mirror of https://github.com/acidanthera/audk.git
1011 lines
35 KiB
C
1011 lines
35 KiB
C
/** @file
|
|
MP initialize support functions for DXE phase.
|
|
|
|
Copyright (c) 2016 - 2023, Intel Corporation. All rights reserved.<BR>
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include "MpLib.h"
|
|
|
|
#include <Library/UefiLib.h>
|
|
#include <Library/UefiBootServicesTableLib.h>
|
|
#include <Library/DebugAgentLib.h>
|
|
#include <Library/DxeServicesTableLib.h>
|
|
#include <Library/CcExitLib.h>
|
|
#include <Register/Amd/Fam17Msr.h>
|
|
#include <Register/Amd/Ghcb.h>
|
|
|
|
#include <Protocol/Timer.h>
|
|
|
|
#define AP_SAFE_STACK_SIZE 128
|
|
|
|
CPU_MP_DATA *mCpuMpData = NULL;
|
|
EFI_EVENT mCheckAllApsEvent = NULL;
|
|
EFI_EVENT mMpInitExitBootServicesEvent = NULL;
|
|
EFI_EVENT mLegacyBootEvent = NULL;
|
|
volatile BOOLEAN mStopCheckAllApsStatus = TRUE;
|
|
RELOCATE_AP_LOOP_ENTRY mReservedApLoop;
|
|
UINTN mReservedTopOfApStack;
|
|
volatile UINT32 mNumberToFinish = 0;
|
|
|
|
//
|
|
// Begin wakeup buffer allocation below 0x88000
|
|
//
|
|
STATIC EFI_PHYSICAL_ADDRESS mSevEsDxeWakeupBuffer = 0x88000;
|
|
|
|
/**
|
|
Enable Debug Agent to support source debugging on AP function.
|
|
|
|
**/
|
|
VOID
|
|
EnableDebugAgent (
|
|
VOID
|
|
)
|
|
{
|
|
//
|
|
// Initialize Debug Agent to support source level debug in DXE phase
|
|
//
|
|
InitializeDebugAgent (DEBUG_AGENT_INIT_DXE_AP, NULL, NULL);
|
|
}
|
|
|
|
/**
|
|
Get the pointer to CPU MP Data structure.
|
|
|
|
@return The pointer to CPU MP Data structure.
|
|
**/
|
|
CPU_MP_DATA *
|
|
GetCpuMpData (
|
|
VOID
|
|
)
|
|
{
|
|
ASSERT (mCpuMpData != NULL);
|
|
return mCpuMpData;
|
|
}
|
|
|
|
/**
|
|
Save the pointer to CPU MP Data structure.
|
|
|
|
@param[in] CpuMpData The pointer to CPU MP Data structure will be saved.
|
|
**/
|
|
VOID
|
|
SaveCpuMpData (
|
|
IN CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
mCpuMpData = CpuMpData;
|
|
}
|
|
|
|
/**
|
|
Get available system memory below 0x88000 by specified size.
|
|
|
|
@param[in] WakeupBufferSize Wakeup buffer size required
|
|
|
|
@retval other Return wakeup buffer address below 1MB.
|
|
@retval -1 Cannot find free memory below 1MB.
|
|
**/
|
|
UINTN
|
|
GetWakeupBuffer (
|
|
IN UINTN WakeupBufferSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS StartAddress;
|
|
EFI_MEMORY_TYPE MemoryType;
|
|
|
|
if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) &&
|
|
!ConfidentialComputingGuestHas (CCAttrAmdSevSnp))
|
|
{
|
|
//
|
|
// An SEV-ES-only guest requires the memory to be reserved. SEV-SNP, which
|
|
// is also considered SEV-ES, uses a different AP startup method, though,
|
|
// which does not have the same requirement.
|
|
//
|
|
MemoryType = EfiReservedMemoryType;
|
|
} else {
|
|
MemoryType = EfiBootServicesData;
|
|
}
|
|
|
|
//
|
|
// Try to allocate buffer below 1M for waking vector.
|
|
// LegacyBios driver only reports warning when page allocation in range
|
|
// [0x60000, 0x88000) fails.
|
|
// This library is consumed by CpuDxe driver to produce CPU Arch protocol.
|
|
// LagacyBios driver depends on CPU Arch protocol which guarantees below
|
|
// allocation runs earlier than LegacyBios driver.
|
|
//
|
|
if (ConfidentialComputingGuestHas (CCAttrAmdSevEs)) {
|
|
//
|
|
// SEV-ES Wakeup buffer should be under 0x88000 and under any previous one
|
|
//
|
|
StartAddress = mSevEsDxeWakeupBuffer;
|
|
} else {
|
|
StartAddress = 0x88000;
|
|
}
|
|
|
|
Status = gBS->AllocatePages (
|
|
AllocateMaxAddress,
|
|
MemoryType,
|
|
EFI_SIZE_TO_PAGES (WakeupBufferSize),
|
|
&StartAddress
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
if (EFI_ERROR (Status)) {
|
|
StartAddress = (EFI_PHYSICAL_ADDRESS)-1;
|
|
} else if (ConfidentialComputingGuestHas (CCAttrAmdSevEs)) {
|
|
//
|
|
// Next SEV-ES wakeup buffer allocation must be below this allocation
|
|
//
|
|
mSevEsDxeWakeupBuffer = StartAddress;
|
|
}
|
|
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"WakeupBufferStart = %x, WakeupBufferSize = %x\n",
|
|
(UINTN)StartAddress,
|
|
WakeupBufferSize
|
|
));
|
|
|
|
return (UINTN)StartAddress;
|
|
}
|
|
|
|
/**
|
|
Get available EfiBootServicesCode memory below 4GB by specified size.
|
|
|
|
This buffer is required to safely transfer AP from real address mode to
|
|
protected mode or long mode, due to the fact that the buffer returned by
|
|
GetWakeupBuffer() may be marked as non-executable.
|
|
|
|
@param[in] BufferSize Wakeup transition buffer size.
|
|
|
|
@retval other Return wakeup transition buffer address below 4GB.
|
|
@retval 0 Cannot find free memory below 4GB.
|
|
**/
|
|
UINTN
|
|
AllocateCodeBuffer (
|
|
IN UINTN BufferSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS StartAddress;
|
|
|
|
StartAddress = BASE_4GB - 1;
|
|
Status = gBS->AllocatePages (
|
|
AllocateMaxAddress,
|
|
EfiBootServicesCode,
|
|
EFI_SIZE_TO_PAGES (BufferSize),
|
|
&StartAddress
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
StartAddress = 0;
|
|
}
|
|
|
|
return (UINTN)StartAddress;
|
|
}
|
|
|
|
/**
|
|
Return the address of the SEV-ES AP jump table.
|
|
|
|
This buffer is required in order for an SEV-ES guest to transition from
|
|
UEFI into an OS.
|
|
|
|
@return Return SEV-ES AP jump table buffer
|
|
**/
|
|
UINTN
|
|
GetSevEsAPMemory (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS StartAddress;
|
|
MSR_SEV_ES_GHCB_REGISTER Msr;
|
|
GHCB *Ghcb;
|
|
BOOLEAN InterruptState;
|
|
|
|
//
|
|
// Allocate 1 page for AP jump table page
|
|
//
|
|
StartAddress = BASE_4GB - 1;
|
|
Status = gBS->AllocatePages (
|
|
AllocateMaxAddress,
|
|
EfiReservedMemoryType,
|
|
1,
|
|
&StartAddress
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
DEBUG ((DEBUG_INFO, "Dxe: SevEsAPMemory = %lx\n", (UINTN)StartAddress));
|
|
|
|
//
|
|
// Save the SevEsAPMemory as the AP jump table.
|
|
//
|
|
Msr.GhcbPhysicalAddress = AsmReadMsr64 (MSR_SEV_ES_GHCB);
|
|
Ghcb = Msr.Ghcb;
|
|
|
|
CcExitVmgInit (Ghcb, &InterruptState);
|
|
CcExitVmgExit (Ghcb, SVM_EXIT_AP_JUMP_TABLE, 0, (UINT64)(UINTN)StartAddress);
|
|
CcExitVmgDone (Ghcb, InterruptState);
|
|
|
|
return (UINTN)StartAddress;
|
|
}
|
|
|
|
/**
|
|
Checks APs status and updates APs status if needed.
|
|
|
|
**/
|
|
VOID
|
|
CheckAndUpdateApsStatus (
|
|
VOID
|
|
)
|
|
{
|
|
UINTN ProcessorNumber;
|
|
EFI_STATUS Status;
|
|
CPU_MP_DATA *CpuMpData;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
//
|
|
// First, check whether pending StartupAllAPs() exists.
|
|
//
|
|
if (CpuMpData->WaitEvent != NULL) {
|
|
Status = CheckAllAPs ();
|
|
//
|
|
// If all APs finish for StartupAllAPs(), signal the WaitEvent for it.
|
|
//
|
|
if (Status != EFI_NOT_READY) {
|
|
Status = gBS->SignalEvent (CpuMpData->WaitEvent);
|
|
CpuMpData->WaitEvent = NULL;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Second, check whether pending StartupThisAPs() callings exist.
|
|
//
|
|
for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
|
|
if (CpuMpData->CpuData[ProcessorNumber].WaitEvent == NULL) {
|
|
continue;
|
|
}
|
|
|
|
Status = CheckThisAP (ProcessorNumber);
|
|
|
|
if (Status != EFI_NOT_READY) {
|
|
gBS->SignalEvent (CpuMpData->CpuData[ProcessorNumber].WaitEvent);
|
|
CpuMpData->CpuData[ProcessorNumber].WaitEvent = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Checks APs' status periodically.
|
|
|
|
This function is triggered by timer periodically to check the
|
|
state of APs for StartupAllAPs() and StartupThisAP() executed
|
|
in non-blocking mode.
|
|
|
|
@param[in] Event Event triggered.
|
|
@param[in] Context Parameter passed with the event.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
CheckApsStatus (
|
|
IN EFI_EVENT Event,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
//
|
|
// If CheckApsStatus() is not stopped, otherwise return immediately.
|
|
//
|
|
if (!mStopCheckAllApsStatus) {
|
|
CheckAndUpdateApsStatus ();
|
|
}
|
|
}
|
|
|
|
/**
|
|
Get Protected mode code segment with 16-bit default addressing
|
|
from current GDT table.
|
|
|
|
@return Protected mode 16-bit code segment value.
|
|
**/
|
|
UINT16
|
|
GetProtectedMode16CS (
|
|
VOID
|
|
)
|
|
{
|
|
IA32_DESCRIPTOR GdtrDesc;
|
|
IA32_SEGMENT_DESCRIPTOR *GdtEntry;
|
|
UINTN GdtEntryCount;
|
|
UINT16 Index;
|
|
|
|
Index = (UINT16)-1;
|
|
AsmReadGdtr (&GdtrDesc);
|
|
GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
|
|
GdtEntry = (IA32_SEGMENT_DESCRIPTOR *)GdtrDesc.Base;
|
|
for (Index = 0; Index < GdtEntryCount; Index++) {
|
|
if (GdtEntry->Bits.L == 0) {
|
|
if ((GdtEntry->Bits.Type > 8) && (GdtEntry->Bits.DB == 0)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
GdtEntry++;
|
|
}
|
|
|
|
ASSERT (Index != GdtEntryCount);
|
|
return Index * 8;
|
|
}
|
|
|
|
/**
|
|
Get Protected mode code segment from current GDT table.
|
|
|
|
@return Protected mode code segment value.
|
|
**/
|
|
UINT16
|
|
GetProtectedModeCS (
|
|
VOID
|
|
)
|
|
{
|
|
IA32_DESCRIPTOR GdtrDesc;
|
|
IA32_SEGMENT_DESCRIPTOR *GdtEntry;
|
|
UINTN GdtEntryCount;
|
|
UINT16 Index;
|
|
|
|
AsmReadGdtr (&GdtrDesc);
|
|
GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
|
|
GdtEntry = (IA32_SEGMENT_DESCRIPTOR *)GdtrDesc.Base;
|
|
for (Index = 0; Index < GdtEntryCount; Index++) {
|
|
if (GdtEntry->Bits.L == 0) {
|
|
if ((GdtEntry->Bits.Type > 8) && (GdtEntry->Bits.DB == 1)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
GdtEntry++;
|
|
}
|
|
|
|
ASSERT (Index != GdtEntryCount);
|
|
return Index * 8;
|
|
}
|
|
|
|
/**
|
|
Do sync on APs.
|
|
|
|
@param[in, out] Buffer Pointer to private data buffer.
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
RelocateApLoop (
|
|
IN OUT VOID *Buffer
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
BOOLEAN MwaitSupport;
|
|
UINTN ProcessorNumber;
|
|
UINTN StackStart;
|
|
|
|
MpInitLibWhoAmI (&ProcessorNumber);
|
|
CpuMpData = GetCpuMpData ();
|
|
MwaitSupport = IsMwaitSupport ();
|
|
if (CpuMpData->UseSevEsAPMethod) {
|
|
//
|
|
// 64-bit AMD processors with SEV-ES
|
|
//
|
|
StackStart = CpuMpData->SevEsAPResetStackStart;
|
|
mReservedApLoop.AmdSevEntry (
|
|
MwaitSupport,
|
|
CpuMpData->ApTargetCState,
|
|
CpuMpData->PmCodeSegment,
|
|
StackStart - ProcessorNumber * AP_SAFE_STACK_SIZE,
|
|
(UINTN)&mNumberToFinish,
|
|
CpuMpData->Pm16CodeSegment,
|
|
CpuMpData->SevEsAPBuffer,
|
|
CpuMpData->WakeupBuffer
|
|
);
|
|
} else {
|
|
//
|
|
// Intel processors (32-bit or 64-bit), 32-bit AMD processors, or 64-bit AMD processors without SEV-ES
|
|
//
|
|
StackStart = mReservedTopOfApStack;
|
|
mReservedApLoop.GenericEntry (
|
|
MwaitSupport,
|
|
CpuMpData->ApTargetCState,
|
|
CpuMpData->PmCodeSegment,
|
|
StackStart - ProcessorNumber * AP_SAFE_STACK_SIZE,
|
|
(UINTN)&mNumberToFinish,
|
|
CpuMpData->Pm16CodeSegment,
|
|
CpuMpData->SevEsAPBuffer,
|
|
CpuMpData->WakeupBuffer
|
|
);
|
|
}
|
|
|
|
//
|
|
// It should never reach here
|
|
//
|
|
ASSERT (FALSE);
|
|
}
|
|
|
|
/**
|
|
Callback function for ExitBootServices.
|
|
|
|
@param[in] Event Event whose notification function is being invoked.
|
|
@param[in] Context The pointer to the notification function's context,
|
|
which is implementation-dependent.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
MpInitChangeApLoopCallback (
|
|
IN EFI_EVENT Event,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
CpuMpData->PmCodeSegment = GetProtectedModeCS ();
|
|
CpuMpData->Pm16CodeSegment = GetProtectedMode16CS ();
|
|
CpuMpData->ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
|
|
mNumberToFinish = CpuMpData->CpuCount - 1;
|
|
WakeUpAP (CpuMpData, TRUE, 0, RelocateApLoop, NULL, TRUE);
|
|
while (mNumberToFinish > 0) {
|
|
CpuPause ();
|
|
}
|
|
|
|
if (CpuMpData->UseSevEsAPMethod && (CpuMpData->WakeupBuffer != (UINTN)-1)) {
|
|
//
|
|
// There are APs present. Re-use reserved memory area below 1MB from
|
|
// WakeupBuffer as the area to be used for transitioning to 16-bit mode
|
|
// in support of booting of the AP by an OS.
|
|
//
|
|
CopyMem (
|
|
(VOID *)CpuMpData->WakeupBuffer,
|
|
(VOID *)(CpuMpData->AddressMap.RendezvousFunnelAddress +
|
|
CpuMpData->AddressMap.SwitchToRealPM16ModeOffset),
|
|
CpuMpData->AddressMap.SwitchToRealPM16ModeSize
|
|
);
|
|
}
|
|
|
|
DEBUG ((DEBUG_INFO, "%a() done!\n", __FUNCTION__));
|
|
}
|
|
|
|
/**
|
|
Initialize global data for MP support.
|
|
|
|
@param[in] CpuMpData The pointer to CPU MP Data structure.
|
|
**/
|
|
VOID
|
|
InitMpGlobalData (
|
|
IN CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS Address;
|
|
UINTN ApSafeBufferSize;
|
|
UINTN Index;
|
|
EFI_GCD_MEMORY_SPACE_DESCRIPTOR MemDesc;
|
|
UINTN StackBase;
|
|
CPU_INFO_IN_HOB *CpuInfoInHob;
|
|
|
|
SaveCpuMpData (CpuMpData);
|
|
|
|
if (CpuMpData->CpuCount == 1) {
|
|
//
|
|
// If only BSP exists, return
|
|
//
|
|
return;
|
|
}
|
|
|
|
if (PcdGetBool (PcdCpuStackGuard)) {
|
|
//
|
|
// One extra page at the bottom of the stack is needed for Guard page.
|
|
//
|
|
if (CpuMpData->CpuApStackSize <= EFI_PAGE_SIZE) {
|
|
DEBUG ((DEBUG_ERROR, "PcdCpuApStackSize is not big enough for Stack Guard!\n"));
|
|
ASSERT (FALSE);
|
|
}
|
|
|
|
//
|
|
// DXE will reuse stack allocated for APs at PEI phase if it's available.
|
|
// Let's check it here.
|
|
//
|
|
// Note: BSP's stack guard is set at DxeIpl phase. But for the sake of
|
|
// BSP/AP exchange, stack guard for ApTopOfStack of cpu 0 will still be
|
|
// set here.
|
|
//
|
|
CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
|
for (Index = 0; Index < CpuMpData->CpuCount; ++Index) {
|
|
if ((CpuInfoInHob != NULL) && (CpuInfoInHob[Index].ApTopOfStack != 0)) {
|
|
StackBase = (UINTN)CpuInfoInHob[Index].ApTopOfStack - CpuMpData->CpuApStackSize;
|
|
} else {
|
|
StackBase = CpuMpData->Buffer + Index * CpuMpData->CpuApStackSize;
|
|
}
|
|
|
|
Status = gDS->GetMemorySpaceDescriptor (StackBase, &MemDesc);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
Status = gDS->SetMemorySpaceAttributes (
|
|
StackBase,
|
|
EFI_PAGES_TO_SIZE (1),
|
|
MemDesc.Attributes | EFI_MEMORY_RP
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"Stack Guard set at %lx [cpu%lu]!\n",
|
|
(UINT64)StackBase,
|
|
(UINT64)Index
|
|
));
|
|
}
|
|
}
|
|
|
|
//
|
|
// Avoid APs access invalid buffer data which allocated by BootServices,
|
|
// so we will allocate reserved data for AP loop code. We also need to
|
|
// allocate this buffer below 4GB due to APs may be transferred to 32bit
|
|
// protected mode on long mode DXE.
|
|
// Allocating it in advance since memory services are not available in
|
|
// Exit Boot Services callback function.
|
|
//
|
|
ApSafeBufferSize = EFI_PAGES_TO_SIZE (
|
|
EFI_SIZE_TO_PAGES (
|
|
CpuMpData->AddressMap.RelocateApLoopFuncSize
|
|
)
|
|
);
|
|
Address = BASE_4GB - 1;
|
|
Status = gBS->AllocatePages (
|
|
AllocateMaxAddress,
|
|
EfiReservedMemoryType,
|
|
EFI_SIZE_TO_PAGES (ApSafeBufferSize),
|
|
&Address
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
mReservedApLoop.Data = (VOID *)(UINTN)Address;
|
|
ASSERT (mReservedApLoop.Data != NULL);
|
|
|
|
//
|
|
// Make sure that the buffer memory is executable if NX protection is enabled
|
|
// for EfiReservedMemoryType.
|
|
//
|
|
// TODO: Check EFI_MEMORY_XP bit set or not once it's available in DXE GCD
|
|
// service.
|
|
//
|
|
Status = gDS->GetMemorySpaceDescriptor (Address, &MemDesc);
|
|
if (!EFI_ERROR (Status)) {
|
|
gDS->SetMemorySpaceAttributes (
|
|
Address,
|
|
ApSafeBufferSize,
|
|
MemDesc.Attributes & (~EFI_MEMORY_XP)
|
|
);
|
|
}
|
|
|
|
ApSafeBufferSize = EFI_PAGES_TO_SIZE (
|
|
EFI_SIZE_TO_PAGES (
|
|
CpuMpData->CpuCount * AP_SAFE_STACK_SIZE
|
|
)
|
|
);
|
|
Address = BASE_4GB - 1;
|
|
Status = gBS->AllocatePages (
|
|
AllocateMaxAddress,
|
|
EfiReservedMemoryType,
|
|
EFI_SIZE_TO_PAGES (ApSafeBufferSize),
|
|
&Address
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
mReservedTopOfApStack = (UINTN)Address + ApSafeBufferSize;
|
|
ASSERT ((mReservedTopOfApStack & (UINTN)(CPU_STACK_ALIGNMENT - 1)) == 0);
|
|
CopyMem (
|
|
mReservedApLoop.Data,
|
|
CpuMpData->AddressMap.RelocateApLoopFuncAddress,
|
|
CpuMpData->AddressMap.RelocateApLoopFuncSize
|
|
);
|
|
|
|
Status = gBS->CreateEvent (
|
|
EVT_TIMER | EVT_NOTIFY_SIGNAL,
|
|
TPL_NOTIFY,
|
|
CheckApsStatus,
|
|
NULL,
|
|
&mCheckAllApsEvent
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
//
|
|
// Set timer to check all APs status.
|
|
//
|
|
Status = gBS->SetTimer (
|
|
mCheckAllApsEvent,
|
|
TimerPeriodic,
|
|
EFI_TIMER_PERIOD_MICROSECONDS (
|
|
PcdGet32 (PcdCpuApStatusCheckIntervalInMicroSeconds)
|
|
)
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
Status = gBS->CreateEvent (
|
|
EVT_SIGNAL_EXIT_BOOT_SERVICES,
|
|
TPL_CALLBACK,
|
|
MpInitChangeApLoopCallback,
|
|
NULL,
|
|
&mMpInitExitBootServicesEvent
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
Status = gBS->CreateEventEx (
|
|
EVT_NOTIFY_SIGNAL,
|
|
TPL_CALLBACK,
|
|
MpInitChangeApLoopCallback,
|
|
NULL,
|
|
&gEfiEventLegacyBootGuid,
|
|
&mLegacyBootEvent
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
}
|
|
|
|
/**
|
|
This service executes a caller provided function on all enabled APs.
|
|
|
|
@param[in] Procedure A pointer to the function to be run on
|
|
enabled APs of the system. See type
|
|
EFI_AP_PROCEDURE.
|
|
@param[in] SingleThread If TRUE, then all the enabled APs execute
|
|
the function specified by Procedure one by
|
|
one, in ascending order of processor handle
|
|
number. If FALSE, then all the enabled APs
|
|
execute the function specified by Procedure
|
|
simultaneously.
|
|
@param[in] WaitEvent The event created by the caller with CreateEvent()
|
|
service. If it is NULL, then execute in
|
|
blocking mode. BSP waits until all APs finish
|
|
or TimeoutInMicroSeconds expires. If it's
|
|
not NULL, then execute in non-blocking mode.
|
|
BSP requests the function specified by
|
|
Procedure to be started on all the enabled
|
|
APs, and go on executing immediately. If
|
|
all return from Procedure, or TimeoutInMicroSeconds
|
|
expires, this event is signaled. The BSP
|
|
can use the CheckEvent() or WaitForEvent()
|
|
services to check the state of event. Type
|
|
EFI_EVENT is defined in CreateEvent() in
|
|
the Unified Extensible Firmware Interface
|
|
Specification.
|
|
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
|
APs to return from Procedure, either for
|
|
blocking or non-blocking mode. Zero means
|
|
infinity. If the timeout expires before
|
|
all APs return from Procedure, then Procedure
|
|
on the failed APs is terminated. All enabled
|
|
APs are available for next function assigned
|
|
by MpInitLibStartupAllAPs() or
|
|
MPInitLibStartupThisAP().
|
|
If the timeout expires in blocking mode,
|
|
BSP returns EFI_TIMEOUT. If the timeout
|
|
expires in non-blocking mode, WaitEvent
|
|
is signaled with SignalEvent().
|
|
@param[in] ProcedureArgument The parameter passed into Procedure for
|
|
all APs.
|
|
@param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,
|
|
if all APs finish successfully, then its
|
|
content is set to NULL. If not all APs
|
|
finish before timeout expires, then its
|
|
content is set to address of the buffer
|
|
holding handle numbers of the failed APs.
|
|
The buffer is allocated by MP Initialization
|
|
library, and it's the caller's responsibility to
|
|
free the buffer with FreePool() service.
|
|
In blocking mode, it is ready for consumption
|
|
when the call returns. In non-blocking mode,
|
|
it is ready when WaitEvent is signaled. The
|
|
list of failed CPU is terminated by
|
|
END_OF_CPU_LIST.
|
|
|
|
@retval EFI_SUCCESS In blocking mode, all APs have finished before
|
|
the timeout expired.
|
|
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched
|
|
to all enabled APs.
|
|
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
|
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
|
signaled.
|
|
@retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
|
|
supported.
|
|
@retval EFI_DEVICE_ERROR Caller processor is AP.
|
|
@retval EFI_NOT_STARTED No enabled APs exist in the system.
|
|
@retval EFI_NOT_READY Any enabled APs are busy.
|
|
@retval EFI_NOT_READY MP Initialize Library is not initialized.
|
|
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
|
all enabled APs have finished.
|
|
@retval EFI_INVALID_PARAMETER Procedure is NULL.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibStartupAllAPs (
|
|
IN EFI_AP_PROCEDURE Procedure,
|
|
IN BOOLEAN SingleThread,
|
|
IN EFI_EVENT WaitEvent OPTIONAL,
|
|
IN UINTN TimeoutInMicroseconds,
|
|
IN VOID *ProcedureArgument OPTIONAL,
|
|
OUT UINTN **FailedCpuList OPTIONAL
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// Temporarily stop checkAllApsStatus for avoid resource dead-lock.
|
|
//
|
|
mStopCheckAllApsStatus = TRUE;
|
|
|
|
Status = StartupAllCPUsWorker (
|
|
Procedure,
|
|
SingleThread,
|
|
TRUE,
|
|
WaitEvent,
|
|
TimeoutInMicroseconds,
|
|
ProcedureArgument,
|
|
FailedCpuList
|
|
);
|
|
|
|
//
|
|
// Start checkAllApsStatus
|
|
//
|
|
mStopCheckAllApsStatus = FALSE;
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
This service lets the caller get one enabled AP to execute a caller-provided
|
|
function.
|
|
|
|
@param[in] Procedure A pointer to the function to be run on the
|
|
designated AP of the system. See type
|
|
EFI_AP_PROCEDURE.
|
|
@param[in] ProcessorNumber The handle number of the AP. The range is
|
|
from 0 to the total number of logical
|
|
processors minus 1. The total number of
|
|
logical processors can be retrieved by
|
|
MpInitLibGetNumberOfProcessors().
|
|
@param[in] WaitEvent The event created by the caller with CreateEvent()
|
|
service. If it is NULL, then execute in
|
|
blocking mode. BSP waits until this AP finish
|
|
or TimeoutInMicroSeconds expires. If it's
|
|
not NULL, then execute in non-blocking mode.
|
|
BSP requests the function specified by
|
|
Procedure to be started on this AP,
|
|
and go on executing immediately. If this AP
|
|
return from Procedure or TimeoutInMicroSeconds
|
|
expires, this event is signaled. The BSP
|
|
can use the CheckEvent() or WaitForEvent()
|
|
services to check the state of event. Type
|
|
EFI_EVENT is defined in CreateEvent() in
|
|
the Unified Extensible Firmware Interface
|
|
Specification.
|
|
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
|
this AP to finish this Procedure, either for
|
|
blocking or non-blocking mode. Zero means
|
|
infinity. If the timeout expires before
|
|
this AP returns from Procedure, then Procedure
|
|
on the AP is terminated. The
|
|
AP is available for next function assigned
|
|
by MpInitLibStartupAllAPs() or
|
|
MpInitLibStartupThisAP().
|
|
If the timeout expires in blocking mode,
|
|
BSP returns EFI_TIMEOUT. If the timeout
|
|
expires in non-blocking mode, WaitEvent
|
|
is signaled with SignalEvent().
|
|
@param[in] ProcedureArgument The parameter passed into Procedure on the
|
|
specified AP.
|
|
@param[out] Finished If NULL, this parameter is ignored. In
|
|
blocking mode, this parameter is ignored.
|
|
In non-blocking mode, if AP returns from
|
|
Procedure before the timeout expires, its
|
|
content is set to TRUE. Otherwise, the
|
|
value is set to FALSE. The caller can
|
|
determine if the AP returned from Procedure
|
|
by evaluating this value.
|
|
|
|
@retval EFI_SUCCESS In blocking mode, specified AP finished before
|
|
the timeout expires.
|
|
@retval EFI_SUCCESS In non-blocking mode, the function has been
|
|
dispatched to specified AP.
|
|
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
|
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
|
signaled.
|
|
@retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
|
|
supported.
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
|
the specified AP has finished.
|
|
@retval EFI_NOT_READY The specified AP is busy.
|
|
@retval EFI_NOT_READY MP Initialize Library is not initialized.
|
|
@retval EFI_NOT_FOUND The processor with the handle specified by
|
|
ProcessorNumber does not exist.
|
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
|
|
@retval EFI_INVALID_PARAMETER Procedure is NULL.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibStartupThisAP (
|
|
IN EFI_AP_PROCEDURE Procedure,
|
|
IN UINTN ProcessorNumber,
|
|
IN EFI_EVENT WaitEvent OPTIONAL,
|
|
IN UINTN TimeoutInMicroseconds,
|
|
IN VOID *ProcedureArgument OPTIONAL,
|
|
OUT BOOLEAN *Finished OPTIONAL
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// temporarily stop checkAllApsStatus for avoid resource dead-lock.
|
|
//
|
|
mStopCheckAllApsStatus = TRUE;
|
|
|
|
Status = StartupThisAPWorker (
|
|
Procedure,
|
|
ProcessorNumber,
|
|
WaitEvent,
|
|
TimeoutInMicroseconds,
|
|
ProcedureArgument,
|
|
Finished
|
|
);
|
|
|
|
mStopCheckAllApsStatus = FALSE;
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
This service switches the requested AP to be the BSP from that point onward.
|
|
This service changes the BSP for all purposes. This call can only be performed
|
|
by the current BSP.
|
|
|
|
@param[in] ProcessorNumber The handle number of AP that is to become the new
|
|
BSP. The range is from 0 to the total number of
|
|
logical processors minus 1. The total number of
|
|
logical processors can be retrieved by
|
|
MpInitLibGetNumberOfProcessors().
|
|
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
|
|
enabled AP. Otherwise, it will be disabled.
|
|
|
|
@retval EFI_SUCCESS BSP successfully switched.
|
|
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
|
|
this service returning.
|
|
@retval EFI_UNSUPPORTED Switching the BSP is not supported.
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
@retval EFI_NOT_FOUND The processor with the handle specified by
|
|
ProcessorNumber does not exist.
|
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
|
|
a disabled AP.
|
|
@retval EFI_NOT_READY The specified AP is busy.
|
|
@retval EFI_NOT_READY MP Initialize Library is not initialized.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibSwitchBSP (
|
|
IN UINTN ProcessorNumber,
|
|
IN BOOLEAN EnableOldBSP
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_TIMER_ARCH_PROTOCOL *Timer;
|
|
UINT64 TimerPeriod;
|
|
|
|
TimerPeriod = 0;
|
|
//
|
|
// Locate Timer Arch Protocol
|
|
//
|
|
Status = gBS->LocateProtocol (&gEfiTimerArchProtocolGuid, NULL, (VOID **)&Timer);
|
|
if (EFI_ERROR (Status)) {
|
|
Timer = NULL;
|
|
}
|
|
|
|
if (Timer != NULL) {
|
|
//
|
|
// Save current rate of DXE Timer
|
|
//
|
|
Timer->GetTimerPeriod (Timer, &TimerPeriod);
|
|
//
|
|
// Disable DXE Timer and drain pending interrupts
|
|
//
|
|
Timer->SetTimerPeriod (Timer, 0);
|
|
}
|
|
|
|
Status = SwitchBSPWorker (ProcessorNumber, EnableOldBSP);
|
|
|
|
if (Timer != NULL) {
|
|
//
|
|
// Enable and restore rate of DXE Timer
|
|
//
|
|
Timer->SetTimerPeriod (Timer, TimerPeriod);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
This service lets the caller enable or disable an AP from this point onward.
|
|
This service may only be called from the BSP.
|
|
|
|
@param[in] ProcessorNumber The handle number of AP.
|
|
The range is from 0 to the total number of
|
|
logical processors minus 1. The total number of
|
|
logical processors can be retrieved by
|
|
MpInitLibGetNumberOfProcessors().
|
|
@param[in] EnableAP Specifies the new state for the processor for
|
|
enabled, FALSE for disabled.
|
|
@param[in] HealthFlag If not NULL, a pointer to a value that specifies
|
|
the new health status of the AP. This flag
|
|
corresponds to StatusFlag defined in
|
|
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
|
|
the PROCESSOR_HEALTH_STATUS_BIT is used. All other
|
|
bits are ignored. If it is NULL, this parameter
|
|
is ignored.
|
|
|
|
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
|
|
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
|
|
prior to this service returning.
|
|
@retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
|
|
does not exist.
|
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
|
|
@retval EFI_NOT_READY MP Initialize Library is not initialized.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibEnableDisableAP (
|
|
IN UINTN ProcessorNumber,
|
|
IN BOOLEAN EnableAP,
|
|
IN UINT32 *HealthFlag OPTIONAL
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
BOOLEAN TempStopCheckState;
|
|
|
|
TempStopCheckState = FALSE;
|
|
//
|
|
// temporarily stop checkAllAPsStatus for initialize parameters.
|
|
//
|
|
if (!mStopCheckAllApsStatus) {
|
|
mStopCheckAllApsStatus = TRUE;
|
|
TempStopCheckState = TRUE;
|
|
}
|
|
|
|
Status = EnableDisableApWorker (ProcessorNumber, EnableAP, HealthFlag);
|
|
|
|
if (TempStopCheckState) {
|
|
mStopCheckAllApsStatus = FALSE;
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
This funtion will try to invoke platform specific microcode shadow logic to
|
|
relocate microcode update patches into memory.
|
|
|
|
@param[in, out] CpuMpData The pointer to CPU MP Data structure.
|
|
|
|
@retval EFI_SUCCESS Shadow microcode success.
|
|
@retval EFI_OUT_OF_RESOURCES No enough resource to complete the operation.
|
|
@retval EFI_UNSUPPORTED Can't find platform specific microcode shadow
|
|
PPI/Protocol.
|
|
**/
|
|
EFI_STATUS
|
|
PlatformShadowMicrocode (
|
|
IN OUT CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
//
|
|
// There is no DXE version of platform shadow microcode protocol so far.
|
|
// A platform which only uses DxeMpInitLib instance could only supports
|
|
// the PCD based microcode shadowing.
|
|
//
|
|
return EFI_UNSUPPORTED;
|
|
}
|