mirror of https://github.com/acidanthera/audk.git
956 lines
36 KiB
C
956 lines
36 KiB
C
/*++
|
|
|
|
Copyright (c) 2009, Hewlett-Packard Company. All rights reserved.<BR>
|
|
Portions copyright (c) 2010, Apple Inc. All rights reserved.<BR>
|
|
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
|
|
--*/
|
|
|
|
#include "CpuDxe.h"
|
|
//FIXME: Remove this ARMv7 specific header
|
|
#include <Chipset/ArmV7.h>
|
|
|
|
// First Level Descriptors
|
|
typedef UINT32 ARM_FIRST_LEVEL_DESCRIPTOR;
|
|
|
|
// Second Level Descriptors
|
|
typedef UINT32 ARM_PAGE_TABLE_ENTRY;
|
|
|
|
EFI_STATUS
|
|
SectionToGcdAttributes (
|
|
IN UINT32 SectionAttributes,
|
|
OUT UINT64 *GcdAttributes
|
|
)
|
|
{
|
|
*GcdAttributes = 0;
|
|
|
|
// determine cacheability attributes
|
|
switch(SectionAttributes & TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK) {
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_SHAREABLE_DEVICE:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WT;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_NO_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WB;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE:
|
|
*GcdAttributes |= EFI_MEMORY_WC;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WB;
|
|
break;
|
|
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_SHAREABLE_DEVICE:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// determine protection attributes
|
|
switch(SectionAttributes & TT_DESCRIPTOR_SECTION_AP_MASK) {
|
|
case TT_DESCRIPTOR_SECTION_AP_NO_NO: // no read, no write
|
|
//*GcdAttributes |= EFI_MEMORY_WP | EFI_MEMORY_RP;
|
|
break;
|
|
|
|
case TT_DESCRIPTOR_SECTION_AP_RW_NO:
|
|
case TT_DESCRIPTOR_SECTION_AP_RW_RW:
|
|
// normal read/write access, do not add additional attributes
|
|
break;
|
|
|
|
// read only cases map to write-protect
|
|
case TT_DESCRIPTOR_SECTION_AP_RO_NO:
|
|
case TT_DESCRIPTOR_SECTION_AP_RO_RO:
|
|
*GcdAttributes |= EFI_MEMORY_WP;
|
|
break;
|
|
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// now process eXectue Never attribute
|
|
if ((SectionAttributes & TT_DESCRIPTOR_SECTION_XN_MASK) != 0 ) {
|
|
*GcdAttributes |= EFI_MEMORY_XP;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
PageToGcdAttributes (
|
|
IN UINT32 PageAttributes,
|
|
OUT UINT64 *GcdAttributes
|
|
)
|
|
{
|
|
*GcdAttributes = 0;
|
|
|
|
// determine cacheability attributes
|
|
switch(PageAttributes & TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK) {
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_STRONGLY_ORDERED:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_SHAREABLE_DEVICE:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WT;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_NO_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WB;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE:
|
|
*GcdAttributes |= EFI_MEMORY_WC;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_ALLOC:
|
|
*GcdAttributes |= EFI_MEMORY_WB;
|
|
break;
|
|
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_SHAREABLE_DEVICE:
|
|
*GcdAttributes |= EFI_MEMORY_UC;
|
|
break;
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// determine protection attributes
|
|
switch(PageAttributes & TT_DESCRIPTOR_PAGE_AP_MASK) {
|
|
case TT_DESCRIPTOR_PAGE_AP_NO_NO: // no read, no write
|
|
//*GcdAttributes |= EFI_MEMORY_WP | EFI_MEMORY_RP;
|
|
break;
|
|
|
|
case TT_DESCRIPTOR_PAGE_AP_RW_NO:
|
|
case TT_DESCRIPTOR_PAGE_AP_RW_RW:
|
|
// normal read/write access, do not add additional attributes
|
|
break;
|
|
|
|
// read only cases map to write-protect
|
|
case TT_DESCRIPTOR_PAGE_AP_RO_NO:
|
|
case TT_DESCRIPTOR_PAGE_AP_RO_RO:
|
|
*GcdAttributes |= EFI_MEMORY_WP;
|
|
break;
|
|
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// now process eXectue Never attribute
|
|
if ((PageAttributes & TT_DESCRIPTOR_PAGE_XN_MASK) != 0 ) {
|
|
*GcdAttributes |= EFI_MEMORY_XP;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Searches memory descriptors covered by given memory range.
|
|
|
|
This function searches into the Gcd Memory Space for descriptors
|
|
(from StartIndex to EndIndex) that contains the memory range
|
|
specified by BaseAddress and Length.
|
|
|
|
@param MemorySpaceMap Gcd Memory Space Map as array.
|
|
@param NumberOfDescriptors Number of descriptors in map.
|
|
@param BaseAddress BaseAddress for the requested range.
|
|
@param Length Length for the requested range.
|
|
@param StartIndex Start index into the Gcd Memory Space Map.
|
|
@param EndIndex End index into the Gcd Memory Space Map.
|
|
|
|
@retval EFI_SUCCESS Search successfully.
|
|
@retval EFI_NOT_FOUND The requested descriptors does not exist.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
SearchGcdMemorySpaces (
|
|
IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
|
|
IN UINTN NumberOfDescriptors,
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
OUT UINTN *StartIndex,
|
|
OUT UINTN *EndIndex
|
|
)
|
|
{
|
|
UINTN Index;
|
|
|
|
*StartIndex = 0;
|
|
*EndIndex = 0;
|
|
for (Index = 0; Index < NumberOfDescriptors; Index++) {
|
|
if (BaseAddress >= MemorySpaceMap[Index].BaseAddress &&
|
|
BaseAddress < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
|
|
*StartIndex = Index;
|
|
}
|
|
if (BaseAddress + Length - 1 >= MemorySpaceMap[Index].BaseAddress &&
|
|
BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
|
|
*EndIndex = Index;
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
|
|
/**
|
|
Sets the attributes for a specified range in Gcd Memory Space Map.
|
|
|
|
This function sets the attributes for a specified range in
|
|
Gcd Memory Space Map.
|
|
|
|
@param MemorySpaceMap Gcd Memory Space Map as array
|
|
@param NumberOfDescriptors Number of descriptors in map
|
|
@param BaseAddress BaseAddress for the range
|
|
@param Length Length for the range
|
|
@param Attributes Attributes to set
|
|
|
|
@retval EFI_SUCCESS Memory attributes set successfully
|
|
@retval EFI_NOT_FOUND The specified range does not exist in Gcd Memory Space
|
|
|
|
**/
|
|
EFI_STATUS
|
|
SetGcdMemorySpaceAttributes (
|
|
IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
|
|
IN UINTN NumberOfDescriptors,
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
IN UINT64 Attributes
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN Index;
|
|
UINTN StartIndex;
|
|
UINTN EndIndex;
|
|
EFI_PHYSICAL_ADDRESS RegionStart;
|
|
UINT64 RegionLength;
|
|
|
|
//
|
|
// Get all memory descriptors covered by the memory range
|
|
//
|
|
Status = SearchGcdMemorySpaces (
|
|
MemorySpaceMap,
|
|
NumberOfDescriptors,
|
|
BaseAddress,
|
|
Length,
|
|
&StartIndex,
|
|
&EndIndex
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// Go through all related descriptors and set attributes accordingly
|
|
//
|
|
for (Index = StartIndex; Index <= EndIndex; Index++) {
|
|
if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
|
|
continue;
|
|
}
|
|
//
|
|
// Calculate the start and end address of the overlapping range
|
|
//
|
|
if (BaseAddress >= MemorySpaceMap[Index].BaseAddress) {
|
|
RegionStart = BaseAddress;
|
|
} else {
|
|
RegionStart = MemorySpaceMap[Index].BaseAddress;
|
|
}
|
|
if (BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
|
|
RegionLength = BaseAddress + Length - RegionStart;
|
|
} else {
|
|
RegionLength = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - RegionStart;
|
|
}
|
|
//
|
|
// Set memory attributes according to MTRR attribute and the original attribute of descriptor
|
|
//
|
|
gDS->SetMemorySpaceAttributes (
|
|
RegionStart,
|
|
RegionLength,
|
|
(MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) | (MemorySpaceMap[Index].Capabilities & Attributes)
|
|
);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
SyncCacheConfigPage (
|
|
IN UINT32 SectionIndex,
|
|
IN UINT32 FirstLevelDescriptor,
|
|
IN UINTN NumberOfDescriptors,
|
|
IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
|
|
IN OUT EFI_PHYSICAL_ADDRESS *NextRegionBase,
|
|
IN OUT UINT64 *NextRegionLength,
|
|
IN OUT UINT32 *NextSectionAttributes
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT32 i;
|
|
volatile ARM_PAGE_TABLE_ENTRY *SecondLevelTable;
|
|
UINT32 NextPageAttributes = 0;
|
|
UINT32 PageAttributes = 0;
|
|
UINT32 BaseAddress;
|
|
UINT64 GcdAttributes;
|
|
|
|
// Get the Base Address from FirstLevelDescriptor;
|
|
BaseAddress = TT_DESCRIPTOR_PAGE_BASE_ADDRESS(SectionIndex << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
|
|
// Convert SectionAttributes into PageAttributes
|
|
NextPageAttributes =
|
|
TT_DESCRIPTOR_CONVERT_TO_PAGE_CACHE_POLICY(*NextSectionAttributes,0) |
|
|
TT_DESCRIPTOR_CONVERT_TO_PAGE_AP(*NextSectionAttributes);
|
|
|
|
// obtain page table base
|
|
SecondLevelTable = (ARM_PAGE_TABLE_ENTRY *)(FirstLevelDescriptor & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK);
|
|
|
|
for (i=0; i < TRANSLATION_TABLE_PAGE_COUNT; i++) {
|
|
if ((SecondLevelTable[i] & TT_DESCRIPTOR_PAGE_TYPE_MASK) == TT_DESCRIPTOR_PAGE_TYPE_PAGE) {
|
|
// extract attributes (cacheability and permissions)
|
|
PageAttributes = SecondLevelTable[i] & (TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK | TT_DESCRIPTOR_PAGE_AP_MASK);
|
|
|
|
if (NextPageAttributes == 0) {
|
|
// start on a new region
|
|
*NextRegionLength = 0;
|
|
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
|
|
NextPageAttributes = PageAttributes;
|
|
} else if (PageAttributes != NextPageAttributes) {
|
|
// Convert Section Attributes into GCD Attributes
|
|
Status = PageToGcdAttributes (NextPageAttributes, &GcdAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
|
|
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, *NextRegionBase, *NextRegionLength, GcdAttributes);
|
|
|
|
// start on a new region
|
|
*NextRegionLength = 0;
|
|
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
|
|
NextPageAttributes = PageAttributes;
|
|
}
|
|
} else if (NextPageAttributes != 0) {
|
|
// Convert Page Attributes into GCD Attributes
|
|
Status = PageToGcdAttributes (NextPageAttributes, &GcdAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
|
|
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, *NextRegionBase, *NextRegionLength, GcdAttributes);
|
|
|
|
*NextRegionLength = 0;
|
|
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
|
|
NextPageAttributes = 0;
|
|
}
|
|
*NextRegionLength += TT_DESCRIPTOR_PAGE_SIZE;
|
|
}
|
|
|
|
// Convert back PageAttributes into SectionAttributes
|
|
*NextSectionAttributes =
|
|
TT_DESCRIPTOR_CONVERT_TO_SECTION_CACHE_POLICY(NextPageAttributes,0) |
|
|
TT_DESCRIPTOR_CONVERT_TO_SECTION_AP(NextPageAttributes);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
SyncCacheConfig (
|
|
IN EFI_CPU_ARCH_PROTOCOL *CpuProtocol
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT32 i;
|
|
EFI_PHYSICAL_ADDRESS NextRegionBase;
|
|
UINT64 NextRegionLength;
|
|
UINT32 NextSectionAttributes = 0;
|
|
UINT32 SectionAttributes = 0;
|
|
UINT64 GcdAttributes;
|
|
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
|
|
UINTN NumberOfDescriptors;
|
|
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
|
|
|
|
|
|
DEBUG ((EFI_D_PAGE, "SyncCacheConfig()\n"));
|
|
|
|
// This code assumes MMU is enabled and filed with section translations
|
|
ASSERT (ArmMmuEnabled ());
|
|
|
|
//
|
|
// Get the memory space map from GCD
|
|
//
|
|
MemorySpaceMap = NULL;
|
|
Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
|
|
// The GCD implementation maintains its own copy of the state of memory space attributes. GCD needs
|
|
// to know what the initial memory space attributes are. The CPU Arch. Protocol does not provide a
|
|
// GetMemoryAttributes function for GCD to get this so we must resort to calling GCD (as if we were
|
|
// a client) to update its copy of the attributes. This is bad architecture and should be replaced
|
|
// with a way for GCD to query the CPU Arch. driver of the existing memory space attributes instead.
|
|
|
|
// obtain page table base
|
|
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)(ArmGetTTBR0BaseAddress ());
|
|
|
|
// Get the first region
|
|
NextSectionAttributes = FirstLevelTable[0] & (TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK | TT_DESCRIPTOR_SECTION_AP_MASK);
|
|
|
|
// iterate through each 1MB descriptor
|
|
NextRegionBase = NextRegionLength = 0;
|
|
for (i=0; i < TRANSLATION_TABLE_SECTION_COUNT; i++) {
|
|
if ((FirstLevelTable[i] & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) {
|
|
// extract attributes (cacheability and permissions)
|
|
SectionAttributes = FirstLevelTable[i] & (TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK | TT_DESCRIPTOR_SECTION_AP_MASK);
|
|
|
|
if (NextSectionAttributes == 0) {
|
|
// start on a new region
|
|
NextRegionLength = 0;
|
|
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
NextSectionAttributes = SectionAttributes;
|
|
} else if (SectionAttributes != NextSectionAttributes) {
|
|
// Convert Section Attributes into GCD Attributes
|
|
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
|
|
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
|
|
|
|
// start on a new region
|
|
NextRegionLength = 0;
|
|
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
NextSectionAttributes = SectionAttributes;
|
|
}
|
|
NextRegionLength += TT_DESCRIPTOR_SECTION_SIZE;
|
|
} else if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(FirstLevelTable[i])) {
|
|
Status = SyncCacheConfigPage (
|
|
i,FirstLevelTable[i],
|
|
NumberOfDescriptors, MemorySpaceMap,
|
|
&NextRegionBase,&NextRegionLength,&NextSectionAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
} else {
|
|
// We do not support yet 16MB sections
|
|
ASSERT ((FirstLevelTable[i] & TT_DESCRIPTOR_SECTION_TYPE_MASK) != TT_DESCRIPTOR_SECTION_TYPE_SUPERSECTION);
|
|
|
|
// start on a new region
|
|
if (NextSectionAttributes != 0) {
|
|
// Convert Section Attributes into GCD Attributes
|
|
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
|
|
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
|
|
|
|
NextRegionLength = 0;
|
|
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
NextSectionAttributes = 0;
|
|
}
|
|
NextRegionLength += TT_DESCRIPTOR_SECTION_SIZE;
|
|
}
|
|
} // section entry loop
|
|
|
|
if (NextSectionAttributes != 0) {
|
|
// Convert Section Attributes into GCD Attributes
|
|
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
|
|
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
UpdatePageEntries (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
IN UINT64 Attributes,
|
|
IN EFI_PHYSICAL_ADDRESS VirtualMask
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT32 EntryValue;
|
|
UINT32 EntryMask;
|
|
UINT32 FirstLevelIdx;
|
|
UINT32 Offset;
|
|
UINT32 NumPageEntries;
|
|
UINT32 Descriptor;
|
|
UINT32 p;
|
|
UINT32 PageTableIndex;
|
|
UINT32 PageTableEntry;
|
|
UINT32 CurrentPageTableEntry;
|
|
VOID *Mva;
|
|
|
|
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
|
|
volatile ARM_PAGE_TABLE_ENTRY *PageTable;
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
// EntryMask: bitmask of values to change (1 = change this value, 0 = leave alone)
|
|
// EntryValue: values at bit positions specified by EntryMask
|
|
EntryMask = TT_DESCRIPTOR_PAGE_TYPE_MASK;
|
|
EntryValue = TT_DESCRIPTOR_PAGE_TYPE_PAGE;
|
|
// Although the PI spec is unclear on this the GCD guarantees that only
|
|
// one Attribute bit is set at a time, so we can safely use a switch statement
|
|
switch (Attributes) {
|
|
case EFI_MEMORY_UC:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
|
|
if (FeaturePcdGet(PcdEfiUncachedMemoryToStronglyOrdered)) {
|
|
// map to strongly ordered
|
|
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
|
|
} else {
|
|
// map to normal non-cachable
|
|
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
|
|
}
|
|
break;
|
|
|
|
case EFI_MEMORY_WC:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
|
|
// map to normal non-cachable
|
|
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WT:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
|
|
// write through with no-allocate
|
|
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WB:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
|
|
// write back (with allocate)
|
|
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
|
|
break;
|
|
|
|
case EFI_MEMORY_WP:
|
|
case EFI_MEMORY_XP:
|
|
case EFI_MEMORY_UCE:
|
|
// cannot be implemented UEFI definition unclear for ARM
|
|
// Cause a page fault if these ranges are accessed.
|
|
EntryValue = TT_DESCRIPTOR_PAGE_TYPE_FAULT;
|
|
DEBUG ((EFI_D_PAGE, "SetMemoryAttributes(): setting page %lx with unsupported attribute %x will page fault on access\n", BaseAddress, Attributes));
|
|
break;
|
|
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// obtain page table base
|
|
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
|
|
|
|
// calculate number of 4KB page table entries to change
|
|
NumPageEntries = Length / TT_DESCRIPTOR_PAGE_SIZE;
|
|
|
|
// iterate for the number of 4KB pages to change
|
|
Offset = 0;
|
|
for(p=0; p<NumPageEntries; p++) {
|
|
// calculate index into first level translation table for page table value
|
|
|
|
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress + Offset) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
|
|
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
|
|
|
|
// read the descriptor from the first level page table
|
|
Descriptor = FirstLevelTable[FirstLevelIdx];
|
|
|
|
// does this descriptor need to be converted from section entry to 4K pages?
|
|
if (!TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(Descriptor)) {
|
|
Status = ConvertSectionToPages (FirstLevelIdx << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
if (EFI_ERROR(Status)) {
|
|
// exit for loop
|
|
break;
|
|
}
|
|
|
|
// re-read descriptor
|
|
Descriptor = FirstLevelTable[FirstLevelIdx];
|
|
}
|
|
|
|
// obtain page table base address
|
|
PageTable = (ARM_PAGE_TABLE_ENTRY *)TT_DESCRIPTOR_PAGE_BASE_ADDRESS(Descriptor);
|
|
|
|
// calculate index into the page table
|
|
PageTableIndex = ((BaseAddress + Offset) & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
|
|
ASSERT (PageTableIndex < TRANSLATION_TABLE_PAGE_COUNT);
|
|
|
|
// get the entry
|
|
CurrentPageTableEntry = PageTable[PageTableIndex];
|
|
|
|
// mask off appropriate fields
|
|
PageTableEntry = CurrentPageTableEntry & ~EntryMask;
|
|
|
|
// mask in new attributes and/or permissions
|
|
PageTableEntry |= EntryValue;
|
|
|
|
if (VirtualMask != 0) {
|
|
// Make this virtual address point at a physical page
|
|
PageTableEntry &= ~VirtualMask;
|
|
}
|
|
|
|
if (CurrentPageTableEntry != PageTableEntry) {
|
|
Mva = (VOID *)(UINTN)((((UINTN)FirstLevelIdx) << TT_DESCRIPTOR_SECTION_BASE_SHIFT) + (PageTableIndex << TT_DESCRIPTOR_PAGE_BASE_SHIFT));
|
|
if ((CurrentPageTableEntry & TT_DESCRIPTOR_PAGE_CACHEABLE_MASK) == TT_DESCRIPTOR_PAGE_CACHEABLE_MASK) {
|
|
// The current section mapping is cacheable so Clean/Invalidate the MVA of the page
|
|
// Note assumes switch(Attributes), not ARMv7 possibilities
|
|
WriteBackInvalidateDataCacheRange (Mva, TT_DESCRIPTOR_PAGE_SIZE);
|
|
}
|
|
|
|
// Only need to update if we are changing the entry
|
|
PageTable[PageTableIndex] = PageTableEntry;
|
|
ArmUpdateTranslationTableEntry ((VOID *)&PageTable[PageTableIndex], Mva);
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
Offset += TT_DESCRIPTOR_PAGE_SIZE;
|
|
|
|
} // end first level translation table loop
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
UpdateSectionEntries (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
IN UINT64 Attributes,
|
|
IN EFI_PHYSICAL_ADDRESS VirtualMask
|
|
)
|
|
{
|
|
EFI_STATUS Status = EFI_SUCCESS;
|
|
UINT32 EntryMask;
|
|
UINT32 EntryValue;
|
|
UINT32 FirstLevelIdx;
|
|
UINT32 NumSections;
|
|
UINT32 i;
|
|
UINT32 CurrentDescriptor;
|
|
UINT32 Descriptor;
|
|
VOID *Mva;
|
|
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
|
|
|
|
// EntryMask: bitmask of values to change (1 = change this value, 0 = leave alone)
|
|
// EntryValue: values at bit positions specified by EntryMask
|
|
|
|
// Make sure we handle a section range that is unmapped
|
|
EntryMask = TT_DESCRIPTOR_SECTION_TYPE_MASK;
|
|
EntryValue = TT_DESCRIPTOR_SECTION_TYPE_SECTION;
|
|
|
|
// Although the PI spec is unclear on this the GCD guarantees that only
|
|
// one Attribute bit is set at a time, so we can safely use a switch statement
|
|
switch(Attributes) {
|
|
case EFI_MEMORY_UC:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
|
|
if (FeaturePcdGet(PcdEfiUncachedMemoryToStronglyOrdered)) {
|
|
// map to strongly ordered
|
|
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
|
|
} else {
|
|
// map to normal non-cachable
|
|
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
|
|
}
|
|
break;
|
|
|
|
case EFI_MEMORY_WC:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
|
|
// map to normal non-cachable
|
|
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WT:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
|
|
// write through with no-allocate
|
|
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
|
|
break;
|
|
|
|
case EFI_MEMORY_WB:
|
|
// modify cacheability attributes
|
|
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
|
|
// write back (with allocate)
|
|
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
|
|
break;
|
|
|
|
case EFI_MEMORY_WP:
|
|
case EFI_MEMORY_XP:
|
|
case EFI_MEMORY_RP:
|
|
case EFI_MEMORY_UCE:
|
|
// cannot be implemented UEFI definition unclear for ARM
|
|
// Cause a page fault if these ranges are accessed.
|
|
EntryValue = TT_DESCRIPTOR_SECTION_TYPE_FAULT;
|
|
DEBUG ((EFI_D_PAGE, "SetMemoryAttributes(): setting section %lx with unsupported attribute %x will page fault on access\n", BaseAddress, Attributes));
|
|
break;
|
|
|
|
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
// obtain page table base
|
|
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
|
|
|
|
// calculate index into first level translation table for start of modification
|
|
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
|
|
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
|
|
|
|
// calculate number of 1MB first level entries this applies to
|
|
NumSections = Length / TT_DESCRIPTOR_SECTION_SIZE;
|
|
|
|
// iterate through each descriptor
|
|
for(i=0; i<NumSections; i++) {
|
|
CurrentDescriptor = FirstLevelTable[FirstLevelIdx + i];
|
|
|
|
// has this descriptor already been coverted to pages?
|
|
if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(CurrentDescriptor)) {
|
|
// forward this 1MB range to page table function instead
|
|
Status = UpdatePageEntries ((FirstLevelIdx + i) << TT_DESCRIPTOR_SECTION_BASE_SHIFT, TT_DESCRIPTOR_SECTION_SIZE, Attributes, VirtualMask);
|
|
} else {
|
|
// still a section entry
|
|
|
|
// mask off appropriate fields
|
|
Descriptor = CurrentDescriptor & ~EntryMask;
|
|
|
|
// mask in new attributes and/or permissions
|
|
Descriptor |= EntryValue;
|
|
if (VirtualMask != 0) {
|
|
Descriptor &= ~VirtualMask;
|
|
}
|
|
|
|
if (CurrentDescriptor != Descriptor) {
|
|
Mva = (VOID *)(UINTN)(((UINTN)FirstLevelTable) << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
|
|
if ((CurrentDescriptor & TT_DESCRIPTOR_SECTION_CACHEABLE_MASK) == TT_DESCRIPTOR_SECTION_CACHEABLE_MASK) {
|
|
// The current section mapping is cacheable so Clean/Invalidate the MVA of the section
|
|
// Note assumes switch(Attributes), not ARMv7 possabilities
|
|
WriteBackInvalidateDataCacheRange (Mva, SIZE_1MB);
|
|
}
|
|
|
|
// Only need to update if we are changing the descriptor
|
|
FirstLevelTable[FirstLevelIdx + i] = Descriptor;
|
|
ArmUpdateTranslationTableEntry ((VOID *)&FirstLevelTable[FirstLevelIdx + i], Mva);
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
EFI_STATUS
|
|
ConvertSectionToPages (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS PageTableAddr;
|
|
UINT32 FirstLevelIdx;
|
|
UINT32 SectionDescriptor;
|
|
UINT32 PageTableDescriptor;
|
|
UINT32 PageDescriptor;
|
|
UINT32 Index;
|
|
|
|
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
|
|
volatile ARM_PAGE_TABLE_ENTRY *PageTable;
|
|
|
|
DEBUG ((EFI_D_PAGE, "Converting section at 0x%x to pages\n", (UINTN)BaseAddress));
|
|
|
|
// obtain page table base
|
|
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
|
|
|
|
// calculate index into first level translation table for start of modification
|
|
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
|
|
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
|
|
|
|
// get section attributes and convert to page attributes
|
|
SectionDescriptor = FirstLevelTable[FirstLevelIdx];
|
|
PageDescriptor = TT_DESCRIPTOR_PAGE_TYPE_PAGE;
|
|
PageDescriptor |= TT_DESCRIPTOR_CONVERT_TO_PAGE_CACHE_POLICY(SectionDescriptor,0);
|
|
PageDescriptor |= TT_DESCRIPTOR_CONVERT_TO_PAGE_AP(SectionDescriptor);
|
|
PageDescriptor |= TT_DESCRIPTOR_CONVERT_TO_PAGE_XN(SectionDescriptor,0);
|
|
PageDescriptor |= TT_DESCRIPTOR_CONVERT_TO_PAGE_NG(SectionDescriptor);
|
|
PageDescriptor |= TT_DESCRIPTOR_CONVERT_TO_PAGE_S(SectionDescriptor);
|
|
|
|
// allocate a page table for the 4KB entries (we use up a full page even though we only need 1KB)
|
|
Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesData, 1, &PageTableAddr);
|
|
if (EFI_ERROR(Status)) {
|
|
return Status;
|
|
}
|
|
|
|
PageTable = (volatile ARM_PAGE_TABLE_ENTRY *)(UINTN)PageTableAddr;
|
|
|
|
// write the page table entries out
|
|
for (Index = 0; Index < TRANSLATION_TABLE_PAGE_COUNT; Index++) {
|
|
PageTable[Index] = TT_DESCRIPTOR_PAGE_BASE_ADDRESS(BaseAddress + (Index << 12)) | PageDescriptor;
|
|
}
|
|
|
|
// flush d-cache so descriptors make it back to uncached memory for subsequent table walks
|
|
WriteBackInvalidateDataCacheRange ((VOID *)(UINTN)PageTableAddr, TT_DESCRIPTOR_PAGE_SIZE);
|
|
|
|
// formulate page table entry, Domain=0, NS=0
|
|
PageTableDescriptor = (((UINTN)PageTableAddr) & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK) | TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE;
|
|
|
|
// write the page table entry out, repalcing section entry
|
|
FirstLevelTable[FirstLevelIdx] = PageTableDescriptor;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
SetMemoryAttributes (
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
IN UINT64 Attributes,
|
|
IN EFI_PHYSICAL_ADDRESS VirtualMask
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
if(((BaseAddress & 0xFFFFF) == 0) && ((Length & 0xFFFFF) == 0)) {
|
|
// is the base and length a multiple of 1 MB?
|
|
DEBUG ((EFI_D_PAGE, "SetMemoryAttributes(): MMU section 0x%x length 0x%x to %lx\n", (UINTN)BaseAddress, (UINTN)Length, Attributes));
|
|
Status = UpdateSectionEntries (BaseAddress, Length, Attributes, VirtualMask);
|
|
} else {
|
|
// base and/or length is not a multiple of 1 MB
|
|
DEBUG ((EFI_D_PAGE, "SetMemoryAttributes(): MMU page 0x%x length 0x%x to %lx\n", (UINTN)BaseAddress, (UINTN)Length, Attributes));
|
|
Status = UpdatePageEntries (BaseAddress, Length, Attributes, VirtualMask);
|
|
}
|
|
|
|
// flush d-cache so descriptors make it back to uncached memory for subsequent table walks
|
|
// flush and invalidate pages
|
|
ArmCleanInvalidateDataCache ();
|
|
|
|
ArmInvalidateInstructionCache ();
|
|
|
|
// invalidate all TLB entries so changes are synced
|
|
ArmInvalidateTlb ();
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
This function modifies the attributes for the memory region specified by BaseAddress and
|
|
Length from their current attributes to the attributes specified by Attributes.
|
|
|
|
@param This The EFI_CPU_ARCH_PROTOCOL instance.
|
|
@param BaseAddress The physical address that is the start address of a memory region.
|
|
@param Length The size in bytes of the memory region.
|
|
@param Attributes The bit mask of attributes to set for the memory region.
|
|
|
|
@retval EFI_SUCCESS The attributes were set for the memory region.
|
|
@retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by
|
|
BaseAddress and Length cannot be modified.
|
|
@retval EFI_INVALID_PARAMETER Length is zero.
|
|
@retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
|
|
the memory resource range.
|
|
@retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
|
|
resource range specified by BaseAddress and Length.
|
|
The bit mask of attributes is not support for the memory resource
|
|
range specified by BaseAddress and Length.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
CpuSetMemoryAttributes (
|
|
IN EFI_CPU_ARCH_PROTOCOL *This,
|
|
IN EFI_PHYSICAL_ADDRESS BaseAddress,
|
|
IN UINT64 Length,
|
|
IN UINT64 Attributes
|
|
)
|
|
{
|
|
DEBUG ((EFI_D_PAGE, "SetMemoryAttributes(%lx, %lx, %lx)\n", BaseAddress, Length, Attributes));
|
|
if ( ((BaseAddress & ~TT_DESCRIPTOR_PAGE_BASE_ADDRESS_MASK) != 0) || ((Length & ~TT_DESCRIPTOR_PAGE_BASE_ADDRESS_MASK) != 0)){
|
|
// minimum granularity is SIZE_4KB (4KB on ARM)
|
|
DEBUG ((EFI_D_PAGE, "SetMemoryAttributes(%lx, %lx, %lx): minimum ganularity is SIZE_4KB\n", BaseAddress, Length, Attributes));
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
return SetMemoryAttributes (BaseAddress, Length, Attributes, 0);
|
|
}
|
|
|
|
|
|
|
|
//
|
|
// Add a new protocol to support
|
|
//
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
CpuConvertPagesToUncachedVirtualAddress (
|
|
IN VIRTUAL_UNCACHED_PAGES_PROTOCOL *This,
|
|
IN EFI_PHYSICAL_ADDRESS Address,
|
|
IN UINTN Length,
|
|
IN EFI_PHYSICAL_ADDRESS VirtualMask,
|
|
OUT UINT64 *Attributes OPTIONAL
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
|
|
|
|
|
|
if (Attributes != NULL) {
|
|
Status = gDS->GetMemorySpaceDescriptor (Address, &GcdDescriptor);
|
|
if (!EFI_ERROR (Status)) {
|
|
*Attributes = GcdDescriptor.Attributes;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Make this address range page fault if accessed. If it is a DMA buffer than this would
|
|
// be the PCI address. Code should always use the CPU address, and we will or in VirtualMask
|
|
// to that address.
|
|
//
|
|
Status = SetMemoryAttributes (Address, Length, EFI_MEMORY_WP, 0);
|
|
if (!EFI_ERROR (Status)) {
|
|
Status = SetMemoryAttributes (Address | VirtualMask, Length, EFI_MEMORY_UC, VirtualMask);
|
|
}
|
|
|
|
DEBUG ((DEBUG_INFO | DEBUG_LOAD, "ConvertPagesToUncachedVirtualAddress()\n Unmapped 0x%08lx Mapped 0x%08lx 0x%x bytes\n", Address, Address | VirtualMask, Length));
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
CpuReconvertPages (
|
|
IN VIRTUAL_UNCACHED_PAGES_PROTOCOL *This,
|
|
IN EFI_PHYSICAL_ADDRESS Address,
|
|
IN UINTN Length,
|
|
IN EFI_PHYSICAL_ADDRESS VirtualMask,
|
|
IN UINT64 Attributes
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
DEBUG ((DEBUG_INFO | DEBUG_LOAD, "CpuReconvertPages(%lx, %x, %lx, %lx)\n", Address, Length, VirtualMask, Attributes));
|
|
|
|
//
|
|
// Unmap the alaised Address
|
|
//
|
|
Status = SetMemoryAttributes (Address | VirtualMask, Length, EFI_MEMORY_WP, 0);
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// Restore atttributes
|
|
//
|
|
Status = SetMemoryAttributes (Address, Length, Attributes, 0);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
VIRTUAL_UNCACHED_PAGES_PROTOCOL gVirtualUncachedPages = {
|
|
CpuConvertPagesToUncachedVirtualAddress,
|
|
CpuReconvertPages
|
|
};
|