audk/MdeModulePkg/Universal/DebugSupportDxe/Ipf/AsmFuncs.s

1385 lines
53 KiB
ArmAsm

/// @file
/// Low level IPF routines used by the debug support driver
///
/// Copyright (c) 2006 - 2008, Intel Corporation
/// All rights reserved. This program and the accompanying materials
/// are licensed and made available under the terms and conditions of the BSD License
/// which accompanies this distribution. The full text of the license may be found at
/// http://opensource.org/licenses/bsd-license.php
///
/// THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
/// WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
///
/// Module Name: AsmFuncs.s
///
///
#include "Common.i"
#include "Ds64Macros.i"
.globl PatchSaveBuffer
.globl IpfContextBuf
.globl CommonHandler
.globl ExternalInterruptCount
/////////////////////////////////////////////
//
// Name:
// InstructionCacheFlush
//
// Description:
// Flushes instruction cache for specified number of bytes
//
.globl InstructionCacheFlush
.proc InstructionCacheFlush
.align 32
InstructionCacheFlush::
{ .mii
alloc r3=2, 0, 0, 0
cmp4.leu p0,p6=32, r33;;
(p6) mov r33=32;;
}
{ .mii
nop.m 0
zxt4 r29=r33;;
dep.z r30=r29, 0, 5;;
}
{ .mii
cmp4.eq p0,p7=r0, r30
shr.u r28=r29, 5;;
(p7) adds r28=1, r28;;
}
{ .mii
nop.m 0
shl r27=r28, 5;;
zxt4 r26=r27;;
}
{ .mfb
add r31=r26, r32
nop.f 0
nop.b 0
}
LoopBack: // $L143:
{ .mii
fc r32
adds r32=32, r32;;
cmp.ltu p14,p15=r32, r31
}
{ .mfb
nop.m 0
nop.f 0
//(p14) br.cond.dptk.few $L143#;;
(p14) br.cond.dptk.few LoopBack;;
}
{ .mmi
sync.i;;
srlz.i
nop.i 0;;
}
{ .mfb
nop.m 0
nop.f 0
br.ret.sptk.few b0;;
}
.endp InstructionCacheFlush
/////////////////////////////////////////////
//
// Name:
// ChainHandler
//
// Description:
// Chains an interrupt handler
//
// The purpose of this function is to enable chaining of the external interrupt.
// Since there's no clean SAL abstraction for doing this, we must do it
// surreptitiously.
//
// The reserved IVT entry at offset 0x3400 is coopted for use by this handler.
// According to Itanium architecture, it is reserved. Strictly speaking, this is
// not safe, as we're cheating and violating the Itanium architecture. However,
// as long as we're the only ones cheating, we should be OK. Without hooks in
// the SAL to enable IVT management, there aren't many good options.
//
// The strategy is to replace the first bundle of the external interrupt handler
// with our own that will branch into a piece of code we've supplied and located
// in the reserved IVT entry. Only the first bundle of the external interrupt
// IVT entry is modified.
//
// The original bundle is moved and relocated to space
// allocated within the reserved IVT entry. The next bundle following is
// is generated to go a hard coded branch back to the second bundle of the
// external interrupt IVT entry just in case the first bundle had no branch.
//
// Our new code will execute our handler, and then fall through to the
// original bundle after restoring all context appropriately.
//
// The following is a representation of what the IVT memory map looks like with
// our chained handler installed:
//
//
//
//
//
// This IVT entry is Failsafe bundle
// reserved by the
// Itanium architecture Original bundle 0
// and is used for
// for locating our
// handler and the
// original bundle Patch code...
// zero of the ext
// interrupt handler
//
// RSVD (3400) Unused
//
//
//
//
//
//
//
//
//
//
//
//
// EXT_INT (3000) Bundle 0 Bundle zero - This one is
// modified, all other bundles
// in the EXT_INT entry are
// untouched.
//
//
// Arguments:
//
// Returns:
//
// Notes:
//
//
.globl ChainHandler
.proc ChainHandler
ChainHandler:
NESTED_SETUP( 0,2+3,3,0 )
mov r8=1 // r8 = success
mov r2=cr.iva;;
//
// NOTE: There's a potential hazard here in that we're simply stealing a bunch of
// bundles (memory) from the IVT and assuming there's no catastrophic side effect.
//
// First, save IVT area we're taking over with the patch so we can restore it later
//
addl out0=PATCH_ENTRY_OFFSET, r2 // out0 = source buffer
movl out1=PatchSaveBuffer // out1 = destination buffer
mov out2=0x40;; // out2 = number of bundles to copy... save entire IDT entry
br.call.sptk.few b0 = CopyBundles
// Next, copy the patch code into the IVT
movl out0=PatchCode // out0 = source buffer of patch code
addl out1=PATCH_OFFSET, r2 // out1 = destination buffer - in IVT
mov out2=PATCH_CODE_SIZE;;
shr out2=out2, 4;; // out2 = number of bundles to copy
br.call.sptk.few b0 = CopyBundles
// copy original bundle 0 from the external interrupt handler to the
// appropriate place in the reserved IVT interrupt slot
addl out0=EXT_INT_ENTRY_OFFSET, r2 // out0 = source buffer
addl out1=RELOCATED_EXT_INT, r2 // out1 = destination buffer - in reserved IVT
mov out2=1;; // out2 = copy 1 bundle
br.call.sptk.few b0 = CopyBundles
// Now relocate it there because it very likely had a branch instruction that
// that must now be fixed up.
addl out0=RELOCATED_EXT_INT, r2 // out0 = new runtime address of bundle - in reserved IVT
addl out1=EXT_INT_ENTRY_OFFSET, r2;;// out1 = IP address of previous location
mov out2=out0;; // out2 = IP address of new location
br.call.sptk.few b0 = RelocateBundle
// Now copy into the failsafe branch into the next bundle just in case
// the original ext int bundle 0 bundle did not contain a branch instruction
movl out0=FailsafeBranch // out0 = source buffer
addl out1=FAILSAFE_BRANCH_OFFSET, r2 // out1 = destination buffer - in reserved IVT
mov out2=1;; // out2 = copy 1 bundle
br.call.sptk.few b0 = CopyBundles
// Last, copy in our replacement for the external interrupt IVT entry bundle 0
movl out0=PatchCodeNewBun0 // out0 = source buffer - our replacement bundle 0
addl out1=EXT_INT_ENTRY_OFFSET, r2 // out1 = destination buffer - bundle 0 of External interrupt entry
mov out2=1;; // out2 = copy 1 bundle
br.call.sptk.few b0 = CopyBundles
ChainHandlerDone:
NESTED_RETURN
.endp ChainHandler
/////////////////////////////////////////////
//
// Name:
// UnchainHandler
//
// Description:
// Unchains an interrupt handler
//
// Arguments:
//
// Returns:
//
// Notes:
//
//
.globl UnchainHandler
.proc UnchainHandler
UnchainHandler:
NESTED_SETUP( 0,2+3,3,0 )
mov r8=1 // r8 = success
mov r2=cr.iva;; // r2 = interrupt vector address
// First copy original Ext Int bundle 0 back to it's proper home...
addl out0=RELOCATED_EXT_INT, r2 // out0 = source - in reserved IVT
addl out1=EXT_INT_ENTRY_OFFSET, r2 // out1 = destination buffer - first bundle of Ext Int entry
mov out2=1;; // out2 = copy 1 bundle
br.call.sptk.few b0 = CopyBundles
// Now, relocate it again...
addl out0=EXT_INT_ENTRY_OFFSET, r2 // out1 = New runtime address
addl out1=RELOCATED_EXT_INT, r2;; // out0 = IP address of previous location
mov out2=out0;; // out2 = IP address of new location
br.call.sptk.few b0 = RelocateBundle
// Last, restore the patch area
movl out0=PatchSaveBuffer // out0 = source buffer
addl out1=PATCH_ENTRY_OFFSET, r2 // out1 = destination buffer
mov out2=0x40;; // out2 = number of bundles to copy... save entire IDT entry
br.call.sptk.few b0 = CopyBundles
UnchainHandlerDone:
NESTED_RETURN
.endp UnchainHandler
/////////////////////////////////////////////
//
// Name:
// CopyBundles
//
// Description:
// Copies instruction bundles - flushes icache as necessary
//
// Arguments:
// in0 - Bundle source
// in1 - Bundle destination
// in2 - Bundle count
//
// Returns:
//
// Notes:
// This procedure is a leaf routine
//
.proc CopyBundles
CopyBundles:
NESTED_SETUP(3,2+1,0,0)
shl in2=in2, 1;; // in2 = count of 8 byte blocks to copy
CopyBundlesLoop:
cmp.eq p14, p15 = 0, in2;; // Check if done
(p14) br.sptk.few CopyBundlesDone;;
ld8 loc2=[in0], 0x8;; // loc2 = source bytes
st8 [in1]=loc2;; // [in1] = destination bytes
fc in1;; // Flush instruction cache
sync.i;; // Ensure local and remote data/inst caches in sync
srlz.i;; // Ensure sync has been observed
add in1=0x8, in1;; // in1 = next destination
add in2=-1, in2;; // in2 = decrement 8 bytes blocks to copy
br.sptk.few CopyBundlesLoop;;
CopyBundlesDone:
NESTED_RETURN
.endp CopyBundles
/////////////////////////////////////////////
//
// Name:
// RelocateBundle
//
// Description:
// Relocates an instruction bundle by updating any ip-relative branch instructions.
//
// Arguments:
// in0 - Runtime address of bundle
// in1 - IP address of previous location of bundle
// in2 - IP address of new location of bundle
//
// Returns:
// in0 - 1 if successful or 0 if unsuccessful
//
// Notes:
// This routine examines all slots in the given bundle that are destined for the
// branch execution unit. If any of these slots contain an IP-relative branch
// namely instructions B1, B2, B3, or B6, the slot is fixed-up with a new relative
// address. Errors can occur if a branch cannot be reached.
//
.proc RelocateBundle
RelocateBundle:
NESTED_SETUP(3,2+4,3,0)
mov loc2=SLOT0 // loc2 = slot index
mov loc5=in0;; // loc5 = runtime address of bundle
mov in0=1;; // in0 = success
RelocateBundleNextSlot:
cmp.ge p14, p15 = SLOT2, loc2;; // Check if maximum slot
(p15) br.sptk.few RelocateBundleDone
mov out0=loc5;; // out0 = runtime address of bundle
br.call.sptk.few b0 = GetTemplate
mov loc3=out0;; // loc3 = instruction template
mov out0=loc5 // out0 = runtime address of bundle
mov out1=loc2;; // out1 = instruction slot number
br.call.sptk.few b0 = GetSlot
mov loc4=out0;; // loc4 = instruction encoding
mov out0=loc4 // out0 = instuction encoding
mov out1=loc2 // out1 = instruction slot number
mov out2=loc3;; // out2 = instruction template
br.call.sptk.few b0 = IsSlotBranch
cmp.eq p14, p15 = 1, out0;; // Check if branch slot
(p15) add loc2=1,loc2 // Increment slot
(p15) br.sptk.few RelocateBundleNextSlot
mov out0=loc4 // out0 = instuction encoding
mov out1=in1 // out1 = IP address of previous location
mov out2=in2;; // out2 = IP address of new location
br.call.sptk.few b0 = RelocateSlot
cmp.eq p14, p15 = 1, out1;; // Check if relocated slot
(p15) mov in0=0 // in0 = failure
(p15) br.sptk.few RelocateBundleDone
mov out2=out0;; // out2 = instruction encoding
mov out0=loc5 // out0 = runtime address of bundle
mov out1=loc2;; // out1 = instruction slot number
br.call.sptk.few b0 = SetSlot
add loc2=1,loc2;; // Increment slot
br.sptk.few RelocateBundleNextSlot
RelocateBundleDone:
NESTED_RETURN
.endp RelocateBundle
/////////////////////////////////////////////
//
// Name:
// RelocateSlot
//
// Description:
// Relocates an instruction bundle by updating any ip-relative branch instructions.
//
// Arguments:
// in0 - Instruction encoding (41-bits, right justified)
// in1 - IP address of previous location of bundle
// in2 - IP address of new location of bundle
//
// Returns:
// in0 - Instruction encoding (41-bits, right justified)
// in1 - 1 if successful otherwise 0
//
// Notes:
// This procedure is a leaf routine
//
.proc RelocateSlot
RelocateSlot:
NESTED_SETUP(3,2+5,0,0)
extr.u loc2=in0, 37, 4;; // loc2 = instruction opcode
cmp.eq p14, p15 = 4, loc2;; // IP-relative branch (B1) or
// IP-relative counted branch (B2)
(p15) cmp.eq p14, p15 = 5, loc2;; // IP-relative call (B3)
(p15) cmp.eq p14, p15 = 7, loc2;; // IP-relative predict (B6)
(p15) mov in1=1 // Instruction did not need to be reencoded
(p15) br.sptk.few RelocateSlotDone
tbit.nz p14, p15 = in0, 36;; // put relative offset sign bit in p14
extr.u loc2=in0, 13, 20;; // loc2 = relative offset in instruction
(p14) movl loc3=0xfffffffffff00000;; // extend sign
(p14) or loc2=loc2, loc3;;
shl loc2=loc2,4;; // convert to byte offset instead of bundle offset
add loc3=loc2, in1;; // loc3 = physical address of branch target
(p14) sub loc2=r0,loc2;; // flip sign in loc2 if offset is negative
sub loc4=loc3,in2;; // loc4 = relative offset from new ip to branch target
cmp.lt p15, p14 = 0, loc4;; // get new sign bit
(p14) sub loc5=r0,loc4 // get absolute value of offset
(p15) mov loc5=loc4;;
movl loc6=0x0FFFFFF;; // maximum offset in bytes for ip-rel branch
cmp.gt p14, p15 = loc5, loc6;; // check to see we're not out of range for an ip-relative branch
(p14) br.sptk.few RelocateSlotError
cmp.lt p15, p14 = 0, loc4;; // store sign in p14 again
(p14) dep in0=-1,in0,36,1 // store sign bit in instruction
(p15) dep in0=0,in0,36,1
shr loc4=loc4, 4;; // convert back to bundle offset
dep in0=loc4,in0,13,16;; // put first 16 bits of new offset into instruction
shr loc4=loc4,16;;
dep in0=loc4,in0,13+16,4 // put last 4 bits of new offset into instruction
mov in1=1;; // in1 = success
br.sptk.few RelocateSlotDone;;
RelocateSlotError:
mov in1=0;; // in1 = failure
RelocateSlotDone:
NESTED_RETURN
.endp RelocateSlot
/////////////////////////////////////////////
//
// Name:
// IsSlotBranch
//
// Description:
// Determines if the given instruction is a branch instruction.
//
// Arguments:
// in0 - Instruction encoding (41-bits, right justified)
// in1 - Instruction slot number
// in2 - Bundle template
//
// Returns:
// in0 - 1 if branch or 0 if not branch
//
// Notes:
// This procedure is a leaf routine
//
// IsSlotBranch recognizes all branch instructions by looking at the provided template.
// The instruction encoding is only passed to this routine for future expansion.
//
.proc IsSlotBranch
IsSlotBranch:
NESTED_SETUP (3,2+0,0,0)
mov in0=1;; // in0 = 1 which destroys the instruction
andcm in2=in2,in0;; // in2 = even template to reduce compares
mov in0=0;; // in0 = not a branch
cmp.eq p14, p15 = 0x16, in2;; // Template 0x16 is BBB
(p14) br.sptk.few IsSlotBranchTrue
cmp.eq p14, p15 = SLOT0, in1;; // Slot 0 has no other possiblities
(p14) br.sptk.few IsSlotBranchDone
cmp.eq p14, p15 = 0x12, in2;; // Template 0x12 is MBB
(p14) br.sptk.few IsSlotBranchTrue
cmp.eq p14, p15 = SLOT1, in1;; // Slot 1 has no other possiblities
(p14) br.sptk.few IsSlotBranchDone
cmp.eq p14, p15 = 0x10, in2;; // Template 0x10 is MIB
(p14) br.sptk.few IsSlotBranchTrue
cmp.eq p14, p15 = 0x18, in2;; // Template 0x18 is MMB
(p14) br.sptk.few IsSlotBranchTrue
cmp.eq p14, p15 = 0x1C, in2;; // Template 0x1C is MFB
(p14) br.sptk.few IsSlotBranchTrue
br.sptk.few IsSlotBranchDone
IsSlotBranchTrue:
mov in0=1;; // in0 = branch
IsSlotBranchDone:
NESTED_RETURN
.endp IsSlotBranch
/////////////////////////////////////////////
//
// Name:
// GetTemplate
//
// Description:
// Retrieves the instruction template for an instruction bundle
//
// Arguments:
// in0 - Runtime address of bundle
//
// Returns:
// in0 - Instruction template (5-bits, right-justified)
//
// Notes:
// This procedure is a leaf routine
//
.proc GetTemplate
GetTemplate:
NESTED_SETUP (1,2+2,0,0)
ld8 loc2=[in0], 0x8 // loc2 = first 8 bytes of branch bundle
movl loc3=MASK_0_4;; // loc3 = template mask
and loc2=loc2,loc3;; // loc2 = template, right justified
mov in0=loc2;; // in0 = template, right justified
NESTED_RETURN
.endp GetTemplate
/////////////////////////////////////////////
//
// Name:
// GetSlot
//
// Description:
// Gets the instruction encoding for an instruction slot and bundle
//
// Arguments:
// in0 - Runtime address of bundle
// in1 - Instruction slot (either 0, 1, or 2)
//
// Returns:
// in0 - Instruction encoding (41-bits, right justified)
//
// Notes:
// This procedure is a leaf routine
//
// Slot0 - [in0 + 0x8] Bits 45-5
// Slot1 - [in0 + 0x8] Bits 63-46 and [in0] Bits 22-0
// Slot2 - [in0] Bits 63-23
//
.proc GetSlot
GetSlot:
NESTED_SETUP (2,2+3,0,0)
ld8 loc2=[in0], 0x8;; // loc2 = first 8 bytes of branch bundle
ld8 loc3=[in0];; // loc3 = second 8 bytes of branch bundle
cmp.eq p14, p15 = 2, in1;; // check if slot 2 specified
(p14) br.cond.sptk.few GetSlot2;; // get slot 2
cmp.eq p14, p15 = 1, in1;; // check if slot 1 specified
(p14) br.cond.sptk.few GetSlot1;; // get slot 1
GetSlot0:
extr.u in0=loc2, 5, 45 // in0 = extracted slot 0
br.sptk.few GetSlotDone;;
GetSlot1:
extr.u in0=loc2, 46, 18 // in0 = bits 63-46 of loc2 right-justified
extr.u loc4=loc3, 0, 23;; // loc4 = bits 22-0 of loc3 right-justified
dep in0=loc4, in0, 18, 15;;
shr.u loc4=loc4,15;;
dep in0=loc4, in0, 33, 8;; // in0 = extracted slot 1
br.sptk.few GetSlotDone;;
GetSlot2:
extr.u in0=loc3, 23, 41;; // in0 = extracted slot 2
GetSlotDone:
NESTED_RETURN
.endp GetSlot
/////////////////////////////////////////////
//
// Name:
// SetSlot
//
// Description:
// Sets the instruction encoding for an instruction slot and bundle
//
// Arguments:
// in0 - Runtime address of bundle
// in1 - Instruction slot (either 0, 1, or 2)
// in2 - Instruction encoding (41-bits, right justified)
//
// Returns:
//
// Notes:
// This procedure is a leaf routine
//
.proc SetSlot
SetSlot:
NESTED_SETUP (3,2+3,0,0)
ld8 loc2=[in0], 0x8;; // loc2 = first 8 bytes of bundle
ld8 loc3=[in0];; // loc3 = second 8 bytes of bundle
cmp.eq p14, p15 = 2, in1;; // check if slot 2 specified
(p14) br.cond.sptk.few SetSlot2;; // set slot 2
cmp.eq p14, p15 = 1, in1;; // check if slot 1 specified
(p14) br.cond.sptk.few SetSlot1;; // set slot 1
SetSlot0:
dep loc2=0, loc2, 5, 41;; // remove old instruction from slot 0
shl loc4=in2, 5;; // loc4 = new instruction ready to be inserted
or loc2=loc2, loc4;; // loc2 = updated first 8 bytes of bundle
add loc4=0x8,in0;; // loc4 = address to store first 8 bytes of bundle
st8 [loc4]=loc2 // [loc4] = updated bundle
br.sptk.few SetSlotDone;;
;;
SetSlot1:
dep loc2=0, loc2, 46, 18 // remove old instruction from slot 1
dep loc3=0, loc3, 0, 23;;
shl loc4=in2, 46;; // loc4 = partial instruction ready to be inserted
or loc2=loc2, loc4;; // loc2 = updated first 8 bytes of bundle
add loc4=0x8,in0;; // loc4 = address to store first 8 bytes of bundle
st8 [loc4]=loc2;; // [loc4] = updated bundle
shr.u loc4=in2, 18;; // loc4 = partial instruction ready to be inserted
or loc3=loc3, loc4;; // loc3 = updated second 8 bytes of bundle
st8 [in0]=loc3;; // [in0] = updated bundle
br.sptk.few SetSlotDone;;
SetSlot2:
dep loc3=0, loc3, 23, 41;; // remove old instruction from slot 2
shl loc4=in2, 23;; // loc4 = instruction ready to be inserted
or loc3=loc3, loc4;; // loc3 = updated second 8 bytes of bundle
st8 [in0]=loc3;; // [in0] = updated bundle
SetSlotDone:
NESTED_RETURN
.endp SetSlot
/////////////////////////////////////////////
//
// Name:
// GetIva
//
// Description:
// C callable function to obtain the current value of IVA
//
// Returns:
// Current value if IVA
.globl GetIva
.proc GetIva
GetIva:
mov r8=cr2;;
br.ret.sptk.many b0
.endp GetIva
/////////////////////////////////////////////
//
// Name:
// ProgramInterruptFlags
//
// Description:
// C callable function to enable/disable interrupts
//
// Returns:
// Previous state of psr.ic
//
.globl ProgramInterruptFlags
.proc ProgramInterruptFlags
ProgramInterruptFlags:
alloc loc0=1,2,0,0;;
mov loc0=psr
mov loc1=0x6000;;
and r8=loc0, loc1 // obtain current psr.ic and psr.i state
and in0=in0, loc1 // insure no extra bits set in input
andcm loc0=loc0,loc1;; // clear original psr.i and psr.ic
or loc0=loc0,in0;; // OR in new psr.ic value
mov psr.l=loc0;; // write new psr
srlz.d
br.ret.sptk.many b0 // return
.endp ProgramInterruptFlags
/////////////////////////////////////////////
//
// Name:
// SpillContext
//
// Description:
// Saves system context to context record.
//
// Arguments:
// in0 = 512 byte aligned context record address
// in1 = original B0
// in2 = original ar.bsp
// in3 = original ar.bspstore
// in4 = original ar.rnat
// in5 = original ar.pfs
//
// Notes:
// loc0 - scratch
// loc1 - scratch
// loc2 - temporary application unat storage
// loc3 - temporary exception handler unat storage
.proc SpillContext
SpillContext:
alloc loc0=6,4,0,0;; // alloc 6 input, 4 locals, 0 outs
mov loc2=ar.unat;; // save application context unat (spilled later)
mov ar.unat=r0;; // set UNAT=0
st8.spill [in0]=r0,8;;
st8.spill [in0]=r1,8;; // save R1 - R31
st8.spill [in0]=r2,8;;
st8.spill [in0]=r3,8;;
st8.spill [in0]=r4,8;;
st8.spill [in0]=r5,8;;
st8.spill [in0]=r6,8;;
st8.spill [in0]=r7,8;;
st8.spill [in0]=r8,8;;
st8.spill [in0]=r9,8;;
st8.spill [in0]=r10,8;;
st8.spill [in0]=r11,8;;
st8.spill [in0]=r12,8;;
st8.spill [in0]=r13,8;;
st8.spill [in0]=r14,8;;
st8.spill [in0]=r15,8;;
st8.spill [in0]=r16,8;;
st8.spill [in0]=r17,8;;
st8.spill [in0]=r18,8;;
st8.spill [in0]=r19,8;;
st8.spill [in0]=r20,8;;
st8.spill [in0]=r21,8;;
st8.spill [in0]=r22,8;;
st8.spill [in0]=r23,8;;
st8.spill [in0]=r24,8;;
st8.spill [in0]=r25,8;;
st8.spill [in0]=r26,8;;
st8.spill [in0]=r27,8;;
st8.spill [in0]=r28,8;;
st8.spill [in0]=r29,8;;
st8.spill [in0]=r30,8;;
st8.spill [in0]=r31,8;;
mov loc3=ar.unat;; // save debugger context unat (spilled later)
stf.spill [in0]=f2,16;; // save f2 - f31
stf.spill [in0]=f3,16;;
stf.spill [in0]=f4,16;;
stf.spill [in0]=f5,16;;
stf.spill [in0]=f6,16;;
stf.spill [in0]=f7,16;;
stf.spill [in0]=f8,16;;
stf.spill [in0]=f9,16;;
stf.spill [in0]=f10,16;;
stf.spill [in0]=f11,16;;
stf.spill [in0]=f12,16;;
stf.spill [in0]=f13,16;;
stf.spill [in0]=f14,16;;
stf.spill [in0]=f15,16;;
stf.spill [in0]=f16,16;;
stf.spill [in0]=f17,16;;
stf.spill [in0]=f18,16;;
stf.spill [in0]=f19,16;;
stf.spill [in0]=f20,16;;
stf.spill [in0]=f21,16;;
stf.spill [in0]=f22,16;;
stf.spill [in0]=f23,16;;
stf.spill [in0]=f24,16;;
stf.spill [in0]=f25,16;;
stf.spill [in0]=f26,16;;
stf.spill [in0]=f27,16;;
stf.spill [in0]=f28,16;;
stf.spill [in0]=f29,16;;
stf.spill [in0]=f30,16;;
stf.spill [in0]=f31,16;;
mov loc0=pr;; // save predicates
st8.spill [in0]=loc0,8;;
st8.spill [in0]=in1,8;; // save b0 - b7... in1 already equals saved b0
mov loc0=b1;;
st8.spill [in0]=loc0,8;;
mov loc0=b2;;
st8.spill [in0]=loc0,8;;
mov loc0=b3;;
st8.spill [in0]=loc0,8;;
mov loc0=b4;;
st8.spill [in0]=loc0,8;;
mov loc0=b5;;
st8.spill [in0]=loc0,8;;
mov loc0=b6;;
st8.spill [in0]=loc0,8;;
mov loc0=b7;;
st8.spill [in0]=loc0,8;;
mov loc0=ar.rsc;; // save ar.rsc
st8.spill [in0]=loc0,8;;
st8.spill [in0]=in2,8;; // save ar.bsp (in2)
st8.spill [in0]=in3,8;; // save ar.bspstore (in3)
st8.spill [in0]=in4,8;; // save ar.rnat (in4)
mov loc0=ar.fcr;; // save ar.fcr (ar21 - IA32 floating-point control register)
st8.spill [in0]=loc0,8;;
mov loc0=ar.eflag;; // save ar.eflag (ar24)
st8.spill [in0]=loc0,8;;
mov loc0=ar.csd;; // save ar.csd (ar25 - ia32 CS descriptor)
st8.spill [in0]=loc0,8;;
mov loc0=ar.ssd;; // save ar.ssd (ar26 - ia32 ss descriptor)
st8.spill [in0]=loc0,8;;
mov loc0=ar.cflg;; // save ar.cflg (ar27 - ia32 cr0 and cr4)
st8.spill [in0]=loc0,8;;
mov loc0=ar.fsr;; // save ar.fsr (ar28 - ia32 floating-point status register)
st8.spill [in0]=loc0,8;;
mov loc0=ar.fir;; // save ar.fir (ar29 - ia32 floating-point instruction register)
st8.spill [in0]=loc0,8;;
mov loc0=ar.fdr;; // save ar.fdr (ar30 - ia32 floating-point data register)
st8.spill [in0]=loc0,8;;
mov loc0=ar.ccv;; // save ar.ccv
st8.spill [in0]=loc0,8;;
st8.spill [in0]=loc2,8;; // save ar.unat (saved to loc2 earlier)
mov loc0=ar.fpsr;; // save floating point status register
st8.spill [in0]=loc0,8;;
st8.spill [in0]=in5,8;; // save ar.pfs
mov loc0=ar.lc;; // save ar.lc
st8.spill [in0]=loc0,8;;
mov loc0=ar.ec;; // save ar.ec
st8.spill [in0]=loc0,8;;
// save control registers
mov loc0=cr.dcr;; // save dcr
st8.spill [in0]=loc0,8;;
mov loc0=cr.itm;; // save itm
st8.spill [in0]=loc0,8;;
mov loc0=cr.iva;; // save iva
st8.spill [in0]=loc0,8;;
mov loc0=cr.pta;; // save pta
st8.spill [in0]=loc0,8;;
mov loc0=cr.ipsr;; // save ipsr
st8.spill [in0]=loc0,8;;
mov loc0=cr.isr;; // save isr
st8.spill [in0]=loc0,8;;
mov loc0=cr.iip;; // save iip
st8.spill [in0]=loc0,8;;
mov loc0=cr.ifa;; // save ifa
st8.spill [in0]=loc0,8;;
mov loc0=cr.itir;; // save itir
st8.spill [in0]=loc0,8;;
mov loc0=cr.iipa;; // save iipa
st8.spill [in0]=loc0,8;;
mov loc0=cr.ifs;; // save ifs
st8.spill [in0]=loc0,8;;
mov loc0=cr.iim;; // save iim
st8.spill [in0]=loc0,8;;
mov loc0=cr.iha;; // save iha
st8.spill [in0]=loc0,8;;
// save debug registers
mov loc0=dbr[r0];; // save dbr0 - dbr7
st8.spill [in0]=loc0,8;;
movl loc1=1;;
mov loc0=dbr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=2;;
mov loc0=dbr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=3;;
mov loc0=dbr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=4;;
mov loc0=dbr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=5;;
mov loc0=dbr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=6;;
mov loc0=dbr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=7;;
mov loc0=dbr[loc1];;
st8.spill [in0]=loc0,8;;
mov loc0=ibr[r0];; // save ibr0 - ibr7
st8.spill [in0]=loc0,8;;
movl loc1=1;;
mov loc0=ibr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=2;;
mov loc0=ibr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=3;;
mov loc0=ibr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=4;;
mov loc0=ibr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=5;;
mov loc0=ibr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=6;;
mov loc0=ibr[loc1];;
st8.spill [in0]=loc0,8;;
movl loc1=7;;
mov loc0=ibr[loc1];;
st8.spill [in0]=loc0,8;;
st8.spill [in0]=loc3;;
br.ret.sptk.few b0
.endp SpillContext
/////////////////////////////////////////////
//
// Name:
// FillContext
//
// Description:
// Restores register context from context record.
//
// Arguments:
// in0 = address of last element 512 byte aligned context record address
// in1 = modified B0
// in2 = modified ar.bsp
// in3 = modified ar.bspstore
// in4 = modified ar.rnat
// in5 = modified ar.pfs
//
// Notes:
// loc0 - scratch
// loc1 - scratch
// loc2 - temporary application unat storage
// loc3 - temporary exception handler unat storage
.proc FillContext
FillContext:
alloc loc0=6,4,0,0;; // alloc 6 inputs, 4 locals, 0 outs
ld8.fill loc3=[in0],-8;; // int_nat (nat bits for R1-31)
movl loc1=7;; // ibr7
ld8.fill loc0=[in0],-8;;
mov ibr[loc1]=loc0;;
movl loc1=6;; // ibr6
ld8.fill loc0=[in0],-8;;
mov ibr[loc1]=loc0;;
movl loc1=5;; // ibr5
ld8.fill loc0=[in0],-8;;
mov ibr[loc1]=loc0;;
movl loc1=4;; // ibr4
ld8.fill loc0=[in0],-8;;
mov ibr[loc1]=loc0;;
movl loc1=3;; // ibr3
ld8.fill loc0=[in0],-8;;
mov ibr[loc1]=loc0;;
movl loc1=2;; // ibr2
ld8.fill loc0=[in0],-8;;
mov ibr[loc1]=loc0;;
movl loc1=1;; // ibr1
ld8.fill loc0=[in0],-8;;
mov ibr[loc1]=loc0;;
ld8.fill loc0=[in0],-8;; // ibr0
mov ibr[r0]=loc0;;
movl loc1=7;; // dbr7
ld8.fill loc0=[in0],-8;;
mov dbr[loc1]=loc0;;
movl loc1=6;; // dbr6
ld8.fill loc0=[in0],-8;;
mov dbr[loc1]=loc0;;
movl loc1=5;; // dbr5
ld8.fill loc0=[in0],-8;;
mov dbr[loc1]=loc0;;
movl loc1=4;; // dbr4
ld8.fill loc0=[in0],-8;;
mov dbr[loc1]=loc0;;
movl loc1=3;; // dbr3
ld8.fill loc0=[in0],-8;;
mov dbr[loc1]=loc0;;
movl loc1=2;; // dbr2
ld8.fill loc0=[in0],-8;;
mov dbr[loc1]=loc0;;
movl loc1=1;; // dbr1
ld8.fill loc0=[in0],-8;;
mov dbr[loc1]=loc0;;
ld8.fill loc0=[in0],-8;; // dbr0
mov dbr[r0]=loc0;;
ld8.fill loc0=[in0],-8;; // iha
mov cr.iha=loc0;;
ld8.fill loc0=[in0],-8;; // iim
mov cr.iim=loc0;;
ld8.fill loc0=[in0],-8;; // ifs
mov cr.ifs=loc0;;
ld8.fill loc0=[in0],-8;; // iipa
mov cr.iipa=loc0;;
ld8.fill loc0=[in0],-8;; // itir
mov cr.itir=loc0;;
ld8.fill loc0=[in0],-8;; // ifa
mov cr.ifa=loc0;;
ld8.fill loc0=[in0],-8;; // iip
mov cr.iip=loc0;;
ld8.fill loc0=[in0],-8;; // isr
mov cr.isr=loc0;;
ld8.fill loc0=[in0],-8;; // ipsr
mov cr.ipsr=loc0;;
ld8.fill loc0=[in0],-8;; // pta
mov cr.pta=loc0;;
ld8.fill loc0=[in0],-8;; // iva
mov cr.iva=loc0;;
ld8.fill loc0=[in0],-8;; // itm
mov cr.itm=loc0;;
ld8.fill loc0=[in0],-8;; // dcr
mov cr.dcr=loc0;;
ld8.fill loc0=[in0],-8;; // ec
mov ar.ec=loc0;;
ld8.fill loc0=[in0],-8;; // lc
mov ar.lc=loc0;;
ld8.fill in5=[in0],-8;; // ar.pfs
ld8.fill loc0=[in0],-8;; // ar.fpsr
mov ar.fpsr=loc0;;
ld8.fill loc2=[in0],-8;; // ar.unat - restored later...
ld8.fill loc0=[in0],-8;; // ar.ccv
mov ar.ccv=loc0;;
ld8.fill loc0=[in0],-8;; // ar.fdr
mov ar.fdr=loc0;;
ld8.fill loc0=[in0],-8;; // ar.fir
mov ar.fir=loc0;;
ld8.fill loc0=[in0],-8;; // ar.fsr
mov ar.fsr=loc0;;
ld8.fill loc0=[in0],-8;; // ar.cflg
mov ar.cflg=loc0;;
ld8.fill loc0=[in0],-8;; // ar.ssd
mov ar.ssd=loc0;;
ld8.fill loc0=[in0],-8;; // ar.csd
mov ar.csd=loc0;;
ld8.fill loc0=[in0],-8;; // ar.eflag
mov ar.eflag=loc0;;
ld8.fill loc0=[in0],-8;; // ar.fcr
mov ar.fcr=loc0;;
ld8.fill in4=[in0],-8;; // ar.rnat
ld8.fill in3=[in0],-8;; // bspstore
ld8.fill in2=[in0],-8;; // bsp
ld8.fill loc0=[in0],-8;; // ar.rsc
mov ar.rsc=loc0;;
ld8.fill loc0=[in0],-8;; // B7 - B0
mov b7=loc0;;
ld8.fill loc0=[in0],-8;;
mov b6=loc0;;
ld8.fill loc0=[in0],-8;;
mov b5=loc0;;
ld8.fill loc0=[in0],-8;;
mov b4=loc0;;
ld8.fill loc0=[in0],-8;;
mov b3=loc0;;
ld8.fill loc0=[in0],-8;;
mov b2=loc0;;
ld8.fill loc0=[in0],-8;;
mov b1=loc0;;
ld8.fill in1=[in0],-8;; // b0 is temporarily stored in in1
ld8.fill loc0=[in0],-16;; // predicates
mov pr=loc0;;
ldf.fill f31=[in0],-16;;
ldf.fill f30=[in0],-16;;
ldf.fill f29=[in0],-16;;
ldf.fill f28=[in0],-16;;
ldf.fill f27=[in0],-16;;
ldf.fill f26=[in0],-16;;
ldf.fill f25=[in0],-16;;
ldf.fill f24=[in0],-16;;
ldf.fill f23=[in0],-16;;
ldf.fill f22=[in0],-16;;
ldf.fill f21=[in0],-16;;
ldf.fill f20=[in0],-16;;
ldf.fill f19=[in0],-16;;
ldf.fill f18=[in0],-16;;
ldf.fill f17=[in0],-16;;
ldf.fill f16=[in0],-16;;
ldf.fill f15=[in0],-16;;
ldf.fill f14=[in0],-16;;
ldf.fill f13=[in0],-16;;
ldf.fill f12=[in0],-16;;
ldf.fill f11=[in0],-16;;
ldf.fill f10=[in0],-16;;
ldf.fill f9=[in0],-16;;
ldf.fill f8=[in0],-16;;
ldf.fill f7=[in0],-16;;
ldf.fill f6=[in0],-16;;
ldf.fill f5=[in0],-16;;
ldf.fill f4=[in0],-16;;
ldf.fill f3=[in0],-16;;
ldf.fill f2=[in0],-8;;
mov ar.unat=loc3;; // restore unat (int_nat) before fill of general registers
ld8.fill r31=[in0],-8;;
ld8.fill r30=[in0],-8;;
ld8.fill r29=[in0],-8;;
ld8.fill r28=[in0],-8;;
ld8.fill r27=[in0],-8;;
ld8.fill r26=[in0],-8;;
ld8.fill r25=[in0],-8;;
ld8.fill r24=[in0],-8;;
ld8.fill r23=[in0],-8;;
ld8.fill r22=[in0],-8;;
ld8.fill r21=[in0],-8;;
ld8.fill r20=[in0],-8;;
ld8.fill r19=[in0],-8;;
ld8.fill r18=[in0],-8;;
ld8.fill r17=[in0],-8;;
ld8.fill r16=[in0],-8;;
ld8.fill r15=[in0],-8;;
ld8.fill r14=[in0],-8;;
ld8.fill r13=[in0],-8;;
ld8.fill r12=[in0],-8;;
ld8.fill r11=[in0],-8;;
ld8.fill r10=[in0],-8;;
ld8.fill r9=[in0],-8;;
ld8.fill r8=[in0],-8;;
ld8.fill r7=[in0],-8;;
ld8.fill r6=[in0],-8;;
ld8.fill r5=[in0],-8;;
ld8.fill r4=[in0],-8;;
ld8.fill r3=[in0],-8;;
ld8.fill r2=[in0],-8;;
ld8.fill r1=[in0],-8;;
mov ar.unat=loc2;; // restore application context unat
br.ret.sptk.many b0
.endp FillContext
/////////////////////////////////////////////
//
// Name:
// HookHandler
//
// Description:
// Common branch target from hooked IVT entries. Runs in interrupt context.
// Responsible for saving and restoring context and calling common C
// handler. Banked registers running on bank 0 at entry.
//
// Arguments:
// All arguments are passed in banked registers:
// B0_REG = Original B0
// SCRATCH_REG1 = IVT entry index
//
// Returns:
// Returns via rfi
//
// Notes:
// loc0 - scratch
// loc1 - scratch
// loc2 - vector number / mask
// loc3 - 16 byte aligned context record address
// loc4 - temporary storage of last address in context record
HookHandler:
flushrs;; // Synch RSE with backing store
mov SCRATCH_REG2=ar.bsp // save interrupted context bsp
mov SCRATCH_REG3=ar.bspstore // save interrupted context bspstore
mov SCRATCH_REG4=ar.rnat // save interrupted context rnat
mov SCRATCH_REG6=cr.ifs;; // save IFS in case we need to chain...
cover;; // creates new frame, moves old
// CFM to IFS.
alloc SCRATCH_REG5=0,5,6,0 // alloc 5 locals, 6 outs
;;
// save banked registers to locals
mov out1=B0_REG // out1 = Original B0
mov out2=SCRATCH_REG2 // out2 = original ar.bsp
mov out3=SCRATCH_REG3 // out3 = original ar.bspstore
mov out4=SCRATCH_REG4 // out4 = original ar.rnat
mov out5=SCRATCH_REG5 // out5 = original ar.pfs
mov loc2=SCRATCH_REG1;; // loc2 = vector number + chain flag
bsw.1;; // switch banked registers to bank 1
srlz.d // explicit serialize required
// now fill in context record structure
movl loc3=IpfContextBuf // Insure context record is aligned
add loc0=-0x200,r0;; // mask the lower 9 bits (align on 512 byte boundary)
and loc3=loc3,loc0;;
add loc3=0x200,loc3;; // move to next 512 byte boundary
// loc3 now contains the 512 byte aligned context record
// spill register context into context record
mov out0=loc3;; // Context record base in out0
// original B0 in out1 already
// original ar.bsp in out2 already
// original ar.bspstore in out3 already
br.call.sptk.few b0=SpillContext;; // spill context
mov loc4=out0 // save modified address
// At this point, the context has been saved to the context record and we're
// ready to call the C part of the handler...
movl loc0=CommonHandler;; // obtain address of plabel
ld8 loc1=[loc0];; // get entry point of CommonHandler
mov b6=loc1;; // put it in a branch register
adds loc1= 8, loc0;; // index to GP in plabel
ld8 r1=[loc1];; // set up gp for C call
mov loc1=0xfffff;; // mask off so only vector bits are present
and out0=loc2,loc1;; // pass vector number (exception type)
mov out1=loc3;; // pass context record address
br.call.sptk.few b0=b6;; // call C handler
// We've returned from the C call, so restore the context and either rfi
// back to interrupted thread, or chain into the SAL if this was an external interrupt
mov out0=loc4;; // pass address of last element in context record
br.call.sptk.few b0=FillContext;; // Fill context
mov b0=out1 // fill in b0
mov ar.rnat=out4
mov ar.pfs=out5
// Loadrs is necessary because the debugger may have changed some values in
// the backing store. The processor, however may not be aware that the
// stacked registers need to be reloaded from the backing store. Therefore,
// we explicitly cause the RSE to refresh the stacked register's contents
// from the backing store.
mov loc0=ar.rsc // get RSC value
mov loc1=ar.rsc // save it so we can restore it
movl loc3=0xffffffffc000ffff;; // create mask for clearing RSC.loadrs
and loc0=loc0,loc3;; // create value for RSC with RSC.loadrs==0
mov ar.rsc=loc0;; // modify RSC
loadrs;; // invalidate register stack
mov ar.rsc=loc1;; // restore original RSC
bsw.0;; // switch banked registers back to bank 0
srlz.d;; // explicit serialize required
mov PR_REG=pr // save predicates - to be restored after chaining decision
mov B0_REG=b0 // save b0 - required by chain code
mov loc2=EXCPT_EXTERNAL_INTERRUPT;;
cmp.eq p7,p0=SCRATCH_REG1,loc2;; // check to see if this is the timer tick
(p7) br.cond.dpnt.few DO_CHAIN;;
NO_CHAIN:
mov pr=PR_REG;;
rfi;; // we're outa here.
DO_CHAIN:
mov pr=PR_REG
mov SCRATCH_REG1=cr.iva
mov SCRATCH_REG2=PATCH_RETURN_OFFSET;;
add SCRATCH_REG1=SCRATCH_REG1, SCRATCH_REG2;;
mov b0=SCRATCH_REG1;;
br.cond.sptk.few b0;;
EndHookHandler:
/////////////////////////////////////////////
//
// Name:
// HookStub
//
// Description:
// HookStub will be copied from it's loaded location into the IVT when
// an IVT entry is hooked. The IVT entry does an indirect jump via B0 to
// HookHandler, which in turn calls into the default C handler, which calls
// the user-installed C handler. The calls return and HookHandler executes
// an rfi.
//
// Notes:
// Saves B0 to B0_REG
// Saves IVT index to SCRATCH_REG1 (immediate value is fixed up when code is copied
// to the IVT entry.
.globl HookStub
.proc HookStub
HookStub:
mov B0_REG=b0
movl SCRATCH_REG1=HookHandler;;
mov b0=SCRATCH_REG1;;
mov SCRATCH_REG1=0;;// immediate value is fixed up during install of handler to be the vector number
br.cond.sptk.few b0
.endp HookStub
/////////////////////////////////////////////
// The following code is moved into IVT entry 14 (offset 3400) which is reserved
// in the Itanium architecture. The patch code is located at the end of the
// IVT entry.
PatchCode:
mov SCRATCH_REG0=psr
mov SCRATCH_REG6=cr.ipsr
mov PR_REG=pr
mov B0_REG=b0;;
// turn off any virtual translations
movl SCRATCH_REG1 = ~( MASK(PSR_DT,1) | MASK(PSR_RT,1));;
and SCRATCH_REG1 = SCRATCH_REG0, SCRATCH_REG1;;
mov psr.l = SCRATCH_REG1;;
srlz.d
tbit.z p14, p15 = SCRATCH_REG6, PSR_IS;; // Check to see if we were
// interrupted from IA32
// context. If so, bail out
// and chain to SAL immediately
(p15) br.cond.sptk.few Stub_IVT_Passthru;;
// we only want to take 1 out of 32 external interrupts to minimize the
// impact to system performance. Check our interrupt count and bail
// out if we're not up to 32
movl SCRATCH_REG1=ExternalInterruptCount;;
ld8 SCRATCH_REG2=[SCRATCH_REG1];; // ExternalInterruptCount
tbit.z p14, p15 = SCRATCH_REG2, 5;; // bit 5 set?
(p14) add SCRATCH_REG2=1, SCRATCH_REG2;; // No? Then increment
// ExternalInterruptCount
// and Chain to SAL
// immediately
(p14) st8 [SCRATCH_REG1]=SCRATCH_REG2;;
(p14) br.cond.sptk.few Stub_IVT_Passthru;;
(p15) mov SCRATCH_REG2=0;; // Yes? Then reset
// ExternalInterruptCount
// and branch to
// HookHandler
(p15) st8 [SCRATCH_REG1]=SCRATCH_REG2;;
mov pr=PR_REG
movl SCRATCH_REG1=HookHandler;; // SCRATCH_REG1 = entrypoint of HookHandler
mov b0=SCRATCH_REG1;; // b0 = entrypoint of HookHandler
mov SCRATCH_REG1=EXCPT_EXTERNAL_INTERRUPT;;
br.sptk.few b0;; // branch to HookHandler
PatchCodeRet:
// fake-up an rfi to get RSE back to being coherent and insure psr has
// original contents when interrupt occured, then exit to SAL
// at this point:
// cr.ifs has been modified by previous "cover"
// SCRATCH_REG6 has original cr.ifs
mov SCRATCH_REG5=cr.ipsr
mov SCRATCH_REG4=cr.iip;;
mov cr.ipsr=SCRATCH_REG0
mov SCRATCH_REG1=ip;;
add SCRATCH_REG1=0x30, SCRATCH_REG1;;
mov cr.iip=SCRATCH_REG1;;
rfi;; // rfi to next instruction
Stub_RfiTarget:
mov cr.ifs=SCRATCH_REG6
mov cr.ipsr=SCRATCH_REG5
mov cr.iip=SCRATCH_REG4;;
Stub_IVT_Passthru:
mov pr=PR_REG // pr = saved predicate registers
mov b0=B0_REG;; // b0 = saved b0
EndPatchCode:
/////////////////////////////////////////////
// The following bundle is moved into IVT entry 14 (offset 0x3400) which is reserved
// in the Itanium architecture. This bundle will be the last bundle and will
// be located at offset 0x37F0 in the IVT.
FailsafeBranch:
{
.mib
nop.m 0
nop.i 0
br.sptk.few -(FAILSAFE_BRANCH_OFFSET - EXT_INT_ENTRY_OFFSET - 0x10)
}
/////////////////////////////////////////////
// The following bundle is moved into IVT entry 13 (offset 0x3000) which is the
// external interrupt. It branches to the patch code.
PatchCodeNewBun0:
{
.mib
nop.m 0
nop.i 0
br.cond.sptk.few PATCH_BRANCH
}