audk/IntelSiliconPkg/IntelVTdDxe/VtdReg.c

517 lines
18 KiB
C

/** @file
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "DmaProtection.h"
UINT64 mVtdHostAddressWidthMask;
UINTN mVtdUnitNumber;
VTD_UNIT_INFORMATION *mVtdUnitInformation;
BOOLEAN mVtdEnabled;
/**
Flush VTD page table and context table memory.
This action is to make sure the IOMMU engine can get final data in memory.
@param[in] VtdIndex The index used to identify a VTd engine.
@param[in] Base The base address of memory to be flushed.
@param[in] Size The size of memory in bytes to be flushed.
**/
VOID
FlushPageTableMemory (
IN UINTN VtdIndex,
IN UINTN Base,
IN UINTN Size
)
{
if (mVtdUnitInformation[VtdIndex].ECapReg.Bits.C == 0) {
WriteBackDataCacheRange ((VOID *)Base, Size);
}
}
/**
Flush VTd engine write buffer.
@param[in] VtdIndex The index used to identify a VTd engine.
**/
VOID
FlushWriteBuffer (
IN UINTN VtdIndex
)
{
UINT32 Reg32;
if (mVtdUnitInformation[VtdIndex].CapReg.Bits.RWBF != 0) {
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG);
MmioWrite32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GCMD_REG, Reg32 | B_GMCD_REG_WBF);
do {
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG);
} while ((Reg32 & B_GSTS_REG_WBF) != 0);
}
}
/**
Invalidate VTd context cache.
@param[in] VtdIndex The index used to identify a VTd engine.
**/
EFI_STATUS
InvalidateContextCache (
IN UINTN VtdIndex
)
{
UINT64 Reg64;
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG);
if ((Reg64 & B_CCMD_REG_ICC) != 0) {
DEBUG ((DEBUG_ERROR,"ERROR: InvalidateContextCache: B_CCMD_REG_ICC is set for VTD(%d)\n",VtdIndex));
return EFI_DEVICE_ERROR;
}
Reg64 &= ((~B_CCMD_REG_ICC) & (~B_CCMD_REG_CIRG_MASK));
Reg64 |= (B_CCMD_REG_ICC | V_CCMD_REG_CIRG_GLOBAL);
MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG, Reg64);
do {
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG);
} while ((Reg64 & B_CCMD_REG_ICC) != 0);
return EFI_SUCCESS;
}
/**
Invalidate VTd IOTLB.
@param[in] VtdIndex The index used to identify a VTd engine.
**/
EFI_STATUS
InvalidateIOTLB (
IN UINTN VtdIndex
)
{
UINT64 Reg64;
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
if ((Reg64 & B_IOTLB_REG_IVT) != 0) {
DEBUG ((DEBUG_ERROR,"ERROR: InvalidateIOTLB: B_IOTLB_REG_IVT is set for VTD(%d)\n", VtdIndex));
return EFI_DEVICE_ERROR;
}
Reg64 &= ((~B_IOTLB_REG_IVT) & (~B_IOTLB_REG_IIRG_MASK));
Reg64 |= (B_IOTLB_REG_IVT | V_IOTLB_REG_IIRG_GLOBAL);
MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG, Reg64);
do {
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
} while ((Reg64 & B_IOTLB_REG_IVT) != 0);
return EFI_SUCCESS;
}
/**
Invalid VTd global IOTLB.
@param[in] VtdIndex The index of VTd engine.
@retval EFI_SUCCESS VTd global IOTLB is invalidated.
@retval EFI_DEVICE_ERROR VTd global IOTLB is not invalidated.
**/
EFI_STATUS
InvalidateVtdIOTLBGlobal (
IN UINTN VtdIndex
)
{
if (!mVtdEnabled) {
return EFI_SUCCESS;
}
DEBUG((DEBUG_VERBOSE, "InvalidateVtdIOTLBGlobal(%d)\n", VtdIndex));
//
// Write Buffer Flush before invalidation
//
FlushWriteBuffer (VtdIndex);
//
// Invalidate the context cache
//
if (mVtdUnitInformation[VtdIndex].HasDirtyContext) {
InvalidateContextCache (VtdIndex);
}
//
// Invalidate the IOTLB cache
//
if (mVtdUnitInformation[VtdIndex].HasDirtyContext || mVtdUnitInformation[VtdIndex].HasDirtyPages) {
InvalidateIOTLB (VtdIndex);
}
return EFI_SUCCESS;
}
/**
Prepare VTD configuration.
**/
VOID
PrepareVtdConfig (
VOID
)
{
UINTN Index;
UINTN DomainNumber;
for (Index = 0; Index < mVtdUnitNumber; Index++) {
DEBUG ((DEBUG_INFO, "Dump VTd Capability (%d)\n", Index));
mVtdUnitInformation[Index].CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CAP_REG);
DumpVtdCapRegs (&mVtdUnitInformation[Index].CapReg);
mVtdUnitInformation[Index].ECapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_ECAP_REG);
DumpVtdECapRegs (&mVtdUnitInformation[Index].ECapReg);
if ((mVtdUnitInformation[Index].CapReg.Bits.SLLPS & BIT0) == 0) {
DEBUG((DEBUG_WARN, "!!!! 2MB super page is not supported on VTD %d !!!!\n", Index));
}
if ((mVtdUnitInformation[Index].CapReg.Bits.SAGAW & BIT2) == 0) {
DEBUG((DEBUG_ERROR, "!!!! 4-level page-table is not supported on VTD %d !!!!\n", Index));
return ;
}
DomainNumber = (UINTN)1 << (UINT8)((UINTN)mVtdUnitInformation[Index].CapReg.Bits.ND * 2 + 4);
if (mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber >= DomainNumber) {
DEBUG((DEBUG_ERROR, "!!!! Pci device Number(0x%x) >= DomainNumber(0x%x) !!!!\n", mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber, DomainNumber));
return ;
}
}
return ;
}
/**
Enable DMAR translation.
@retval EFI_SUCCESS DMAR translation is enabled.
@retval EFI_DEVICE_ERROR DMAR translation is not enabled.
**/
EFI_STATUS
EnableDmar (
VOID
)
{
UINTN Index;
UINT32 Reg32;
for (Index = 0; Index < mVtdUnitNumber; Index++) {
DEBUG((DEBUG_INFO, ">>>>>>EnableDmar() for engine [%d] \n", Index));
if (mVtdUnitInformation[Index].ExtRootEntryTable != NULL) {
DEBUG((DEBUG_INFO, "ExtRootEntryTable 0x%x \n", mVtdUnitInformation[Index].ExtRootEntryTable));
MmioWrite64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_RTADDR_REG, (UINT64)(UINTN)mVtdUnitInformation[Index].ExtRootEntryTable | BIT11);
} else {
DEBUG((DEBUG_INFO, "RootEntryTable 0x%x \n", mVtdUnitInformation[Index].RootEntryTable));
MmioWrite64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_RTADDR_REG, (UINT64)(UINTN)mVtdUnitInformation[Index].RootEntryTable);
}
MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_SRTP);
DEBUG((DEBUG_INFO, "EnableDmar: waiting for RTPS bit to be set... \n"));
do {
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
} while((Reg32 & B_GSTS_REG_RTPS) == 0);
//
// Init DMAr Fault Event and Data registers
//
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_FEDATA_REG);
//
// Write Buffer Flush before invalidation
//
FlushWriteBuffer (Index);
//
// Invalidate the context cache
//
InvalidateContextCache (Index);
//
// Invalidate the IOTLB cache
//
InvalidateIOTLB (Index);
//
// Enable VTd
//
MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_TE);
DEBUG((DEBUG_INFO, "EnableDmar: Waiting B_GSTS_REG_TE ...\n"));
do {
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
} while ((Reg32 & B_GSTS_REG_TE) == 0);
DEBUG ((DEBUG_INFO,"VTD (%d) enabled!<<<<<<\n",Index));
}
mVtdEnabled = TRUE;
return EFI_SUCCESS;
}
/**
Disable DMAR translation.
@retval EFI_SUCCESS DMAR translation is disabled.
@retval EFI_DEVICE_ERROR DMAR translation is not disabled.
**/
EFI_STATUS
DisableDmar (
VOID
)
{
UINTN Index;
UINTN SubIndex;
UINT32 Reg32;
for (Index = 0; Index < mVtdUnitNumber; Index++) {
DEBUG((DEBUG_INFO, ">>>>>>DisableDmar() for engine [%d] \n", Index));
//
// Write Buffer Flush before invalidation
//
FlushWriteBuffer (Index);
//
// Disable VTd
//
MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_SRTP);
do {
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
} while((Reg32 & B_GSTS_REG_RTPS) == 0);
Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
DEBUG((DEBUG_INFO, "DisableDmar: GSTS_REG - 0x%08x\n", Reg32));
DEBUG ((DEBUG_INFO,"VTD (%d) Disabled!<<<<<<\n",Index));
}
mVtdEnabled = FALSE;
for (Index = 0; Index < mVtdUnitNumber; Index++) {
DEBUG((DEBUG_INFO, "engine [%d] access\n", Index));
for (SubIndex = 0; SubIndex < mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber; SubIndex++) {
DEBUG ((DEBUG_INFO, " PCI S%04X B%02x D%02x F%02x - %d\n",
mVtdUnitInformation[Index].Segment,
mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Bus,
mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Device,
mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Function,
mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].AccessCount
));
}
}
return EFI_SUCCESS;
}
/**
Dump VTd capability registers.
@param[in] CapReg The capability register.
**/
VOID
DumpVtdCapRegs (
IN VTD_CAP_REG *CapReg
)
{
DEBUG((DEBUG_INFO, " CapReg:\n", CapReg->Uint64));
DEBUG((DEBUG_INFO, " ND - 0x%x\n", CapReg->Bits.ND));
DEBUG((DEBUG_INFO, " AFL - 0x%x\n", CapReg->Bits.AFL));
DEBUG((DEBUG_INFO, " RWBF - 0x%x\n", CapReg->Bits.RWBF));
DEBUG((DEBUG_INFO, " PLMR - 0x%x\n", CapReg->Bits.PLMR));
DEBUG((DEBUG_INFO, " PHMR - 0x%x\n", CapReg->Bits.PHMR));
DEBUG((DEBUG_INFO, " CM - 0x%x\n", CapReg->Bits.CM));
DEBUG((DEBUG_INFO, " SAGAW - 0x%x\n", CapReg->Bits.SAGAW));
DEBUG((DEBUG_INFO, " MGAW - 0x%x\n", CapReg->Bits.MGAW));
DEBUG((DEBUG_INFO, " ZLR - 0x%x\n", CapReg->Bits.ZLR));
DEBUG((DEBUG_INFO, " FRO - 0x%x\n", CapReg->Bits.FRO));
DEBUG((DEBUG_INFO, " SLLPS - 0x%x\n", CapReg->Bits.SLLPS));
DEBUG((DEBUG_INFO, " PSI - 0x%x\n", CapReg->Bits.PSI));
DEBUG((DEBUG_INFO, " NFR - 0x%x\n", CapReg->Bits.NFR));
DEBUG((DEBUG_INFO, " MAMV - 0x%x\n", CapReg->Bits.MAMV));
DEBUG((DEBUG_INFO, " DWD - 0x%x\n", CapReg->Bits.DWD));
DEBUG((DEBUG_INFO, " DRD - 0x%x\n", CapReg->Bits.DRD));
DEBUG((DEBUG_INFO, " FL1GP - 0x%x\n", CapReg->Bits.FL1GP));
DEBUG((DEBUG_INFO, " PI - 0x%x\n", CapReg->Bits.PI));
}
/**
Dump VTd extended capability registers.
@param[in] ECapReg The extended capability register.
**/
VOID
DumpVtdECapRegs (
IN VTD_ECAP_REG *ECapReg
)
{
DEBUG((DEBUG_INFO, " ECapReg:\n", ECapReg->Uint64));
DEBUG((DEBUG_INFO, " C - 0x%x\n", ECapReg->Bits.C));
DEBUG((DEBUG_INFO, " QI - 0x%x\n", ECapReg->Bits.QI));
DEBUG((DEBUG_INFO, " DT - 0x%x\n", ECapReg->Bits.DT));
DEBUG((DEBUG_INFO, " IR - 0x%x\n", ECapReg->Bits.IR));
DEBUG((DEBUG_INFO, " EIM - 0x%x\n", ECapReg->Bits.EIM));
DEBUG((DEBUG_INFO, " PT - 0x%x\n", ECapReg->Bits.PT));
DEBUG((DEBUG_INFO, " SC - 0x%x\n", ECapReg->Bits.SC));
DEBUG((DEBUG_INFO, " IRO - 0x%x\n", ECapReg->Bits.IRO));
DEBUG((DEBUG_INFO, " MHMV - 0x%x\n", ECapReg->Bits.MHMV));
DEBUG((DEBUG_INFO, " ECS - 0x%x\n", ECapReg->Bits.ECS));
DEBUG((DEBUG_INFO, " MTS - 0x%x\n", ECapReg->Bits.MTS));
DEBUG((DEBUG_INFO, " NEST - 0x%x\n", ECapReg->Bits.NEST));
DEBUG((DEBUG_INFO, " DIS - 0x%x\n", ECapReg->Bits.DIS));
DEBUG((DEBUG_INFO, " PASID - 0x%x\n", ECapReg->Bits.PASID));
DEBUG((DEBUG_INFO, " PRS - 0x%x\n", ECapReg->Bits.PRS));
DEBUG((DEBUG_INFO, " ERS - 0x%x\n", ECapReg->Bits.ERS));
DEBUG((DEBUG_INFO, " SRS - 0x%x\n", ECapReg->Bits.SRS));
DEBUG((DEBUG_INFO, " NWFS - 0x%x\n", ECapReg->Bits.NWFS));
DEBUG((DEBUG_INFO, " EAFS - 0x%x\n", ECapReg->Bits.EAFS));
DEBUG((DEBUG_INFO, " PSS - 0x%x\n", ECapReg->Bits.PSS));
}
/**
Dump VTd registers.
@param[in] VtdIndex The index of VTd engine.
**/
VOID
DumpVtdRegs (
IN UINTN VtdIndex
)
{
UINTN Index;
UINT64 Reg64;
VTD_FRCD_REG FrcdReg;
VTD_CAP_REG CapReg;
UINT32 Reg32;
VTD_SOURCE_ID SourceId;
DEBUG((DEBUG_INFO, "#### DumpVtdRegs(%d) Begin ####\n", VtdIndex));
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_VER_REG);
DEBUG((DEBUG_INFO, " VER_REG - 0x%08x\n", Reg32));
CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CAP_REG);
DEBUG((DEBUG_INFO, " CAP_REG - 0x%016lx\n", CapReg.Uint64));
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_ECAP_REG);
DEBUG((DEBUG_INFO, " ECAP_REG - 0x%016lx\n", Reg64));
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG);
DEBUG((DEBUG_INFO, " GSTS_REG - 0x%08x \n", Reg32));
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_RTADDR_REG);
DEBUG((DEBUG_INFO, " RTADDR_REG - 0x%016lx\n", Reg64));
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG);
DEBUG((DEBUG_INFO, " CCMD_REG - 0x%016lx\n", Reg64));
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FSTS_REG);
DEBUG((DEBUG_INFO, " FSTS_REG - 0x%08x\n", Reg32));
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FECTL_REG);
DEBUG((DEBUG_INFO, " FECTL_REG - 0x%08x\n", Reg32));
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEDATA_REG);
DEBUG((DEBUG_INFO, " FEDATA_REG - 0x%08x\n", Reg32));
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEADDR_REG);
DEBUG((DEBUG_INFO, " FEADDR_REG - 0x%08x\n",Reg32));
Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEUADDR_REG);
DEBUG((DEBUG_INFO, " FEUADDR_REG - 0x%08x\n",Reg32));
for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) {
FrcdReg.Uint64[0] = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG));
FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64)));
DEBUG((DEBUG_INFO, " FRCD_REG[%d] - 0x%016lx %016lx\n", Index, FrcdReg.Uint64[1], FrcdReg.Uint64[0]));
if (FrcdReg.Uint64[1] != 0 || FrcdReg.Uint64[0] != 0) {
DEBUG((DEBUG_INFO, " Fault Info - 0x%016lx\n", VTD_64BITS_ADDRESS(FrcdReg.Bits.FILo, FrcdReg.Bits.FIHi)));
SourceId.Uint16 = (UINT16)FrcdReg.Bits.SID;
DEBUG((DEBUG_INFO, " Source - B%02x D%02x F%02x\n", SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
DEBUG((DEBUG_INFO, " Type - %x (%a)\n", FrcdReg.Bits.T, FrcdReg.Bits.T ? "read" : "write"));
DEBUG((DEBUG_INFO, " Reason - %x\n", FrcdReg.Bits.FR));
}
}
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IVA_REG);
DEBUG((DEBUG_INFO, " IVA_REG - 0x%016lx\n",Reg64));
Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
DEBUG((DEBUG_INFO, " IOTLB_REG - 0x%016lx\n",Reg64));
DEBUG((DEBUG_INFO, "#### DumpVtdRegs(%d) End ####\n", VtdIndex));
}
/**
Dump VTd registers for all VTd engine.
**/
VOID
DumpVtdRegsAll (
VOID
)
{
UINTN Num;
for (Num = 0; Num < mVtdUnitNumber; Num++) {
DumpVtdRegs (Num);
}
}
/**
Dump VTd registers if there is error.
**/
VOID
DumpVtdIfError (
VOID
)
{
UINTN Num;
UINTN Index;
VTD_FRCD_REG FrcdReg;
VTD_CAP_REG CapReg;
UINT32 Reg32;
BOOLEAN HasError;
for (Num = 0; Num < mVtdUnitNumber; Num++) {
HasError = FALSE;
Reg32 = MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FSTS_REG);
if (Reg32 != 0) {
HasError = TRUE;
}
Reg32 = MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FECTL_REG);
if ((Reg32 & BIT30) != 0) {
HasError = TRUE;
}
CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_CAP_REG);
for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) {
FrcdReg.Uint64[0] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG));
FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64)));
if ((FrcdReg.Uint64[0] != 0) || (FrcdReg.Uint64[1] != 0)) {
HasError = TRUE;
}
}
if (HasError) {
DEBUG((DEBUG_INFO, "\n#### ERROR ####\n"));
DumpVtdRegs (Num);
DEBUG((DEBUG_INFO, "#### ERROR ####\n\n"));
}
}
}