mirror of https://github.com/acidanthera/audk.git
317 lines
11 KiB
C
317 lines
11 KiB
C
/** @file
|
|
* Main file supporting the SEC Phase for Versatile Express
|
|
*
|
|
* Copyright (c) 2011, ARM Limited. All rights reserved.
|
|
*
|
|
* This program and the accompanying materials
|
|
* are licensed and made available under the terms and conditions of the BSD License
|
|
* which accompanies this distribution. The full text of the license may be found at
|
|
* http://opensource.org/licenses/bsd-license.php
|
|
*
|
|
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
*
|
|
**/
|
|
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/PcdLib.h>
|
|
#include <Library/PrintLib.h>
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/ArmLib.h>
|
|
#include <Library/SerialPortLib.h>
|
|
#include <Library/ArmPlatformLib.h>
|
|
|
|
#include <Chipset/ArmV7.h>
|
|
#include <Drivers/PL390Gic.h>
|
|
|
|
#define ARM_PRIMARY_CORE 0
|
|
|
|
#define SerialPrint(txt) SerialPortWrite ((UINT8*)txt, AsciiStrLen(txt)+1);
|
|
|
|
extern VOID *monitor_vector_table;
|
|
|
|
VOID
|
|
ArmSetupGicNonSecure (
|
|
IN INTN GicDistributorBase,
|
|
IN INTN GicInterruptInterfaceBase
|
|
);
|
|
|
|
// Vector Table for Sec Phase
|
|
VOID
|
|
SecVectorTable (
|
|
VOID
|
|
);
|
|
|
|
VOID
|
|
NonSecureWaitForFirmware (
|
|
VOID
|
|
);
|
|
|
|
VOID
|
|
enter_monitor_mode(
|
|
IN VOID* Stack
|
|
);
|
|
|
|
VOID
|
|
return_from_exception (
|
|
IN UINTN NonSecureBase
|
|
);
|
|
|
|
VOID
|
|
copy_cpsr_into_spsr (
|
|
VOID
|
|
);
|
|
|
|
VOID
|
|
CEntryPoint (
|
|
IN UINTN CoreId
|
|
)
|
|
{
|
|
CHAR8 Buffer[100];
|
|
UINTN CharCount;
|
|
|
|
// Primary CPU clears out the SCU tag RAMs, secondaries wait
|
|
if (CoreId == ARM_PRIMARY_CORE) {
|
|
if (FixedPcdGet32(PcdMPCoreSupport)) {
|
|
ArmInvalidScu();
|
|
}
|
|
|
|
// SEC phase needs to run library constructors by hand. This assumes we are linked against the SerialLib
|
|
// In non SEC modules the init call is in autogenerated code.
|
|
SerialPortInitialize ();
|
|
|
|
// Start talking
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"UEFI firmware built at %a on %a\n\r",__TIME__, __DATE__);
|
|
SerialPortWrite ((UINT8 *) Buffer, CharCount);
|
|
|
|
// Now we've got UART, make the check:
|
|
// - The Vector table must be 32-byte aligned
|
|
ASSERT(((UINT32)SecVectorTable & ((1 << 5)-1)) == 0);
|
|
}
|
|
|
|
// Invalidate the data cache. Doesn't have to do the Data cache clean.
|
|
ArmInvalidateDataCache();
|
|
|
|
//Invalidate Instruction Cache
|
|
ArmInvalidateInstructionCache();
|
|
|
|
//Invalidate I & D TLBs
|
|
ArmInvalidateInstructionAndDataTlb();
|
|
|
|
// Enable Full Access to CoProcessors
|
|
ArmWriteCPACR (CPACR_CP_FULL_ACCESS);
|
|
|
|
// Enable SWP instructions
|
|
ArmEnableSWPInstruction();
|
|
|
|
// Enable program flow prediction, if supported.
|
|
ArmEnableBranchPrediction();
|
|
|
|
if (FixedPcdGet32(PcdVFPEnabled)) {
|
|
ArmEnableVFP();
|
|
}
|
|
|
|
if (CoreId == ARM_PRIMARY_CORE) {
|
|
// Initialize peripherals that must be done at the early stage
|
|
// Example: Some L2x0 controllers must be initialized in Secure World
|
|
ArmPlatformSecInitialize ();
|
|
|
|
// If we skip the PEI Core we could want to initialize the DRAM in the SEC phase.
|
|
// If we are in standalone, we need the initialization to copy the UEFI firmware into DRAM
|
|
if (FeaturePcdGet(PcdSkipPeiCore) || !PcdGet32(PcdStandalone)) {
|
|
// Initialize system memory (DRAM)
|
|
ArmPlatformInitializeSystemMemory ();
|
|
}
|
|
|
|
// Some platform can change their physical memory mapping
|
|
ArmPlatformBootRemapping ();
|
|
}
|
|
|
|
// Test if Trustzone is supported on this platform
|
|
if (ArmPlatformTrustzoneSupported()) {
|
|
if (FixedPcdGet32(PcdMPCoreSupport)) {
|
|
// Setup SMP in Non Secure world
|
|
ArmSetupSmpNonSecure (CoreId);
|
|
}
|
|
|
|
// Enter Monitor Mode
|
|
enter_monitor_mode((VOID*)(PcdGet32(PcdCPUCoresSecMonStackBase) + (PcdGet32(PcdCPUCoreSecMonStackSize) * CoreId)));
|
|
|
|
//Write the monitor mode vector table address
|
|
ArmWriteVMBar((UINT32) &monitor_vector_table);
|
|
|
|
//-------------------- Monitor Mode ---------------------
|
|
// Setup the Trustzone Chipsets
|
|
if (CoreId == ARM_PRIMARY_CORE) {
|
|
ArmPlatformTrustzoneInit();
|
|
|
|
// Wake up the secondary cores by sending a interrupt to everyone else
|
|
// NOTE 1: The Software Generated Interrupts are always enabled on Cortex-A9
|
|
// MPcore test chip on Versatile Express board, So the Software doesn't have to
|
|
// enable SGI's explicitly.
|
|
// 2: As no other Interrupts are enabled, doesn't have to worry about the priority.
|
|
// 3: As all the cores are in secure state, use secure SGI's
|
|
//
|
|
|
|
PL390GicEnableDistributor (PcdGet32(PcdGicDistributorBase));
|
|
PL390GicEnableInterruptInterface(PcdGet32(PcdGicInterruptInterfaceBase));
|
|
|
|
// Send SGI to all Secondary core to wake them up from WFI state.
|
|
PL390GicSendSgiTo (PcdGet32(PcdGicDistributorBase), GIC_ICDSGIR_FILTER_EVERYONEELSE, 0x0E);
|
|
} else {
|
|
// The secondary cores need to wait until the Trustzone chipsets configuration is done
|
|
// before switching to Non Secure World
|
|
|
|
// Enabled GIC CPU Interface
|
|
PL390GicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase));
|
|
|
|
// Waiting for the SGI from the primary core
|
|
ArmCallWFI();
|
|
|
|
// Acknowledge the interrupt and send End of Interrupt signal.
|
|
PL390GicAcknowledgeSgiFrom(PcdGet32(PcdGicInterruptInterfaceBase), ARM_PRIMARY_CORE);
|
|
}
|
|
|
|
// Transfer the interrupt to Non-secure World
|
|
PL390GicSetupNonSecure(PcdGet32(PcdGicDistributorBase),PcdGet32(PcdGicInterruptInterfaceBase));
|
|
|
|
// Write to CP15 Non-secure Access Control Register :
|
|
// - Enable CP10 and CP11 accesses in NS World
|
|
// - Enable Access to Preload Engine in NS World
|
|
// - Enable lockable TLB entries allocation in NS world
|
|
// - Enable R/W access to SMP bit of Auxiliary Control Register in NS world
|
|
ArmWriteNsacr(NSACR_NS_SMP | NSACR_TL | NSACR_PLE | NSACR_CP(10) | NSACR_CP(11));
|
|
|
|
// CP15 Secure Configuration Register with Non Secure bit (SCR_NS), CPSR.A modified in any
|
|
// security state (SCR_AW), CPSR.F modified in any security state (SCR_FW)
|
|
ArmWriteScr(SCR_NS | SCR_FW | SCR_AW);
|
|
} else {
|
|
if (CoreId == ARM_PRIMARY_CORE) {
|
|
SerialPrint ("Trust Zone Configuration is disabled\n\r");
|
|
}
|
|
|
|
// Trustzone is not enabled, just enable the Distributor and CPU interface
|
|
if (CoreId == ARM_PRIMARY_CORE) {
|
|
PL390GicEnableDistributor (PcdGet32(PcdGicDistributorBase));
|
|
}
|
|
PL390GicEnableInterruptInterface(PcdGet32(PcdGicInterruptInterfaceBase));
|
|
|
|
// With Trustzone support the transition from Sec to Normal world is done by return_from_exception().
|
|
// If we want to keep this function call we need to ensure the SVC's SPSR point to the same Program
|
|
// Status Register as the the current one (CPSR).
|
|
copy_cpsr_into_spsr();
|
|
}
|
|
|
|
// If ArmVe has not been built as Standalone then we need to patch the DRAM to add an infinite loop at the start address
|
|
if (!PcdGet32(PcdStandalone)) {
|
|
if (CoreId == ARM_PRIMARY_CORE) {
|
|
UINTN* StartAddress = (UINTN*)PcdGet32(PcdNormalFvBaseAddress);
|
|
|
|
// Patch the DRAM to make an infinite loop at the start address
|
|
*StartAddress = 0xEAFFFFFE; // opcode for while(1)
|
|
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Waiting for firmware at 0x%08X ...\n\r",StartAddress);
|
|
SerialPortWrite ((UINT8 *) Buffer, CharCount);
|
|
|
|
// To enter into Non Secure state, we need to make a return from exception
|
|
return_from_exception(PcdGet32(PcdNormalFvBaseAddress));
|
|
} else {
|
|
// When the primary core is stopped by the hardware debugger to copy the firmware
|
|
// into DRAM. The secondary cores are still running. As soon as the first bytes of
|
|
// the firmware are written into DRAM, the secondary cores will start to execute the
|
|
// code even if the firmware is not entirely written into the memory.
|
|
// That's why the secondary cores need to be parked in WFI and wake up once the
|
|
// firmware is ready.
|
|
|
|
// Enter Secondary Cores into non Secure State. To enter into Non Secure state, we need to make a return from exception
|
|
return_from_exception((UINTN)NonSecureWaitForFirmware);
|
|
}
|
|
} else if (FeaturePcdGet(PcdSkipPeiCore)) {
|
|
if (CoreId == ARM_PRIMARY_CORE) {
|
|
// Signal the secondary cores they can jump to PEI phase
|
|
PL390GicSendSgiTo (PcdGet32(PcdGicDistributorBase), GIC_ICDSGIR_FILTER_EVERYONEELSE, 0x0E);
|
|
|
|
// To enter into Non Secure state, we need to make a return from exception
|
|
return_from_exception(PcdGet32(PcdNormalFvBaseAddress));
|
|
} else {
|
|
// We wait for the primary core to finish to initialize the System Memory. When we skip PEI Core, we could set the stack in DRAM
|
|
// Without this synchronization the secondary cores will complete the SEC before the primary core has finished to intitialize the DRAM.
|
|
return_from_exception((UINTN)NonSecureWaitForFirmware);
|
|
}
|
|
} else {
|
|
// To enter into Non Secure state, we need to make a return from exception
|
|
return_from_exception(PcdGet32(PcdNormalFvBaseAddress));
|
|
}
|
|
//-------------------- Non Secure Mode ---------------------
|
|
|
|
// PEI Core should always load and never return
|
|
ASSERT (FALSE);
|
|
}
|
|
|
|
// When the firmware is built as not Standalone, the secondary cores need to wait the firmware
|
|
// entirely written into DRAM. It is the firmware from DRAM which will wake up the secondary cores.
|
|
VOID
|
|
NonSecureWaitForFirmware (
|
|
VOID
|
|
)
|
|
{
|
|
VOID (*secondary_start)(VOID);
|
|
|
|
// The secondary cores will execute the firmware once wake from WFI.
|
|
secondary_start = (VOID (*)())PcdGet32(PcdNormalFvBaseAddress);
|
|
|
|
ArmCallWFI();
|
|
|
|
// Acknowledge the interrupt and send End of Interrupt signal.
|
|
PL390GicAcknowledgeSgiFrom(PcdGet32(PcdGicInterruptInterfaceBase),ARM_PRIMARY_CORE);
|
|
|
|
// Jump to secondary core entry point.
|
|
secondary_start();
|
|
|
|
// PEI Core should always load and never return
|
|
ASSERT (FALSE);
|
|
}
|
|
|
|
VOID
|
|
SecCommonExceptionEntry (
|
|
IN UINT32 Entry,
|
|
IN UINT32 LR
|
|
)
|
|
{
|
|
CHAR8 Buffer[100];
|
|
UINTN CharCount;
|
|
|
|
switch (Entry) {
|
|
case 0:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Reset Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 1:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Undefined Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 2:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"SWI Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 3:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"PrefetchAbort Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 4:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"DataAbort Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 5:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Reserved Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 6:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"IRQ Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 7:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"FIQ Exception at 0x%X\n\r",LR);
|
|
break;
|
|
default:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Unknown Exception at 0x%X\n\r",LR);
|
|
break;
|
|
}
|
|
SerialPortWrite ((UINT8 *) Buffer, CharCount);
|
|
while(1);
|
|
}
|