver = INSTANCE_FROM_SNP_THIS(Snp);
if (Reset) {
Snp->Mode->CurrentAddress = Snp->Mode->PermanentAddress;
} else {
if (NewMac == NULL) {
ReturnUnlock (EFI_INVALID_PARAMETER);
}
Snp->Mode->CurrentAddress = *NewMac;
}
Status = SetCurrentMacAddress (LanDriver, &Snp->Mode->CurrentAddress);
// Restore TPL and return
exit_unlock:
gBS->RestoreTPL (SavedTpl);
return Status;
}
/*
** UEFI Statistics() function
**
*/
EFI_STATUS
EFIAPI
SnpStatistics (
IN EFI_SIMPLE_NETWORK_PROTOCOL* Snp,
IN BOOLEAN Reset,
IN OUT UINTN *StatSize,
OUT EFI_NETWORK_STATISTICS *Statistics
)
{
LAN91X_DRIVER *LanDriver;
EFI_TPL SavedTpl;
EFI_STATUS Status;
// Check Snp instance
if (Snp == NULL) {
return EFI_INVALID_PARAMETER;
}
// Check pointless condition
if ((!Reset) && (StatSize == NULL) && (Statistics == NULL)) {
return EFI_SUCCESS;
}
// Check the parameters
if ((StatSize == NULL) && (Statistics != NULL)) {
return EFI_INVALID_PARAMETER;
}
// Serialize access to data and registers
SavedTpl = gBS->RaiseTPL (LAN91X_TPL);
// Check that driver was started and initialised
switch (Snp->Mode->State) {
case EfiSimpleNetworkInitialized:
break;
case EfiSimpleNetworkStarted:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not yet initialized\n"));
ReturnUnlock (EFI_DEVICE_ERROR);
case EfiSimpleNetworkStopped:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not started\n"));
ReturnUnlock (EFI_NOT_STARTED);
default:
DEBUG ((DEBUG_ERROR, "LAN91x: Driver in an invalid state: %u\n",
(UINTN)Snp->Mode->State));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Find the LanDriver structure
LanDriver = INSTANCE_FROM_SNP_THIS(Snp);
// Do a reset if required
if (Reset) {
ZeroMem (&LanDriver->Stats, sizeof(EFI_NETWORK_STATISTICS));
}
// Check buffer size
if (*StatSize < sizeof(EFI_NETWORK_STATISTICS)) {
*StatSize = sizeof(EFI_NETWORK_STATISTICS);
ReturnUnlock (EFI_BUFFER_TOO_SMALL);
goto exit_unlock;
}
// Fill in the statistics
CopyMem(&Statistics, &LanDriver->Stats, sizeof(EFI_NETWORK_STATISTICS));
Status = EFI_SUCCESS;
// Restore TPL and return
exit_unlock:
gBS->RestoreTPL (SavedTpl);
return Status;
}
/*
** UEFI MCastIPtoMAC() function
**
*/
EFI_STATUS
EFIAPI
SnpMcastIptoMac (
IN EFI_SIMPLE_NETWORK_PROTOCOL* Snp,
IN BOOLEAN IsIpv6,
IN EFI_IP_ADDRESS *Ip,
OUT EFI_MAC_ADDRESS *McastMac
)
{
// Check Snp instance
if (Snp == NULL) {
return EFI_INVALID_PARAMETER;
}
// Check parameters
if ((McastMac == NULL) || (Ip == NULL)) {
return EFI_INVALID_PARAMETER;
}
// Make sure MAC address is empty
ZeroMem (McastMac, sizeof(EFI_MAC_ADDRESS));
// If we need ipv4 address
if (!IsIpv6) {
// Most significant 25 bits of a multicast HW address are set
McastMac->Addr[0] = 0x01;
McastMac->Addr[1] = 0x00;
McastMac->Addr[2] = 0x5E;
// Lower 23 bits from ipv4 address
McastMac->Addr[3] = (Ip->v4.Addr[1] & 0x7F); // Clear the ms bit (25th bit of MAC must be 0)
McastMac->Addr[4] = Ip->v4.Addr[2];
McastMac->Addr[5] = Ip->v4.Addr[3];
} else {
// Most significant 16 bits of multicast v6 HW address are set
McastMac->Addr[0] = 0x33;
McastMac->Addr[1] = 0x33;
// lower four octets are taken from ipv6 address
McastMac->Addr[2] = Ip->v6.Addr[8];
McastMac->Addr[3] = Ip->v6.Addr[9];
McastMac->Addr[4] = Ip->v6.Addr[10];
McastMac->Addr[5] = Ip->v6.Addr[11];
}
return EFI_SUCCESS;
}
/*
** UEFI NvData() function
**
*/
EFI_STATUS
EFIAPI
SnpNvData (
IN EFI_SIMPLE_NETWORK_PROTOCOL* pobj,
IN BOOLEAN read_write,
IN UINTN offset,
IN UINTN buff_size,
IN OUT VOID *data
)
{
DEBUG ((DEBUG_ERROR, "LAN91x: Non-volatile storage not supported\n"));
return EFI_UNSUPPORTED;
}
/*
** UEFI GetStatus () function
**
*/
EFI_STATUS
EFIAPI
SnpGetStatus (
IN EFI_SIMPLE_NETWORK_PROTOCOL *Snp,
OUT UINT32 *IrqStat OPTIONAL,
OUT VOID **TxBuff OPTIONAL
)
{
LAN91X_DRIVER *LanDriver;
EFI_TPL SavedTpl;
EFI_STATUS Status;
BOOLEAN MediaPresent;
UINT8 IstReg;
MSK_LINKED_SYSTEM_BUF *LinkedTXRecycleBuff;
// Check preliminaries
if (Snp == NULL) {
return EFI_INVALID_PARAMETER;
}
// Serialize access to data and registers
SavedTpl = gBS->RaiseTPL (LAN91X_TPL);
// Check that driver was started and initialised
switch (Snp->Mode->State) {
case EfiSimpleNetworkInitialized:
break;
case EfiSimpleNetworkStarted:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not yet initialized\n"));
ReturnUnlock (EFI_DEVICE_ERROR);
case EfiSimpleNetworkStopped:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not started\n"));
ReturnUnlock (EFI_NOT_STARTED);
default:
DEBUG ((DEBUG_ERROR, "LAN91x: Driver in an invalid state: %u\n",
(UINTN)Snp->Mode->State));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Find the LanDriver structure
LanDriver = INSTANCE_FROM_SNP_THIS(Snp);
// Arbitrarily set the interrupt status to 0
if (IrqStat != NULL) {
*IrqStat = 0;
IstReg = ReadIoReg8 (LanDriver, LAN91X_IST);
if ((IstReg & IST_RCV) != 0) {
*IrqStat |= EFI_SIMPLE_NETWORK_RECEIVE_INTERRUPT;
}
if ((IstReg & IST_TX) != 0) {
*IrqStat |= EFI_SIMPLE_NETWORK_TRANSMIT_INTERRUPT;
}
}
// Pass back the completed buffer address
// The transmit buffer status is not read when TxBuf is NULL
if (TxBuff != NULL) {
*((UINT8 **) TxBuff) = (UINT8 *) 0;
if( !IsListEmpty (&LanDriver->TransmitQueueHead))
{
LinkedTXRecycleBuff = CR (GetFirstNode (&LanDriver->TransmitQueueHead), MSK_LINKED_SYSTEM_BUF, Link, TX_MBUF_SIGNATURE);
if(LinkedTXRecycleBuff != NULL) {
*TxBuff = LinkedTXRecycleBuff->SystemBuf.Buf;
RemoveEntryList (&LinkedTXRecycleBuff->Link);
FreePool (LinkedTXRecycleBuff);
}
}
}
// Update the media status
MediaPresent = CheckLinkStatus (LanDriver);
if (MediaPresent != Snp->Mode->MediaPresent) {
DEBUG ((DEBUG_WARN, "LAN91x: Link %s\n", MediaPresent ? L"up" : L"down"));
}
Snp->Mode->MediaPresent = MediaPresent;
Status = EFI_SUCCESS;
// Restore TPL and return
exit_unlock:
gBS->RestoreTPL (SavedTpl);
return Status;
}
/*
** UEFI Transmit() function
**
*/
EFI_STATUS
EFIAPI
SnpTransmit (
IN EFI_SIMPLE_NETWORK_PROTOCOL *Snp,
IN UINTN HdrSize,
IN UINTN BufSize,
IN VOID *BufAddr,
IN EFI_MAC_ADDRESS *SrcAddr OPTIONAL,
IN EFI_MAC_ADDRESS *DstAddr OPTIONAL,
IN UINT16 *Protocol OPTIONAL
)
{
LAN91X_DRIVER *LanDriver;
EFI_TPL SavedTpl;
EFI_STATUS Status;
UINT8 *Ptr;
UINTN Len;
UINTN MmuPages;
UINTN Retries;
UINT16 Proto;
UINT8 PktNum;
MSK_LINKED_SYSTEM_BUF *LinkedTXRecycleBuff;
// Check preliminaries
if ((Snp == NULL) || (BufAddr == NULL)) {
DEBUG ((DEBUG_ERROR, "LAN91x: SnpTransmit(): NULL Snp (%p) or BufAddr (%p)\n",
Snp, BufAddr));
return EFI_INVALID_PARAMETER;
}
// Serialize access to data and registers
SavedTpl = gBS->RaiseTPL (LAN91X_TPL);
// Check that driver was started and initialised
switch (Snp->Mode->State) {
case EfiSimpleNetworkInitialized:
break;
case EfiSimpleNetworkStarted:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not yet initialized\n"));
ReturnUnlock (EFI_DEVICE_ERROR);
case EfiSimpleNetworkStopped:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not started\n"));
ReturnUnlock (EFI_NOT_STARTED);
default:
DEBUG ((DEBUG_ERROR, "LAN91x: Driver in an invalid state: %u\n",
(UINTN)Snp->Mode->State));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Find the LanDriver structure
LanDriver = INSTANCE_FROM_SNP_THIS(Snp);
// Ensure header is correct size if non-zero
if (HdrSize != 0) {
if (HdrSize != Snp->Mode->MediaHeaderSize) {
DEBUG ((DEBUG_ERROR, "LAN91x: SnpTransmit(): Invalid HdrSize %d\n", HdrSize));
ReturnUnlock (EFI_INVALID_PARAMETER);
}
if ((DstAddr == NULL) || (Protocol == NULL)) {
DEBUG ((DEBUG_ERROR, "LAN91x: SnpTransmit(): NULL DstAddr %p or Protocol %p\n",
DstAddr, Protocol));
ReturnUnlock (EFI_INVALID_PARAMETER);
}
}
// Before transmitting check the link status
if (!Snp->Mode->MediaPresent) {
DEBUG ((DEBUG_WARN, "LAN91x: SnpTransmit(): Link not ready\n"));
ReturnUnlock (EFI_NOT_READY);
}
// Calculate the request size in 256-byte "pages" minus 1
// The 91C111 ignores this, but some older devices need it.
MmuPages = ((BufSize & ~1) + LAN91X_PKT_OVERHEAD - 1) >> 8;
if (MmuPages > 7) {
DEBUG ((DEBUG_WARN, "LAN91x: Tx buffer too large (%d bytes)\n", BufSize));
LanDriver->Stats.TxOversizeFrames += 1;
LanDriver->Stats.TxDroppedFrames += 1;
ReturnUnlock (EFI_BAD_BUFFER_SIZE);
}
// Request allocation of a transmit buffer
Status = MmuOperation (LanDriver, MMUCR_OP_TX_ALLOC | MmuPages);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "LAN91x: Tx buffer request failure: %d\n", Status));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Wait for allocation request completion
Retries = LAN91X_MEMORY_ALLOC_POLLS;
while ((ReadIoReg8 (LanDriver, LAN91X_IST) & IST_ALLOC) == 0) {
if (--Retries == 0) {
DEBUG ((DEBUG_ERROR, "LAN91x: Tx buffer allocation timeout\n"));
ReturnUnlock (EFI_TIMEOUT);
}
}
// Check for successful allocation
PktNum = ReadIoReg8 (LanDriver, LAN91X_ARR);
if ((PktNum & ARR_FAILED) != 0) {
DEBUG ((DEBUG_ERROR, "LAN91x: Tx buffer allocation failure: %02x\n", PktNum));
ReturnUnlock (EFI_NOT_READY);
}
PktNum &= ARR_PACKET;
// Check for the nature of the frame
// If no destination address, it's ARP broadcast
if(DstAddr != NULL)
{
if (DstAddr->Addr[0] == 0xFF) {
LanDriver->Stats.TxBroadcastFrames += 1;
} else if ((DstAddr->Addr[0] & 0x1) == 1) {
LanDriver->Stats.TxMulticastFrames += 1;
} else {
LanDriver->Stats.TxUnicastFrames += 1;
}
} else {
LanDriver->Stats.TxBroadcastFrames += 1;
}
// Set the Packet Number and Pointer registers
WriteIoReg8 (LanDriver, LAN91X_PNR, PktNum);
WriteIoReg16 (LanDriver, LAN91X_PTR, PTR_AUTO_INCR);
// Set up mutable buffer information variables
Ptr = BufAddr;
Len = BufSize;
// Write Status and Byte Count first
WriteIoReg16 (LanDriver, LAN91X_DATA0, 0);
WriteIoReg16 (LanDriver, LAN91X_DATA0, (Len + LAN91X_PKT_OVERHEAD) & BCW_COUNT);
// This packet may come with a preconfigured Ethernet header.
// If not, we need to construct one from optional parameters.
if (HdrSize) {
// Write the destination address
WriteIoData (LanDriver, DstAddr, NET_ETHER_ADDR_LEN);
// Write the Source Address
if (SrcAddr != NULL) {
WriteIoData (LanDriver, SrcAddr, NET_ETHER_ADDR_LEN);
} else {
WriteIoData (LanDriver, &LanDriver->SnpMode.CurrentAddress, NET_ETHER_ADDR_LEN);
}
// Write the Protocol word
Proto = HTONS (*Protocol);
WriteIoReg16 (LanDriver, LAN91X_DATA0, Proto);
// Adjust the data start and length
Ptr += sizeof(ETHER_HEAD);
Len -= sizeof(ETHER_HEAD);
}
// Copy the remainder data buffer, except the odd byte
WriteIoData (LanDriver, Ptr, Len & ~1);
Ptr += Len & ~1;
Len &= 1;
// Write the Packet Control Word and odd byte
WriteIoReg16 (LanDriver, LAN91X_DATA0,
(Len != 0) ? (PCW_ODD | PCW_CRC | *Ptr) : PCW_CRC);
// Release the packet for transmission
Status = MmuOperation (LanDriver, MMUCR_OP_TX_PUSH);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "LAN91x: Tx buffer release failure: %d\n", Status));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Update the Tx statistics
LanDriver->Stats.TxTotalBytes += BufSize;
LanDriver->Stats.TxGoodFrames += 1;
// Update the Tx Buffer cache
LinkedTXRecycleBuff = AllocateZeroPool (sizeof (MSK_LINKED_SYSTEM_BUF));
if (LinkedTXRecycleBuff == NULL) {
return EFI_OUT_OF_RESOURCES;
}
LinkedTXRecycleBuff->Signature = TX_MBUF_SIGNATURE;
//
// Add the passed Buffer to the transmit queue. Don't copy.
//
LinkedTXRecycleBuff->SystemBuf.Buf = BufAddr;
LinkedTXRecycleBuff->SystemBuf.Length = BufSize;
InsertTailList (&LanDriver->TransmitQueueHead, &LinkedTXRecycleBuff->Link);
Status = EFI_SUCCESS;
// Dump the packet header
#if LAN91X_PRINT_PACKET_HEADERS
Ptr = BufAddr;
DEBUG ((DEBUG_ERROR, "LAN91X:SnpTransmit()\n"));
DEBUG ((DEBUG_ERROR, " HdrSize: %d, SrcAddr: %p, Length: %d, Last byte: %02x\n",
HdrSize, SrcAddr, BufSize, Ptr[BufSize - 1]));
PrintIpDgram (
(HdrSize == 0) ? (EFI_MAC_ADDRESS *)&Ptr[0] : DstAddr,
(HdrSize == 0) ? (EFI_MAC_ADDRESS *)&Ptr[6] : (SrcAddr != NULL) ? SrcAddr : &LanDriver->SnpMode.CurrentAddress,
(HdrSize == 0) ? (UINT16 *)&Ptr[12] : &Proto,
&Ptr[14]
);
#endif
// Restore TPL and return
exit_unlock:
gBS->RestoreTPL (SavedTpl);
return Status;
}
/*
** UEFI Receive() function
**
*/
EFI_STATUS
EFIAPI
SnpReceive (
IN EFI_SIMPLE_NETWORK_PROTOCOL *Snp,
OUT UINTN *HdrSize OPTIONAL,
IN OUT UINTN *BuffSize,
OUT VOID *Data,
OUT EFI_MAC_ADDRESS *SrcAddr OPTIONAL,
OUT EFI_MAC_ADDRESS *DstAddr OPTIONAL,
OUT UINT16 *Protocol OPTIONAL
)
{
EFI_TPL SavedTpl;
EFI_STATUS Status;
LAN91X_DRIVER *LanDriver;
UINT8 *DataPtr;
UINT16 PktStatus;
UINT16 PktLength;
UINT16 PktControl;
UINT8 IstReg;
// Check preliminaries
if ((Snp == NULL) || (Data == NULL)) {
return EFI_INVALID_PARAMETER;
}
// Serialize access to data and registers
SavedTpl = gBS->RaiseTPL (LAN91X_TPL);
// Check that driver was started and initialised
switch (Snp->Mode->State) {
case EfiSimpleNetworkInitialized:
break;
case EfiSimpleNetworkStarted:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not yet initialized\n"));
ReturnUnlock (EFI_DEVICE_ERROR);
case EfiSimpleNetworkStopped:
DEBUG ((DEBUG_WARN, "LAN91x: Driver not started\n"));
ReturnUnlock (EFI_NOT_STARTED);
default:
DEBUG ((DEBUG_ERROR, "LAN91x: Driver in an invalid state: %u\n",
(UINTN)Snp->Mode->State));
ReturnUnlock (EFI_DEVICE_ERROR);
}
// Find the LanDriver structure
LanDriver = INSTANCE_FROM_SNP_THIS(Snp);
// Check for Rx Overrun
IstReg = ReadIoReg8 (LanDriver, LAN91X_IST);
if ((IstReg & IST_RX_OVRN) != 0) {
LanDriver->Stats.RxTotalFrames += 1;
LanDriver->Stats.RxDroppedFrames += 1;
WriteIoReg8 (LanDriver, LAN91X_IST, IST_RX_OVRN);
DEBUG ((DEBUG_WARN, "LAN91x: Receiver overrun\n"));
}
// Check for Rx data available
if ((IstReg & IST_RCV) == 0) {
ReturnUnlock (EFI_NOT_READY);
}
// Configure the PTR register for reading
WriteIoReg16 (LanDriver, LAN91X_PTR, PTR_RCV | PTR_AUTO_INCR | PTR_READ);
// Read the Packet Status and Packet Length words
PktStatus = ReadIoReg16 (LanDriver, LAN91X_DATA0);
PktLength = ReadIoReg16 (LanDriver, LAN91X_DATA0) & BCW_COUNT;
// Check for valid received packet
if ((PktStatus == 0) && (PktLength == 0)) {
DEBUG ((DEBUG_WARN, "LAN91x: Received zero-length packet. IST=%04x\n", IstReg));
ReturnUnlock (EFI_NOT_READY);
}
LanDriver->Stats.RxTotalFrames += 1;
// Check if we got a CRC error
if ((PktStatus & RX_BAD_CRC) != 0) {
DEBUG ((DEBUG_WARN, "LAN91x: Received frame CRC error\n"));
LanDriver->Stats.RxCrcErrorFrames += 1;
LanDriver->Stats.RxDroppedFrames += 1;
Status = EFI_DEVICE_ERROR;
goto exit_release;
}
// Check if we got a too-short frame
if ((PktStatus & RX_TOO_SHORT) != 0) {
DEBUG ((DEBUG_WARN, "LAN91x: Received frame too short (%d bytes)\n", PktLength));
LanDriver->Stats.RxUndersizeFrames += 1;
LanDriver->Stats.RxDroppedFrames += 1;
Status = EFI_DEVICE_ERROR;
goto exit_release;
}
// Check if we got a too-long frame
if ((PktStatus & RX_TOO_LONG) != 0) {
DEBUG ((DEBUG_WARN, "LAN91x: Received frame too long (%d bytes)\n", PktLength));
LanDriver->Stats.RxOversizeFrames += 1;
LanDriver->Stats.RxDroppedFrames += 1;
Status = EFI_DEVICE_ERROR;
goto exit_release;
}
// Check if we got an alignment error
if ((PktStatus & RX_ALGN_ERR) != 0) {
DEBUG ((DEBUG_WARN, "LAN91x: Received frame alignment error\n"));
// Don't seem to keep track of these specifically
LanDriver->Stats.RxDroppedFrames += 1;
Status = EFI_DEVICE_ERROR;
goto exit_release;
}
// Classify the received fram
if ((PktStatus & RX_MULTICAST) != 0) {
LanDriver->Stats.RxMulticastFrames += 1;
} else if ((PktStatus & RX_BROADCAST) != 0) {
LanDriver->Stats.RxBroadcastFrames += 1;
} else {
LanDriver->Stats.RxUnicastFrames += 1;
}
// Calculate the received packet data length
PktLength -= LAN91X_PKT_OVERHEAD;
if ((PktStatus & RX_ODD_FRAME) != 0) {
PktLength += 1;
}
// Check buffer size
if (*BuffSize < PktLength) {
DEBUG ((DEBUG_WARN, "LAN91x: Receive buffer too small for packet (%d < %d)\n",
*BuffSize, PktLength));
*BuffSize = PktLength;
Status = EFI_BUFFER_TOO_SMALL;
goto exit_release;
}
// Transfer the data bytes
DataPtr = Data;
ReadIoData (LanDriver, DataPtr, PktLength & ~0x0001);
// Read the PktControl and Odd Byte from the FIFO
PktControl = ReadIoReg16 (LanDriver, LAN91X_DATA0);
if ((PktControl & PCW_ODD) != 0) {
DataPtr[PktLength - 1] = PktControl & PCW_ODD_BYTE;
}
// Update buffer size
*BuffSize = PktLength;
if (HdrSize != NULL) {
*HdrSize = LanDriver->SnpMode.MediaHeaderSize;
}
// Extract the destination address
if (DstAddr != NULL) {
CopyMem (DstAddr, &DataPtr[0], NET_ETHER_ADDR_LEN);
}
// Get the source address
if (SrcAddr != NULL) {
CopyMem (SrcAddr, &DataPtr[6], NET_ETHER_ADDR_LEN);
}
// Get the protocol
if (Protocol != NULL) {
*Protocol = NTOHS (*(UINT16*)(&DataPtr[12]));
}
// Update the Rx statistics
LanDriver->Stats.RxTotalBytes += PktLength;
LanDriver->Stats.RxGoodFrames += 1;
Status = EFI_SUCCESS;
#if LAN91X_PRINT_PACKET_HEADERS
// Dump the packet header
DEBUG ((DEBUG_ERROR, "LAN91X:SnpReceive()\n"));
DEBUG ((DEBUG_ERROR, " HdrSize: %p, SrcAddr: %p, DstAddr: %p, Protocol: %p\n",
HdrSize, SrcAddr, DstAddr, Protocol));
DEBUG ((DEBUG_ERROR, " Length: %d, Last byte: %02x\n", PktLength, DataPtr[PktLength - 1]));
PrintIpDgram (&DataPtr[0], &DataPtr[6], &DataPtr[12], &DataPtr[14]);
#endif
// Release the FIFO buffer
exit_release:
MmuOperation (LanDriver, MMUCR_OP_RX_POP_REL);
// Restore TPL and return
exit_unlock:
gBS->RestoreTPL (SavedTpl);
return Status;
}
/*------------------ Driver Execution Environment main entry point ------------------*/
/*
** Entry point for the LAN91x driver
**
*/
EFI_STATUS
Lan91xDxeEntry (
IN EFI_HANDLE Handle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
LAN91X_DRIVER *LanDriver;
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
EFI_SIMPLE_NETWORK_MODE *SnpMode;
LAN91X_DEVICE_PATH *Lan91xPath;
// The PcdLan91xDxeBaseAddress PCD must be defined
ASSERT(PcdGet32 (PcdLan91xDxeBaseAddress) != 0);
// Allocate Resources
LanDriver = AllocateZeroPool (sizeof(LAN91X_DRIVER));
Lan91xPath = AllocateCopyPool (sizeof(LAN91X_DEVICE_PATH), &Lan91xPathTemplate);
// Initialize I/O Space access info
LanDriver->IoBase = PcdGet32 (PcdLan91xDxeBaseAddress);
LanDriver->PhyAd = LAN91X_NO_PHY;
LanDriver->BankSel = 0xff;
// Initialize pointers
Snp = &(LanDriver->Snp);
SnpMode = &(LanDriver->SnpMode);
Snp->Mode = SnpMode;
// Set the signature of the LAN Driver structure
LanDriver->Signature = LAN91X_SIGNATURE;
// Probe the device
Status = Probe (LanDriver);
if (EFI_ERROR(Status)) {
DEBUG ((DEBUG_ERROR, "LAN91x:Lan91xDxeEntry(): Probe failed with status %d\n", Status));
return Status;
}
#ifdef LAN91X_PRINT_REGISTERS
PrintIoRegisters (LanDriver);
PrintPhyRegisters (LanDriver);
#endif
// Initialize transmit queue
InitializeListHead (&LanDriver->TransmitQueueHead);
// Assign fields and func pointers
Snp->Revision = EFI_SIMPLE_NETWORK_PROTOCOL_REVISION;
Snp->WaitForPacket = NULL;
Snp->Initialize = SnpInitialize;
Snp->Start = SnpStart;
Snp->Stop = SnpStop;
Snp->Reset = SnpReset;
Snp->Shutdown = SnpShutdown;
Snp->ReceiveFilters = SnpReceiveFilters;
Snp->StationAddress = SnpStationAddress;
Snp->Statistics = SnpStatistics;
Snp->MCastIpToMac = SnpMcastIptoMac;
Snp->NvData = SnpNvData;
Snp->GetStatus = SnpGetStatus;
Snp->Transmit = SnpTransmit;
Snp->Receive = SnpReceive;
// Fill in simple network mode structure
SnpMode->State = EfiSimpleNetworkStopped;
SnpMode->HwAddressSize = NET_ETHER_ADDR_LEN; // HW address is 6 bytes
SnpMode->MediaHeaderSize = sizeof(ETHER_HEAD); // Size of an Ethernet header
SnpMode->MaxPacketSize = EFI_PAGE_SIZE; // Ethernet Frame (with VLAN tag +4 bytes)
// Supported receive filters
SnpMode->ReceiveFilterMask = EFI_SIMPLE_NETWORK_RECEIVE_UNICAST |
EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST |
EFI_SIMPLE_NETWORK_RECEIVE_BROADCAST |
EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS |
EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST;
// Initially-enabled receive filters
SnpMode->ReceiveFilterSetting = EFI_SIMPLE_NETWORK_RECEIVE_UNICAST |
EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST |
EFI_SIMPLE_NETWORK_RECEIVE_BROADCAST;
// LAN91x has 64bit hash table. We can filter an infinite MACs, but
// higher-level software must filter out any hash collisions.
SnpMode->MaxMCastFilterCount = MAX_MCAST_FILTER_CNT;
SnpMode->MCastFilterCount = 0;
ZeroMem (&SnpMode->MCastFilter, MAX_MCAST_FILTER_CNT * sizeof(EFI_MAC_ADDRESS));
// Set the interface type (1: Ethernet or 6: IEEE 802 Networks)
SnpMode->IfType = NET_IFTYPE_ETHERNET;
// Mac address is changeable
SnpMode->MacAddressChangeable = TRUE;
// We can only transmit one packet at a time
SnpMode->MultipleTxSupported = FALSE;
// MediaPresent checks for cable connection and partner link
SnpMode->MediaPresentSupported = TRUE;
SnpMode->MediaPresent = FALSE;
// Set broadcast address
SetMem (&SnpMode->BroadcastAddress, sizeof (EFI_MAC_ADDRESS), 0xFF);
// Assign fields for device path
Lan91xPath->Lan91x.MacAddress = SnpMode->PermanentAddress;
Lan91xPath->Lan91x.IfType = SnpMode->IfType;
// Initialise the protocol
Status = gBS->InstallMultipleProtocolInterfaces (
&LanDriver->ControllerHandle,
&gEfiSimpleNetworkProtocolGuid, Snp,
&gEfiDevicePathProtocolGuid, Lan91xPath,
NULL
);
// Say what the status of loading the protocol structure is
if (EFI_ERROR(Status)) {
FreePool (LanDriver);
}
return Status;
}