mirror of https://github.com/acidanthera/audk.git
1598 lines
50 KiB
C
1598 lines
50 KiB
C
/** @file
|
|
Implement image verification services for secure boot service in UEFI2.3.1.
|
|
|
|
Copyright (c) 2009 - 2012, Intel Corporation. All rights reserved.<BR>
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include "DxeImageVerificationLib.h"
|
|
|
|
EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION mNtHeader;
|
|
UINTN mImageSize;
|
|
UINT32 mPeCoffHeaderOffset;
|
|
UINT8 mImageDigest[MAX_DIGEST_SIZE];
|
|
UINTN mImageDigestSize;
|
|
EFI_IMAGE_DATA_DIRECTORY *mSecDataDir = NULL;
|
|
UINT8 *mImageBase = NULL;
|
|
EFI_GUID mCertType;
|
|
|
|
//
|
|
// Notify string for authorization UI.
|
|
//
|
|
CHAR16 mNotifyString1[MAX_NOTIFY_STRING_LEN] = L"Image verification pass but not found in authorized database!";
|
|
CHAR16 mNotifyString2[MAX_NOTIFY_STRING_LEN] = L"Launch this image anyway? (Yes/Defer/No)";
|
|
//
|
|
// Public Exponent of RSA Key.
|
|
//
|
|
CONST UINT8 mRsaE[] = { 0x01, 0x00, 0x01 };
|
|
|
|
|
|
//
|
|
// OID ASN.1 Value for Hash Algorithms
|
|
//
|
|
UINT8 mHashOidValue[] = {
|
|
0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, // OBJ_md5
|
|
0x2B, 0x0E, 0x03, 0x02, 0x1A, // OBJ_sha1
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, // OBJ_sha224
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, // OBJ_sha256
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, // OBJ_sha384
|
|
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, // OBJ_sha512
|
|
};
|
|
|
|
HASH_TABLE mHash[] = {
|
|
{ L"SHA1", 20, &mHashOidValue[8], 5, Sha1GetContextSize, Sha1Init, Sha1Update, Sha1Final },
|
|
{ L"SHA224", 28, &mHashOidValue[13], 9, NULL, NULL, NULL, NULL },
|
|
{ L"SHA256", 32, &mHashOidValue[22], 9, Sha256GetContextSize,Sha256Init, Sha256Update, Sha256Final},
|
|
{ L"SHA384", 48, &mHashOidValue[31], 9, NULL, NULL, NULL, NULL },
|
|
{ L"SHA512", 64, &mHashOidValue[40], 9, NULL, NULL, NULL, NULL }
|
|
};
|
|
|
|
/**
|
|
Reads contents of a PE/COFF image in memory buffer.
|
|
|
|
@param FileHandle Pointer to the file handle to read the PE/COFF image.
|
|
@param FileOffset Offset into the PE/COFF image to begin the read operation.
|
|
@param ReadSize On input, the size in bytes of the requested read operation.
|
|
On output, the number of bytes actually read.
|
|
@param Buffer Output buffer that contains the data read from the PE/COFF image.
|
|
|
|
@retval EFI_SUCCESS The specified portion of the PE/COFF image was read and the size
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
DxeImageVerificationLibImageRead (
|
|
IN VOID *FileHandle,
|
|
IN UINTN FileOffset,
|
|
IN OUT UINTN *ReadSize,
|
|
OUT VOID *Buffer
|
|
)
|
|
{
|
|
UINTN EndPosition;
|
|
|
|
if (FileHandle == NULL || ReadSize == NULL || Buffer == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
if (MAX_ADDRESS - FileOffset < *ReadSize) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
EndPosition = FileOffset + *ReadSize;
|
|
if (EndPosition > mImageSize) {
|
|
*ReadSize = (UINT32)(mImageSize - FileOffset);
|
|
}
|
|
|
|
if (FileOffset >= mImageSize) {
|
|
*ReadSize = 0;
|
|
}
|
|
|
|
CopyMem (Buffer, (UINT8 *)((UINTN) FileHandle + FileOffset), *ReadSize);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Get the image type.
|
|
|
|
@param[in] File This is a pointer to the device path of the file that is
|
|
being dispatched.
|
|
|
|
@return UINT32 Image Type
|
|
|
|
**/
|
|
UINT32
|
|
GetImageType (
|
|
IN CONST EFI_DEVICE_PATH_PROTOCOL *File
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_HANDLE DeviceHandle;
|
|
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
|
|
EFI_BLOCK_IO_PROTOCOL *BlockIo;
|
|
|
|
//
|
|
// First check to see if File is from a Firmware Volume
|
|
//
|
|
DeviceHandle = NULL;
|
|
TempDevicePath = (EFI_DEVICE_PATH_PROTOCOL *) File;
|
|
Status = gBS->LocateDevicePath (
|
|
&gEfiFirmwareVolume2ProtocolGuid,
|
|
&TempDevicePath,
|
|
&DeviceHandle
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
Status = gBS->OpenProtocol (
|
|
DeviceHandle,
|
|
&gEfiFirmwareVolume2ProtocolGuid,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
EFI_OPEN_PROTOCOL_TEST_PROTOCOL
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
return IMAGE_FROM_FV;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Next check to see if File is from a Block I/O device
|
|
//
|
|
DeviceHandle = NULL;
|
|
TempDevicePath = (EFI_DEVICE_PATH_PROTOCOL *) File;
|
|
Status = gBS->LocateDevicePath (
|
|
&gEfiBlockIoProtocolGuid,
|
|
&TempDevicePath,
|
|
&DeviceHandle
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
BlockIo = NULL;
|
|
Status = gBS->OpenProtocol (
|
|
DeviceHandle,
|
|
&gEfiBlockIoProtocolGuid,
|
|
(VOID **) &BlockIo,
|
|
NULL,
|
|
NULL,
|
|
EFI_OPEN_PROTOCOL_GET_PROTOCOL
|
|
);
|
|
if (!EFI_ERROR (Status) && BlockIo != NULL) {
|
|
if (BlockIo->Media != NULL) {
|
|
if (BlockIo->Media->RemovableMedia) {
|
|
//
|
|
// Block I/O is present and specifies the media is removable
|
|
//
|
|
return IMAGE_FROM_REMOVABLE_MEDIA;
|
|
} else {
|
|
//
|
|
// Block I/O is present and specifies the media is not removable
|
|
//
|
|
return IMAGE_FROM_FIXED_MEDIA;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// File is not in a Firmware Volume or on a Block I/O device, so check to see if
|
|
// the device path supports the Simple File System Protocol.
|
|
//
|
|
DeviceHandle = NULL;
|
|
TempDevicePath = (EFI_DEVICE_PATH_PROTOCOL *) File;
|
|
Status = gBS->LocateDevicePath (
|
|
&gEfiSimpleFileSystemProtocolGuid,
|
|
&TempDevicePath,
|
|
&DeviceHandle
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// Simple File System is present without Block I/O, so assume media is fixed.
|
|
//
|
|
return IMAGE_FROM_FIXED_MEDIA;
|
|
}
|
|
|
|
//
|
|
// File is not from an FV, Block I/O or Simple File System, so the only options
|
|
// left are a PCI Option ROM and a Load File Protocol such as a PXE Boot from a NIC.
|
|
//
|
|
TempDevicePath = (EFI_DEVICE_PATH_PROTOCOL *) File;
|
|
while (!IsDevicePathEndType (TempDevicePath)) {
|
|
switch (DevicePathType (TempDevicePath)) {
|
|
|
|
case MEDIA_DEVICE_PATH:
|
|
if (DevicePathSubType (TempDevicePath) == MEDIA_RELATIVE_OFFSET_RANGE_DP) {
|
|
return IMAGE_FROM_OPTION_ROM;
|
|
}
|
|
break;
|
|
|
|
case MESSAGING_DEVICE_PATH:
|
|
if (DevicePathSubType(TempDevicePath) == MSG_MAC_ADDR_DP) {
|
|
return IMAGE_FROM_REMOVABLE_MEDIA;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
TempDevicePath = NextDevicePathNode (TempDevicePath);
|
|
}
|
|
return IMAGE_UNKNOWN;
|
|
}
|
|
|
|
/**
|
|
Caculate hash of Pe/Coff image based on the authenticode image hashing in
|
|
PE/COFF Specification 8.0 Appendix A
|
|
|
|
@param[in] HashAlg Hash algorithm type.
|
|
|
|
@retval TRUE Successfully hash image.
|
|
@retval FALSE Fail in hash image.
|
|
|
|
**/
|
|
BOOLEAN
|
|
HashPeImage (
|
|
IN UINT32 HashAlg
|
|
)
|
|
{
|
|
BOOLEAN Status;
|
|
UINT16 Magic;
|
|
EFI_IMAGE_SECTION_HEADER *Section;
|
|
VOID *HashCtx;
|
|
UINTN CtxSize;
|
|
UINT8 *HashBase;
|
|
UINTN HashSize;
|
|
UINTN SumOfBytesHashed;
|
|
EFI_IMAGE_SECTION_HEADER *SectionHeader;
|
|
UINTN Index;
|
|
UINTN Pos;
|
|
UINT32 CertSize;
|
|
UINT32 NumberOfRvaAndSizes;
|
|
|
|
HashCtx = NULL;
|
|
SectionHeader = NULL;
|
|
Status = FALSE;
|
|
|
|
if ((HashAlg != HASHALG_SHA1) && (HashAlg != HASHALG_SHA256)) {
|
|
return FALSE;
|
|
}
|
|
|
|
//
|
|
// Initialize context of hash.
|
|
//
|
|
ZeroMem (mImageDigest, MAX_DIGEST_SIZE);
|
|
|
|
if (HashAlg == HASHALG_SHA1) {
|
|
mImageDigestSize = SHA1_DIGEST_SIZE;
|
|
mCertType = gEfiCertSha1Guid;
|
|
} else if (HashAlg == HASHALG_SHA256) {
|
|
mImageDigestSize = SHA256_DIGEST_SIZE;
|
|
mCertType = gEfiCertSha256Guid;
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
|
|
CtxSize = mHash[HashAlg].GetContextSize();
|
|
|
|
HashCtx = AllocatePool (CtxSize);
|
|
if (HashCtx == NULL) {
|
|
return FALSE;
|
|
}
|
|
|
|
// 1. Load the image header into memory.
|
|
|
|
// 2. Initialize a SHA hash context.
|
|
Status = mHash[HashAlg].HashInit(HashCtx);
|
|
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Measuring PE/COFF Image Header;
|
|
// But CheckSum field and SECURITY data directory (certificate) are excluded
|
|
//
|
|
Magic = mNtHeader.Pe32->OptionalHeader.Magic;
|
|
//
|
|
// 3. Calculate the distance from the base of the image header to the image checksum address.
|
|
// 4. Hash the image header from its base to beginning of the image checksum.
|
|
//
|
|
HashBase = mImageBase;
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
HashSize = (UINTN) ((UINT8 *) (&mNtHeader.Pe32->OptionalHeader.CheckSum) - HashBase);
|
|
NumberOfRvaAndSizes = mNtHeader.Pe32->OptionalHeader.NumberOfRvaAndSizes;
|
|
} else if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
HashSize = (UINTN) ((UINT8 *) (&mNtHeader.Pe32Plus->OptionalHeader.CheckSum) - HashBase);
|
|
NumberOfRvaAndSizes = mNtHeader.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes;
|
|
} else {
|
|
//
|
|
// Invalid header magic number.
|
|
//
|
|
Status = FALSE;
|
|
goto Done;
|
|
}
|
|
|
|
Status = mHash[HashAlg].HashUpdate(HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// 5. Skip over the image checksum (it occupies a single ULONG).
|
|
//
|
|
if (NumberOfRvaAndSizes <= EFI_IMAGE_DIRECTORY_ENTRY_SECURITY) {
|
|
//
|
|
// 6. Since there is no Cert Directory in optional header, hash everything
|
|
// from the end of the checksum to the end of image header.
|
|
//
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
HashBase = (UINT8 *) &mNtHeader.Pe32->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = mNtHeader.Pe32->OptionalHeader.SizeOfHeaders - (UINTN) (HashBase - mImageBase);
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
HashBase = (UINT8 *) &mNtHeader.Pe32Plus->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = mNtHeader.Pe32Plus->OptionalHeader.SizeOfHeaders - (UINTN) (HashBase - mImageBase);
|
|
}
|
|
|
|
if (HashSize != 0) {
|
|
Status = mHash[HashAlg].HashUpdate(HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
}
|
|
} else {
|
|
//
|
|
// 7. Hash everything from the end of the checksum to the start of the Cert Directory.
|
|
//
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
HashBase = (UINT8 *) &mNtHeader.Pe32->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = (UINTN) ((UINT8 *) (&mNtHeader.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY]) - HashBase);
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
HashBase = (UINT8 *) &mNtHeader.Pe32Plus->OptionalHeader.CheckSum + sizeof (UINT32);
|
|
HashSize = (UINTN) ((UINT8 *) (&mNtHeader.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY]) - HashBase);
|
|
}
|
|
|
|
if (HashSize != 0) {
|
|
Status = mHash[HashAlg].HashUpdate(HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
}
|
|
|
|
//
|
|
// 8. Skip over the Cert Directory. (It is sizeof(IMAGE_DATA_DIRECTORY) bytes.)
|
|
// 9. Hash everything from the end of the Cert Directory to the end of image header.
|
|
//
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset
|
|
//
|
|
HashBase = (UINT8 *) &mNtHeader.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY + 1];
|
|
HashSize = mNtHeader.Pe32->OptionalHeader.SizeOfHeaders - (UINTN) (HashBase - mImageBase);
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
HashBase = (UINT8 *) &mNtHeader.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY + 1];
|
|
HashSize = mNtHeader.Pe32Plus->OptionalHeader.SizeOfHeaders - (UINTN) (HashBase - mImageBase);
|
|
}
|
|
|
|
if (HashSize != 0) {
|
|
Status = mHash[HashAlg].HashUpdate(HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// 10. Set the SUM_OF_BYTES_HASHED to the size of the header.
|
|
//
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
SumOfBytesHashed = mNtHeader.Pe32->OptionalHeader.SizeOfHeaders;
|
|
} else {
|
|
//
|
|
// Use PE32+ offset
|
|
//
|
|
SumOfBytesHashed = mNtHeader.Pe32Plus->OptionalHeader.SizeOfHeaders;
|
|
}
|
|
|
|
|
|
Section = (EFI_IMAGE_SECTION_HEADER *) (
|
|
mImageBase +
|
|
mPeCoffHeaderOffset +
|
|
sizeof (UINT32) +
|
|
sizeof (EFI_IMAGE_FILE_HEADER) +
|
|
mNtHeader.Pe32->FileHeader.SizeOfOptionalHeader
|
|
);
|
|
|
|
//
|
|
// 11. Build a temporary table of pointers to all the IMAGE_SECTION_HEADER
|
|
// structures in the image. The 'NumberOfSections' field of the image
|
|
// header indicates how big the table should be. Do not include any
|
|
// IMAGE_SECTION_HEADERs in the table whose 'SizeOfRawData' field is zero.
|
|
//
|
|
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) AllocateZeroPool (sizeof (EFI_IMAGE_SECTION_HEADER) * mNtHeader.Pe32->FileHeader.NumberOfSections);
|
|
if (SectionHeader == NULL) {
|
|
Status = FALSE;
|
|
goto Done;
|
|
}
|
|
//
|
|
// 12. Using the 'PointerToRawData' in the referenced section headers as
|
|
// a key, arrange the elements in the table in ascending order. In other
|
|
// words, sort the section headers according to the disk-file offset of
|
|
// the section.
|
|
//
|
|
for (Index = 0; Index < mNtHeader.Pe32->FileHeader.NumberOfSections; Index++) {
|
|
Pos = Index;
|
|
while ((Pos > 0) && (Section->PointerToRawData < SectionHeader[Pos - 1].PointerToRawData)) {
|
|
CopyMem (&SectionHeader[Pos], &SectionHeader[Pos - 1], sizeof (EFI_IMAGE_SECTION_HEADER));
|
|
Pos--;
|
|
}
|
|
CopyMem (&SectionHeader[Pos], Section, sizeof (EFI_IMAGE_SECTION_HEADER));
|
|
Section += 1;
|
|
}
|
|
|
|
//
|
|
// 13. Walk through the sorted table, bring the corresponding section
|
|
// into memory, and hash the entire section (using the 'SizeOfRawData'
|
|
// field in the section header to determine the amount of data to hash).
|
|
// 14. Add the section's 'SizeOfRawData' to SUM_OF_BYTES_HASHED .
|
|
// 15. Repeat steps 13 and 14 for all the sections in the sorted table.
|
|
//
|
|
for (Index = 0; Index < mNtHeader.Pe32->FileHeader.NumberOfSections; Index++) {
|
|
Section = &SectionHeader[Index];
|
|
if (Section->SizeOfRawData == 0) {
|
|
continue;
|
|
}
|
|
HashBase = mImageBase + Section->PointerToRawData;
|
|
HashSize = (UINTN) Section->SizeOfRawData;
|
|
|
|
Status = mHash[HashAlg].HashUpdate(HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
|
|
SumOfBytesHashed += HashSize;
|
|
}
|
|
|
|
//
|
|
// 16. If the file size is greater than SUM_OF_BYTES_HASHED, there is extra
|
|
// data in the file that needs to be added to the hash. This data begins
|
|
// at file offset SUM_OF_BYTES_HASHED and its length is:
|
|
// FileSize - (CertDirectory->Size)
|
|
//
|
|
if (mImageSize > SumOfBytesHashed) {
|
|
HashBase = mImageBase + SumOfBytesHashed;
|
|
|
|
if (NumberOfRvaAndSizes <= EFI_IMAGE_DIRECTORY_ENTRY_SECURITY) {
|
|
CertSize = 0;
|
|
} else {
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
CertSize = mNtHeader.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size;
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
CertSize = mNtHeader.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size;
|
|
}
|
|
}
|
|
|
|
if (mImageSize > CertSize + SumOfBytesHashed) {
|
|
HashSize = (UINTN) (mImageSize - CertSize - SumOfBytesHashed);
|
|
|
|
Status = mHash[HashAlg].HashUpdate(HashCtx, HashBase, HashSize);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
} else if (mImageSize < CertSize + SumOfBytesHashed) {
|
|
Status = FALSE;
|
|
goto Done;
|
|
}
|
|
}
|
|
|
|
Status = mHash[HashAlg].HashFinal(HashCtx, mImageDigest);
|
|
|
|
Done:
|
|
if (HashCtx != NULL) {
|
|
FreePool (HashCtx);
|
|
}
|
|
if (SectionHeader != NULL) {
|
|
FreePool (SectionHeader);
|
|
}
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Recognize the Hash algorithm in PE/COFF Authenticode and caculate hash of
|
|
Pe/Coff image based on the authenticode image hashing in PE/COFF Specification
|
|
8.0 Appendix A
|
|
|
|
@retval EFI_UNSUPPORTED Hash algorithm is not supported.
|
|
@retval EFI_SUCCESS Hash successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
HashPeImageByType (
|
|
VOID
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
WIN_CERTIFICATE_EFI_PKCS *PkcsCertData;
|
|
|
|
PkcsCertData = (WIN_CERTIFICATE_EFI_PKCS *) (mImageBase + mSecDataDir->VirtualAddress);
|
|
|
|
if (PkcsCertData->Hdr.dwLength < sizeof (WIN_CERTIFICATE_EFI_PKCS) + 32) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
for (Index = 0; Index < HASHALG_MAX; Index++) {
|
|
//
|
|
// Check the Hash algorithm in PE/COFF Authenticode.
|
|
// According to PKCS#7 Definition:
|
|
// SignedData ::= SEQUENCE {
|
|
// version Version,
|
|
// digestAlgorithms DigestAlgorithmIdentifiers,
|
|
// contentInfo ContentInfo,
|
|
// .... }
|
|
// The DigestAlgorithmIdentifiers can be used to determine the hash algorithm in PE/COFF hashing
|
|
// This field has the fixed offset (+32) in final Authenticode ASN.1 data.
|
|
// Fixed offset (+32) is calculated based on two bytes of length encoding.
|
|
//
|
|
if ((*(PkcsCertData->CertData + 1) & TWO_BYTE_ENCODE) != TWO_BYTE_ENCODE) {
|
|
//
|
|
// Only support two bytes of Long Form of Length Encoding.
|
|
//
|
|
continue;
|
|
}
|
|
|
|
if (PkcsCertData->Hdr.dwLength < sizeof (WIN_CERTIFICATE_EFI_PKCS) + 32 + mHash[Index].OidLength) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (CompareMem (PkcsCertData->CertData + 32, mHash[Index].OidValue, mHash[Index].OidLength) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Index == HASHALG_MAX) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
//
|
|
// HASH PE Image based on Hash algorithm in PE/COFF Authenticode.
|
|
//
|
|
if (!HashPeImage(Index)) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Returns the size of a given image execution info table in bytes.
|
|
|
|
This function returns the size, in bytes, of the image execution info table specified by
|
|
ImageExeInfoTable. If ImageExeInfoTable is NULL, then 0 is returned.
|
|
|
|
@param ImageExeInfoTable A pointer to a image execution info table structure.
|
|
|
|
@retval 0 If ImageExeInfoTable is NULL.
|
|
@retval Others The size of a image execution info table in bytes.
|
|
|
|
**/
|
|
UINTN
|
|
GetImageExeInfoTableSize (
|
|
EFI_IMAGE_EXECUTION_INFO_TABLE *ImageExeInfoTable
|
|
)
|
|
{
|
|
UINTN Index;
|
|
EFI_IMAGE_EXECUTION_INFO *ImageExeInfoItem;
|
|
UINTN TotalSize;
|
|
|
|
if (ImageExeInfoTable == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
ImageExeInfoItem = (EFI_IMAGE_EXECUTION_INFO *) ((UINT8 *) ImageExeInfoTable + sizeof (EFI_IMAGE_EXECUTION_INFO_TABLE));
|
|
TotalSize = sizeof (EFI_IMAGE_EXECUTION_INFO_TABLE);
|
|
for (Index = 0; Index < ImageExeInfoTable->NumberOfImages; Index++) {
|
|
TotalSize += ReadUnaligned32 ((UINT32 *) &ImageExeInfoItem->InfoSize);
|
|
ImageExeInfoItem = (EFI_IMAGE_EXECUTION_INFO *) ((UINT8 *) ImageExeInfoItem + ReadUnaligned32 ((UINT32 *) &ImageExeInfoItem->InfoSize));
|
|
}
|
|
|
|
return TotalSize;
|
|
}
|
|
|
|
/**
|
|
Create an Image Execution Information Table entry and add it to system configuration table.
|
|
|
|
@param[in] Action Describes the action taken by the firmware regarding this image.
|
|
@param[in] Name Input a null-terminated, user-friendly name.
|
|
@param[in] DevicePath Input device path pointer.
|
|
@param[in] Signature Input signature info in EFI_SIGNATURE_LIST data structure.
|
|
@param[in] SignatureSize Size of signature.
|
|
|
|
**/
|
|
VOID
|
|
AddImageExeInfo (
|
|
IN EFI_IMAGE_EXECUTION_ACTION Action,
|
|
IN CHAR16 *Name OPTIONAL,
|
|
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
|
|
IN EFI_SIGNATURE_LIST *Signature OPTIONAL,
|
|
IN UINTN SignatureSize
|
|
)
|
|
{
|
|
EFI_IMAGE_EXECUTION_INFO_TABLE *ImageExeInfoTable;
|
|
EFI_IMAGE_EXECUTION_INFO_TABLE *NewImageExeInfoTable;
|
|
EFI_IMAGE_EXECUTION_INFO *ImageExeInfoEntry;
|
|
UINTN ImageExeInfoTableSize;
|
|
UINTN NewImageExeInfoEntrySize;
|
|
UINTN NameStringLen;
|
|
UINTN DevicePathSize;
|
|
|
|
ImageExeInfoTable = NULL;
|
|
NewImageExeInfoTable = NULL;
|
|
ImageExeInfoEntry = NULL;
|
|
NameStringLen = 0;
|
|
|
|
if (DevicePath == NULL) {
|
|
return ;
|
|
}
|
|
|
|
if (Name != NULL) {
|
|
NameStringLen = StrSize (Name);
|
|
}
|
|
|
|
ImageExeInfoTable = NULL;
|
|
EfiGetSystemConfigurationTable (&gEfiImageSecurityDatabaseGuid, (VOID **) &ImageExeInfoTable);
|
|
if (ImageExeInfoTable != NULL) {
|
|
//
|
|
// The table has been found!
|
|
// We must enlarge the table to accmodate the new exe info entry.
|
|
//
|
|
ImageExeInfoTableSize = GetImageExeInfoTableSize (ImageExeInfoTable);
|
|
} else {
|
|
//
|
|
// Not Found!
|
|
// We should create a new table to append to the configuration table.
|
|
//
|
|
ImageExeInfoTableSize = sizeof (EFI_IMAGE_EXECUTION_INFO_TABLE);
|
|
}
|
|
|
|
DevicePathSize = GetDevicePathSize (DevicePath);
|
|
NewImageExeInfoEntrySize = sizeof (EFI_IMAGE_EXECUTION_INFO) + NameStringLen + DevicePathSize + SignatureSize;
|
|
NewImageExeInfoTable = (EFI_IMAGE_EXECUTION_INFO_TABLE *) AllocateRuntimePool (ImageExeInfoTableSize + NewImageExeInfoEntrySize);
|
|
if (NewImageExeInfoTable == NULL) {
|
|
return ;
|
|
}
|
|
|
|
if (ImageExeInfoTable != NULL) {
|
|
CopyMem (NewImageExeInfoTable, ImageExeInfoTable, ImageExeInfoTableSize);
|
|
} else {
|
|
NewImageExeInfoTable->NumberOfImages = 0;
|
|
}
|
|
NewImageExeInfoTable->NumberOfImages++;
|
|
ImageExeInfoEntry = (EFI_IMAGE_EXECUTION_INFO *) ((UINT8 *) NewImageExeInfoTable + ImageExeInfoTableSize);
|
|
//
|
|
// Update new item's infomation.
|
|
//
|
|
WriteUnaligned32 ((UINT32 *) &ImageExeInfoEntry->Action, Action);
|
|
WriteUnaligned32 ((UINT32 *) &ImageExeInfoEntry->InfoSize, (UINT32) NewImageExeInfoEntrySize);
|
|
|
|
if (Name != NULL) {
|
|
CopyMem ((UINT8 *) &ImageExeInfoEntry->InfoSize + sizeof (UINT32), Name, NameStringLen);
|
|
}
|
|
CopyMem (
|
|
(UINT8 *) &ImageExeInfoEntry->InfoSize + sizeof (UINT32) + NameStringLen,
|
|
DevicePath,
|
|
DevicePathSize
|
|
);
|
|
if (Signature != NULL) {
|
|
CopyMem (
|
|
(UINT8 *) &ImageExeInfoEntry->InfoSize + sizeof (UINT32) + NameStringLen + DevicePathSize,
|
|
Signature,
|
|
SignatureSize
|
|
);
|
|
}
|
|
//
|
|
// Update/replace the image execution table.
|
|
//
|
|
gBS->InstallConfigurationTable (&gEfiImageSecurityDatabaseGuid, (VOID *) NewImageExeInfoTable);
|
|
|
|
//
|
|
// Free Old table data!
|
|
//
|
|
if (ImageExeInfoTable != NULL) {
|
|
FreePool (ImageExeInfoTable);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Discover if the UEFI image is authorized by user's policy setting.
|
|
|
|
@param[in] Policy Specify platform's policy setting.
|
|
|
|
@retval EFI_ACCESS_DENIED Image is not allowed to run.
|
|
@retval EFI_SECURITY_VIOLATION Image is deferred.
|
|
@retval EFI_SUCCESS Image is authorized to run.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ImageAuthorization (
|
|
IN UINT32 Policy
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_INPUT_KEY Key;
|
|
|
|
Status = EFI_ACCESS_DENIED;
|
|
|
|
switch (Policy) {
|
|
|
|
case QUERY_USER_ON_SECURITY_VIOLATION:
|
|
do {
|
|
CreatePopUp (EFI_LIGHTGRAY | EFI_BACKGROUND_BLUE, &Key, mNotifyString1, mNotifyString2, NULL);
|
|
if (Key.UnicodeChar == L'Y' || Key.UnicodeChar == L'y') {
|
|
Status = EFI_SUCCESS;
|
|
break;
|
|
} else if (Key.UnicodeChar == L'N' || Key.UnicodeChar == L'n') {
|
|
Status = EFI_ACCESS_DENIED;
|
|
break;
|
|
} else if (Key.UnicodeChar == L'D' || Key.UnicodeChar == L'd') {
|
|
Status = EFI_SECURITY_VIOLATION;
|
|
break;
|
|
}
|
|
} while (TRUE);
|
|
break;
|
|
|
|
case ALLOW_EXECUTE_ON_SECURITY_VIOLATION:
|
|
Status = EFI_SUCCESS;
|
|
break;
|
|
|
|
case DEFER_EXECUTE_ON_SECURITY_VIOLATION:
|
|
Status = EFI_SECURITY_VIOLATION;
|
|
break;
|
|
|
|
case DENY_EXECUTE_ON_SECURITY_VIOLATION:
|
|
Status = EFI_ACCESS_DENIED;
|
|
break;
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Check whether signature is in specified database.
|
|
|
|
@param[in] VariableName Name of database variable that is searched in.
|
|
@param[in] Signature Pointer to signature that is searched for.
|
|
@param[in] CertType Pointer to hash algrithom.
|
|
@param[in] SignatureSize Size of Signature.
|
|
|
|
@return TRUE Found the signature in the variable database.
|
|
@return FALSE Not found the signature in the variable database.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsSignatureFoundInDatabase (
|
|
IN CHAR16 *VariableName,
|
|
IN UINT8 *Signature,
|
|
IN EFI_GUID *CertType,
|
|
IN UINTN SignatureSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_SIGNATURE_LIST *CertList;
|
|
EFI_SIGNATURE_DATA *Cert;
|
|
UINTN DataSize;
|
|
UINT8 *Data;
|
|
UINTN Index;
|
|
UINTN CertCount;
|
|
BOOLEAN IsFound;
|
|
//
|
|
// Read signature database variable.
|
|
//
|
|
IsFound = FALSE;
|
|
Data = NULL;
|
|
DataSize = 0;
|
|
Status = gRT->GetVariable (VariableName, &gEfiImageSecurityDatabaseGuid, NULL, &DataSize, NULL);
|
|
if (Status != EFI_BUFFER_TOO_SMALL) {
|
|
return FALSE;
|
|
}
|
|
|
|
Data = (UINT8 *) AllocateZeroPool (DataSize);
|
|
if (Data == NULL) {
|
|
return FALSE;
|
|
}
|
|
|
|
Status = gRT->GetVariable (VariableName, &gEfiImageSecurityDatabaseGuid, NULL, &DataSize, Data);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
//
|
|
// Enumerate all signature data in SigDB to check if executable's signature exists.
|
|
//
|
|
CertList = (EFI_SIGNATURE_LIST *) Data;
|
|
while ((DataSize > 0) && (DataSize >= CertList->SignatureListSize)) {
|
|
CertCount = (CertList->SignatureListSize - CertList->SignatureHeaderSize) / CertList->SignatureSize;
|
|
Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) CertList + sizeof (EFI_SIGNATURE_LIST) + CertList->SignatureHeaderSize);
|
|
if ((CertList->SignatureSize == sizeof(EFI_SIGNATURE_DATA) - 1 + SignatureSize) && (CompareGuid(&CertList->SignatureType, CertType))) {
|
|
for (Index = 0; Index < CertCount; Index++) {
|
|
if (CompareMem (Cert->SignatureData, Signature, SignatureSize) == 0) {
|
|
//
|
|
// Find the signature in database.
|
|
//
|
|
IsFound = TRUE;
|
|
break;
|
|
}
|
|
|
|
Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) Cert + CertList->SignatureSize);
|
|
}
|
|
|
|
if (IsFound) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
DataSize -= CertList->SignatureListSize;
|
|
CertList = (EFI_SIGNATURE_LIST *) ((UINT8 *) CertList + CertList->SignatureListSize);
|
|
}
|
|
|
|
Done:
|
|
if (Data != NULL) {
|
|
FreePool (Data);
|
|
}
|
|
|
|
return IsFound;
|
|
}
|
|
|
|
/**
|
|
Verify PKCS#7 SignedData using certificate found in Variable which formatted
|
|
as EFI_SIGNATURE_LIST. The Variable may be PK, KEK, DB or DBX.
|
|
|
|
@param VariableName Name of Variable to search for Certificate.
|
|
@param VendorGuid Variable vendor GUID.
|
|
|
|
@retval TRUE Image pass verification.
|
|
@retval FALSE Image fail verification.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsPkcsSignedDataVerifiedBySignatureList (
|
|
IN CHAR16 *VariableName,
|
|
IN EFI_GUID *VendorGuid
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
BOOLEAN VerifyStatus;
|
|
WIN_CERTIFICATE_EFI_PKCS *PkcsCertData;
|
|
EFI_SIGNATURE_LIST *CertList;
|
|
EFI_SIGNATURE_DATA *Cert;
|
|
UINTN DataSize;
|
|
UINT8 *Data;
|
|
UINT8 *RootCert;
|
|
UINTN RootCertSize;
|
|
UINTN Index;
|
|
UINTN CertCount;
|
|
|
|
Data = NULL;
|
|
CertList = NULL;
|
|
Cert = NULL;
|
|
RootCert = NULL;
|
|
RootCertSize = 0;
|
|
VerifyStatus = FALSE;
|
|
PkcsCertData = (WIN_CERTIFICATE_EFI_PKCS *) (mImageBase + mSecDataDir->VirtualAddress);
|
|
|
|
DataSize = 0;
|
|
Status = gRT->GetVariable (VariableName, VendorGuid, NULL, &DataSize, NULL);
|
|
if (Status == EFI_BUFFER_TOO_SMALL) {
|
|
Data = (UINT8 *) AllocateZeroPool (DataSize);
|
|
if (Data == NULL) {
|
|
return VerifyStatus;
|
|
}
|
|
|
|
Status = gRT->GetVariable (VariableName, VendorGuid, NULL, &DataSize, (VOID *) Data);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Find X509 certificate in Signature List to verify the signature in pkcs7 signed data.
|
|
//
|
|
CertList = (EFI_SIGNATURE_LIST *) Data;
|
|
while ((DataSize > 0) && (DataSize >= CertList->SignatureListSize)) {
|
|
if (CompareGuid (&CertList->SignatureType, &gEfiCertX509Guid)) {
|
|
Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) CertList + sizeof (EFI_SIGNATURE_LIST) + CertList->SignatureHeaderSize);
|
|
CertCount = (CertList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - CertList->SignatureHeaderSize) / CertList->SignatureSize;
|
|
for (Index = 0; Index < CertCount; Index++) {
|
|
//
|
|
// Iterate each Signature Data Node within this CertList for verify.
|
|
//
|
|
RootCert = Cert->SignatureData;
|
|
RootCertSize = CertList->SignatureSize;
|
|
|
|
//
|
|
// Call AuthenticodeVerify library to Verify Authenticode struct.
|
|
//
|
|
VerifyStatus = AuthenticodeVerify (
|
|
PkcsCertData->CertData,
|
|
mSecDataDir->Size - sizeof(PkcsCertData->Hdr),
|
|
RootCert,
|
|
RootCertSize,
|
|
mImageDigest,
|
|
mImageDigestSize
|
|
);
|
|
if (VerifyStatus) {
|
|
goto Done;
|
|
}
|
|
Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) Cert + CertList->SignatureSize);
|
|
}
|
|
}
|
|
DataSize -= CertList->SignatureListSize;
|
|
CertList = (EFI_SIGNATURE_LIST *) ((UINT8 *) CertList + CertList->SignatureListSize);
|
|
}
|
|
}
|
|
|
|
Done:
|
|
if (Data != NULL) {
|
|
FreePool (Data);
|
|
}
|
|
|
|
return VerifyStatus;
|
|
}
|
|
|
|
/**
|
|
Verify certificate in WIN_CERT_TYPE_PKCS_SIGNED_DATA format.
|
|
|
|
@retval EFI_SUCCESS Image pass verification.
|
|
@retval EFI_SECURITY_VIOLATION Image fail verification.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VerifyCertPkcsSignedData (
|
|
VOID
|
|
)
|
|
{
|
|
//
|
|
// 1: Find certificate from DBX forbidden database for revoked certificate.
|
|
//
|
|
if (IsPkcsSignedDataVerifiedBySignatureList (EFI_IMAGE_SECURITY_DATABASE1, &gEfiImageSecurityDatabaseGuid)) {
|
|
//
|
|
// DBX is forbidden database, if Authenticode verification pass with
|
|
// one of the certificate in DBX, this image should be rejected.
|
|
//
|
|
return EFI_SECURITY_VIOLATION;
|
|
}
|
|
|
|
//
|
|
// 2: Find certificate from KEK database and try to verify authenticode struct.
|
|
//
|
|
if (IsPkcsSignedDataVerifiedBySignatureList (EFI_KEY_EXCHANGE_KEY_NAME, &gEfiGlobalVariableGuid)) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// 3: Find certificate from DB database and try to verify authenticode struct.
|
|
//
|
|
if (IsPkcsSignedDataVerifiedBySignatureList (EFI_IMAGE_SECURITY_DATABASE, &gEfiImageSecurityDatabaseGuid)) {
|
|
return EFI_SUCCESS;
|
|
} else {
|
|
return EFI_SECURITY_VIOLATION;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Verify certificate in WIN_CERTIFICATE_UEFI_GUID format.
|
|
|
|
@retval EFI_SUCCESS Image pass verification.
|
|
@retval EFI_SECURITY_VIOLATION Image fail verification.
|
|
@retval other error value
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VerifyCertUefiGuid (
|
|
VOID
|
|
)
|
|
{
|
|
BOOLEAN Status;
|
|
WIN_CERTIFICATE_UEFI_GUID *EfiCert;
|
|
EFI_SIGNATURE_LIST *KekList;
|
|
EFI_SIGNATURE_DATA *KekItem;
|
|
EFI_CERT_BLOCK_RSA_2048_SHA256 *CertBlock;
|
|
VOID *Rsa;
|
|
UINTN KekCount;
|
|
UINTN Index;
|
|
UINTN KekDataSize;
|
|
BOOLEAN IsFound;
|
|
EFI_STATUS Result;
|
|
|
|
EfiCert = NULL;
|
|
KekList = NULL;
|
|
KekItem = NULL;
|
|
CertBlock = NULL;
|
|
Rsa = NULL;
|
|
Status = FALSE;
|
|
IsFound = FALSE;
|
|
KekDataSize = 0;
|
|
|
|
EfiCert = (WIN_CERTIFICATE_UEFI_GUID *) (mImageBase + mSecDataDir->VirtualAddress);
|
|
CertBlock = (EFI_CERT_BLOCK_RSA_2048_SHA256 *) EfiCert->CertData;
|
|
if (!CompareGuid (&EfiCert->CertType, &gEfiCertTypeRsa2048Sha256Guid)) {
|
|
//
|
|
// Invalid Certificate Data Type.
|
|
//
|
|
return EFI_SECURITY_VIOLATION;
|
|
}
|
|
|
|
//
|
|
// Get KEK database variable data size
|
|
//
|
|
Result = gRT->GetVariable (EFI_KEY_EXCHANGE_KEY_NAME, &gEfiGlobalVariableGuid, NULL, &KekDataSize, NULL);
|
|
if (Result != EFI_BUFFER_TOO_SMALL) {
|
|
return EFI_SECURITY_VIOLATION;
|
|
}
|
|
|
|
//
|
|
// Get KEK database variable.
|
|
//
|
|
KekList = GetEfiGlobalVariable (EFI_KEY_EXCHANGE_KEY_NAME);
|
|
if (KekList == NULL) {
|
|
return EFI_SECURITY_VIOLATION;
|
|
}
|
|
|
|
//
|
|
// Enumerate all Kek items in this list to verify the variable certificate data.
|
|
// If anyone is authenticated successfully, it means the variable is correct!
|
|
//
|
|
while ((KekDataSize > 0) && (KekDataSize >= KekList->SignatureListSize)) {
|
|
if (CompareGuid (&KekList->SignatureType, &gEfiCertRsa2048Guid)) {
|
|
KekItem = (EFI_SIGNATURE_DATA *) ((UINT8 *) KekList + sizeof (EFI_SIGNATURE_LIST) + KekList->SignatureHeaderSize);
|
|
KekCount = (KekList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - KekList->SignatureHeaderSize) / KekList->SignatureSize;
|
|
for (Index = 0; Index < KekCount; Index++) {
|
|
if (CompareMem (KekItem->SignatureData, CertBlock->PublicKey, EFI_CERT_TYPE_RSA2048_SIZE) == 0) {
|
|
IsFound = TRUE;
|
|
break;
|
|
}
|
|
KekItem = (EFI_SIGNATURE_DATA *) ((UINT8 *) KekItem + KekList->SignatureSize);
|
|
}
|
|
}
|
|
KekDataSize -= KekList->SignatureListSize;
|
|
KekList = (EFI_SIGNATURE_LIST *) ((UINT8 *) KekList + KekList->SignatureListSize);
|
|
}
|
|
|
|
if (!IsFound) {
|
|
//
|
|
// Signed key is not a trust one.
|
|
//
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Now, we found the corresponding security policy.
|
|
// Verify the data payload.
|
|
//
|
|
Rsa = RsaNew ();
|
|
if (Rsa == NULL) {
|
|
Status = FALSE;
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Set RSA Key Components.
|
|
// NOTE: Only N and E are needed to be set as RSA public key for signature verification.
|
|
//
|
|
Status = RsaSetKey (Rsa, RsaKeyN, CertBlock->PublicKey, EFI_CERT_TYPE_RSA2048_SIZE);
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
Status = RsaSetKey (Rsa, RsaKeyE, mRsaE, sizeof (mRsaE));
|
|
if (!Status) {
|
|
goto Done;
|
|
}
|
|
//
|
|
// Verify the signature.
|
|
//
|
|
Status = RsaPkcs1Verify (
|
|
Rsa,
|
|
mImageDigest,
|
|
mImageDigestSize,
|
|
CertBlock->Signature,
|
|
EFI_CERT_TYPE_RSA2048_SHA256_SIZE
|
|
);
|
|
|
|
Done:
|
|
if (KekList != NULL) {
|
|
FreePool (KekList);
|
|
}
|
|
if (Rsa != NULL ) {
|
|
RsaFree (Rsa);
|
|
}
|
|
if (Status) {
|
|
return EFI_SUCCESS;
|
|
} else {
|
|
return EFI_SECURITY_VIOLATION;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Provide verification service for signed images, which include both signature validation
|
|
and platform policy control. For signature types, both UEFI WIN_CERTIFICATE_UEFI_GUID and
|
|
MSFT Authenticode type signatures are supported.
|
|
|
|
In this implementation, only verify external executables when in USER MODE.
|
|
Executables from FV is bypass, so pass in AuthenticationStatus is ignored.
|
|
|
|
The image verification process is:
|
|
Is the Image signed?
|
|
If yes,
|
|
Does the image verify against a certificate (root or intermediate) in the allowed db?
|
|
Run it
|
|
Image verification fail
|
|
Is the Image's Hash not in forbidden database and the Image's Hash in allowed db?
|
|
Run it
|
|
If no,
|
|
Is the Image's Hash in the forbidden database (DBX)?
|
|
if yes,
|
|
Error out
|
|
Is the Image's Hash in the allowed database (DB)?
|
|
If yes,
|
|
Run it
|
|
If no,
|
|
Error out
|
|
|
|
@param[in] AuthenticationStatus
|
|
This is the authentication status returned from the security
|
|
measurement services for the input file.
|
|
@param[in] File This is a pointer to the device path of the file that is
|
|
being dispatched. This will optionally be used for logging.
|
|
@param[in] FileBuffer File buffer matches the input file device path.
|
|
@param[in] FileSize Size of File buffer matches the input file device path.
|
|
|
|
@retval EFI_SUCCESS The file specified by File did authenticate, and the
|
|
platform policy dictates that the DXE Core may use File.
|
|
@retval EFI_INVALID_PARAMETER Input argument is incorrect.
|
|
@retval EFI_OUT_RESOURCE Fail to allocate memory.
|
|
@retval EFI_SECURITY_VIOLATION The file specified by File did not authenticate, and
|
|
the platform policy dictates that File should be placed
|
|
in the untrusted state. A file may be promoted from
|
|
the untrusted to the trusted state at a future time
|
|
with a call to the Trust() DXE Service.
|
|
@retval EFI_ACCESS_DENIED The file specified by File did not authenticate, and
|
|
the platform policy dictates that File should not be
|
|
used for any purpose.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
DxeImageVerificationHandler (
|
|
IN UINT32 AuthenticationStatus,
|
|
IN CONST EFI_DEVICE_PATH_PROTOCOL *File,
|
|
IN VOID *FileBuffer,
|
|
IN UINTN FileSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT16 Magic;
|
|
EFI_IMAGE_DOS_HEADER *DosHdr;
|
|
EFI_STATUS VerifyStatus;
|
|
UINT8 *SetupMode;
|
|
EFI_SIGNATURE_LIST *SignatureList;
|
|
UINTN SignatureListSize;
|
|
EFI_SIGNATURE_DATA *Signature;
|
|
EFI_IMAGE_EXECUTION_ACTION Action;
|
|
WIN_CERTIFICATE *WinCertificate;
|
|
UINT32 Policy;
|
|
UINT8 *SecureBootEnable;
|
|
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
|
|
UINT32 NumberOfRvaAndSizes;
|
|
UINT32 CertSize;
|
|
|
|
if (File == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
SignatureList = NULL;
|
|
SignatureListSize = 0;
|
|
WinCertificate = NULL;
|
|
Action = EFI_IMAGE_EXECUTION_AUTH_UNTESTED;
|
|
Status = EFI_ACCESS_DENIED;
|
|
//
|
|
// Check the image type and get policy setting.
|
|
//
|
|
switch (GetImageType (File)) {
|
|
|
|
case IMAGE_FROM_FV:
|
|
Policy = ALWAYS_EXECUTE;
|
|
break;
|
|
|
|
case IMAGE_FROM_OPTION_ROM:
|
|
Policy = PcdGet32 (PcdOptionRomImageVerificationPolicy);
|
|
break;
|
|
|
|
case IMAGE_FROM_REMOVABLE_MEDIA:
|
|
Policy = PcdGet32 (PcdRemovableMediaImageVerificationPolicy);
|
|
break;
|
|
|
|
case IMAGE_FROM_FIXED_MEDIA:
|
|
Policy = PcdGet32 (PcdFixedMediaImageVerificationPolicy);
|
|
break;
|
|
|
|
default:
|
|
Policy = DENY_EXECUTE_ON_SECURITY_VIOLATION;
|
|
break;
|
|
}
|
|
//
|
|
// If policy is always/never execute, return directly.
|
|
//
|
|
if (Policy == ALWAYS_EXECUTE) {
|
|
return EFI_SUCCESS;
|
|
} else if (Policy == NEVER_EXECUTE) {
|
|
return EFI_ACCESS_DENIED;
|
|
}
|
|
|
|
SecureBootEnable = GetVariable (EFI_SECURE_BOOT_ENABLE_NAME, &gEfiSecureBootEnableDisableGuid);
|
|
//
|
|
// Skip verification if SecureBootEnable variable doesn't exist.
|
|
//
|
|
if (SecureBootEnable == NULL) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// Skip verification if SecureBootEnable is disabled.
|
|
//
|
|
if (*SecureBootEnable == SECURE_BOOT_DISABLE) {
|
|
FreePool (SecureBootEnable);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
FreePool (SecureBootEnable);
|
|
|
|
SetupMode = GetEfiGlobalVariable (EFI_SETUP_MODE_NAME);
|
|
|
|
//
|
|
// SetupMode doesn't exist means no AuthVar driver is dispatched,
|
|
// skip verification.
|
|
//
|
|
if (SetupMode == NULL) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// If platform is in SETUP MODE, skip verification.
|
|
//
|
|
if (*SetupMode == SETUP_MODE) {
|
|
FreePool (SetupMode);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
FreePool (SetupMode);
|
|
|
|
//
|
|
// Read the Dos header.
|
|
//
|
|
if (FileBuffer == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
mImageBase = (UINT8 *) FileBuffer;
|
|
mImageSize = FileSize;
|
|
|
|
ZeroMem (&ImageContext, sizeof (ImageContext));
|
|
ImageContext.Handle = (VOID *) FileBuffer;
|
|
ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) DxeImageVerificationLibImageRead;
|
|
|
|
//
|
|
// Get information about the image being loaded
|
|
//
|
|
Status = PeCoffLoaderGetImageInfo (&ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// The information can't be got from the invalid PeImage
|
|
//
|
|
goto Done;
|
|
}
|
|
|
|
Status = EFI_ACCESS_DENIED;
|
|
|
|
DosHdr = (EFI_IMAGE_DOS_HEADER *) mImageBase;
|
|
if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
|
|
//
|
|
// DOS image header is present,
|
|
// so read the PE header after the DOS image header.
|
|
//
|
|
mPeCoffHeaderOffset = DosHdr->e_lfanew;
|
|
} else {
|
|
mPeCoffHeaderOffset = 0;
|
|
}
|
|
//
|
|
// Check PE/COFF image.
|
|
//
|
|
mNtHeader.Pe32 = (EFI_IMAGE_NT_HEADERS32 *) (mImageBase + mPeCoffHeaderOffset);
|
|
if (mNtHeader.Pe32->Signature != EFI_IMAGE_NT_SIGNATURE) {
|
|
//
|
|
// It is not a valid Pe/Coff file.
|
|
//
|
|
goto Done;
|
|
}
|
|
|
|
Magic = mNtHeader.Pe32->OptionalHeader.Magic;
|
|
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
//
|
|
// Use PE32 offset.
|
|
//
|
|
NumberOfRvaAndSizes = mNtHeader.Pe32->OptionalHeader.NumberOfRvaAndSizes;
|
|
if (NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_SECURITY) {
|
|
mSecDataDir = (EFI_IMAGE_DATA_DIRECTORY *) &mNtHeader.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY];
|
|
}
|
|
} else {
|
|
//
|
|
// Use PE32+ offset.
|
|
//
|
|
NumberOfRvaAndSizes = mNtHeader.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes;
|
|
if (NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_SECURITY) {
|
|
mSecDataDir = (EFI_IMAGE_DATA_DIRECTORY *) &mNtHeader.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY];
|
|
}
|
|
}
|
|
|
|
if ((mSecDataDir == NULL) || ((mSecDataDir != NULL) && (mSecDataDir->Size == 0))) {
|
|
//
|
|
// This image is not signed.
|
|
//
|
|
if (!HashPeImage (HASHALG_SHA256)) {
|
|
goto Done;
|
|
}
|
|
|
|
if (IsSignatureFoundInDatabase (EFI_IMAGE_SECURITY_DATABASE1, mImageDigest, &mCertType, mImageDigestSize)) {
|
|
//
|
|
// Image Hash is in forbidden database (DBX).
|
|
//
|
|
goto Done;
|
|
}
|
|
|
|
if (IsSignatureFoundInDatabase (EFI_IMAGE_SECURITY_DATABASE, mImageDigest, &mCertType, mImageDigestSize)) {
|
|
//
|
|
// Image Hash is in allowed database (DB).
|
|
//
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// Image Hash is not found in both forbidden and allowed database.
|
|
//
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Verify signature of executables.
|
|
//
|
|
WinCertificate = (WIN_CERTIFICATE *) (mImageBase + mSecDataDir->VirtualAddress);
|
|
|
|
CertSize = sizeof (WIN_CERTIFICATE);
|
|
|
|
if ((mSecDataDir->Size <= CertSize) || (mSecDataDir->Size < WinCertificate->dwLength)) {
|
|
goto Done;
|
|
}
|
|
|
|
switch (WinCertificate->wCertificateType) {
|
|
|
|
case WIN_CERT_TYPE_EFI_GUID:
|
|
CertSize = sizeof (WIN_CERTIFICATE_UEFI_GUID) + sizeof (EFI_CERT_BLOCK_RSA_2048_SHA256) - sizeof (UINT8);
|
|
if (WinCertificate->dwLength < CertSize) {
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// Verify UEFI GUID type.
|
|
//
|
|
if (!HashPeImage (HASHALG_SHA256)) {
|
|
goto Done;
|
|
}
|
|
|
|
VerifyStatus = VerifyCertUefiGuid ();
|
|
break;
|
|
|
|
case WIN_CERT_TYPE_PKCS_SIGNED_DATA:
|
|
//
|
|
// Verify Pkcs signed data type.
|
|
//
|
|
Status = HashPeImageByType();
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
|
|
VerifyStatus = VerifyCertPkcsSignedData ();
|
|
|
|
//
|
|
// For image verification against enrolled certificate(root or intermediate),
|
|
// no need to check image's hash in the allowed database.
|
|
//
|
|
if (!EFI_ERROR (VerifyStatus)) {
|
|
if (!IsSignatureFoundInDatabase (EFI_IMAGE_SECURITY_DATABASE1, mImageDigest, &mCertType, mImageDigestSize)) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
goto Done;
|
|
}
|
|
//
|
|
// Get image hash value as executable's signature.
|
|
//
|
|
SignatureListSize = sizeof (EFI_SIGNATURE_LIST) + sizeof (EFI_SIGNATURE_DATA) - 1 + mImageDigestSize;
|
|
SignatureList = (EFI_SIGNATURE_LIST *) AllocateZeroPool (SignatureListSize);
|
|
if (SignatureList == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto Done;
|
|
}
|
|
SignatureList->SignatureHeaderSize = 0;
|
|
SignatureList->SignatureListSize = (UINT32) SignatureListSize;
|
|
SignatureList->SignatureSize = (UINT32) mImageDigestSize;
|
|
CopyMem (&SignatureList->SignatureType, &mCertType, sizeof (EFI_GUID));
|
|
Signature = (EFI_SIGNATURE_DATA *) ((UINT8 *) SignatureList + sizeof (EFI_SIGNATURE_LIST));
|
|
CopyMem (Signature->SignatureData, mImageDigest, mImageDigestSize);
|
|
//
|
|
// Signature database check after verification.
|
|
//
|
|
if (EFI_ERROR (VerifyStatus)) {
|
|
//
|
|
// Verification failure.
|
|
//
|
|
if (!IsSignatureFoundInDatabase (EFI_IMAGE_SECURITY_DATABASE1, mImageDigest, &mCertType, mImageDigestSize) &&
|
|
IsSignatureFoundInDatabase (EFI_IMAGE_SECURITY_DATABASE, mImageDigest, &mCertType, mImageDigestSize)) {
|
|
//
|
|
// Verification fail, Image Hash is not in forbidden database (DBX),
|
|
// and Image Hash is in allowed database (DB).
|
|
//
|
|
Status = EFI_SUCCESS;
|
|
} else {
|
|
Action = EFI_IMAGE_EXECUTION_AUTH_SIG_FAILED;
|
|
Status = EFI_ACCESS_DENIED;
|
|
}
|
|
} else if (IsSignatureFoundInDatabase (EFI_IMAGE_SECURITY_DATABASE1, Signature->SignatureData, &mCertType, mImageDigestSize)) {
|
|
//
|
|
// Executable signature verification passes, but is found in forbidden signature database.
|
|
//
|
|
Action = EFI_IMAGE_EXECUTION_AUTH_SIG_FOUND;
|
|
Status = EFI_ACCESS_DENIED;
|
|
} else if (IsSignatureFoundInDatabase (EFI_IMAGE_SECURITY_DATABASE, Signature->SignatureData, &mCertType, mImageDigestSize)) {
|
|
//
|
|
// Executable signature is found in authorized signature database.
|
|
//
|
|
Status = EFI_SUCCESS;
|
|
} else {
|
|
//
|
|
// Executable signature verification passes, but cannot be found in authorized signature database.
|
|
// Get platform policy to determine the action.
|
|
//
|
|
Action = EFI_IMAGE_EXECUTION_AUTH_SIG_PASSED;
|
|
Status = ImageAuthorization (Policy);
|
|
}
|
|
|
|
Done:
|
|
if (Status != EFI_SUCCESS) {
|
|
//
|
|
// Policy decides to defer or reject the image; add its information in image executable information table.
|
|
//
|
|
AddImageExeInfo (Action, NULL, File, SignatureList, SignatureListSize);
|
|
}
|
|
|
|
if (SignatureList != NULL) {
|
|
FreePool (SignatureList);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
When VariableWriteArchProtocol install, create "SecureBoot" variable.
|
|
|
|
@param[in] Event Event whose notification function is being invoked.
|
|
@param[in] Context Pointer to the notification function's context.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
VariableWriteCallBack (
|
|
IN EFI_EVENT Event,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
UINT8 SecureBootMode;
|
|
UINT8 *SecureBootModePtr;
|
|
EFI_STATUS Status;
|
|
VOID *ProtocolPointer;
|
|
|
|
Status = gBS->LocateProtocol (&gEfiVariableWriteArchProtocolGuid, NULL, &ProtocolPointer);
|
|
if (EFI_ERROR (Status)) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Check whether "SecureBoot" variable exists.
|
|
// If this library is built-in, it means firmware has capability to perform
|
|
// driver signing verification.
|
|
//
|
|
SecureBootModePtr = GetEfiGlobalVariable (EFI_SECURE_BOOT_MODE_NAME);
|
|
if (SecureBootModePtr == NULL) {
|
|
SecureBootMode = SECURE_BOOT_MODE_DISABLE;
|
|
//
|
|
// Authenticated variable driver will update "SecureBoot" depending on SetupMode variable.
|
|
//
|
|
gRT->SetVariable (
|
|
EFI_SECURE_BOOT_MODE_NAME,
|
|
&gEfiGlobalVariableGuid,
|
|
EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE,
|
|
sizeof (UINT8),
|
|
&SecureBootMode
|
|
);
|
|
} else {
|
|
FreePool (SecureBootModePtr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Register security measurement handler.
|
|
|
|
@param ImageHandle ImageHandle of the loaded driver.
|
|
@param SystemTable Pointer to the EFI System Table.
|
|
|
|
@retval EFI_SUCCESS The handlers were registered successfully.
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
DxeImageVerificationLibConstructor (
|
|
IN EFI_HANDLE ImageHandle,
|
|
IN EFI_SYSTEM_TABLE *SystemTable
|
|
)
|
|
{
|
|
VOID *Registration;
|
|
|
|
//
|
|
// Register callback function upon VariableWriteArchProtocol.
|
|
//
|
|
EfiCreateProtocolNotifyEvent (
|
|
&gEfiVariableWriteArchProtocolGuid,
|
|
TPL_CALLBACK,
|
|
VariableWriteCallBack,
|
|
NULL,
|
|
&Registration
|
|
);
|
|
|
|
return RegisterSecurityHandler (
|
|
DxeImageVerificationHandler,
|
|
EFI_AUTH_OPERATION_VERIFY_IMAGE | EFI_AUTH_OPERATION_IMAGE_REQUIRED
|
|
);
|
|
}
|