audk/ArmPkg/Library/UncachedMemoryAllocationLib/UncachedMemoryAllocationLib.c

720 lines
17 KiB
C

/** @file
UncachedMemoryAllocation lib that uses DXE Service to change cachability for
a buffer.
Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.<BR>
Copyright (c) 2014, AMR Ltd. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Base.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/DebugLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UncachedMemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/ArmLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Protocol/Cpu.h>
STATIC EFI_CPU_ARCH_PROTOCOL *mCpu;
VOID *
UncachedInternalAllocatePages (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages
);
VOID *
UncachedInternalAllocateAlignedPages (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN UINTN Alignment
);
typedef struct {
EFI_PHYSICAL_ADDRESS Base;
VOID *Allocation;
UINTN Pages;
EFI_MEMORY_TYPE MemoryType;
BOOLEAN Allocated;
LIST_ENTRY Link;
UINT64 Attributes;
} FREE_PAGE_NODE;
STATIC LIST_ENTRY mPageList = INITIALIZE_LIST_HEAD_VARIABLE (mPageList);
// Track the size of the non-allocated buffer in the linked-list
STATIC UINTN mFreedBufferSize = 0;
/**
* This function firstly checks if the requested allocation can fit into one
* of the previously allocated buffer.
* If the requested allocation does not fit in the existing pool then
* the function makes a new allocation.
*
* @param MemoryType Type of memory requested for the new allocation
* @param Pages Number of requested page
* @param Alignment Required alignment
* @param Allocation Address of the newly allocated buffer
*
* @return EFI_SUCCESS If the function manage to allocate a buffer
* @return !EFI_SUCCESS If the function did not manage to allocate a buffer
*/
STATIC
EFI_STATUS
AllocatePagesFromList (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN UINTN Alignment,
OUT VOID **Allocation
)
{
EFI_STATUS Status;
LIST_ENTRY *Link;
FREE_PAGE_NODE *Node;
FREE_PAGE_NODE *NewNode;
UINTN AlignmentMask;
EFI_PHYSICAL_ADDRESS Memory;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor;
// Alignment must be a power of two or zero.
ASSERT ((Alignment & (Alignment - 1)) == 0);
//
// Look in our list for the smallest page that could satisfy the new allocation
//
Node = NULL;
NewNode = NULL;
for (Link = mPageList.ForwardLink; Link != &mPageList; Link = Link->ForwardLink) {
Node = BASE_CR (Link, FREE_PAGE_NODE, Link);
if ((Node->Allocated == FALSE) && (Node->MemoryType == MemoryType)) {
// We have a node that fits our requirements
if (((UINTN)Node->Base & (Alignment - 1)) == 0) {
// We found a page that matches the page size
if (Node->Pages == Pages) {
Node->Allocated = TRUE;
Node->Allocation = (VOID*)(UINTN)Node->Base;
*Allocation = Node->Allocation;
// Update the size of the freed buffer
mFreedBufferSize -= Pages * EFI_PAGE_SIZE;
return EFI_SUCCESS;
} else if (Node->Pages > Pages) {
if (NewNode == NULL) {
// It is the first node that could contain our new allocation
NewNode = Node;
} else if (NewNode->Pages > Node->Pages) {
// This node offers a smaller number of page.
NewNode = Node;
}
}
}
}
}
// Check if we have found a node that could contain our new allocation
if (NewNode != NULL) {
NewNode->Allocated = TRUE;
NewNode->Allocation = (VOID*)(UINTN)NewNode->Base;
*Allocation = NewNode->Allocation;
mFreedBufferSize -= NewNode->Pages * EFI_PAGE_SIZE;
return EFI_SUCCESS;
}
//
// Otherwise, we need to allocate a new buffer
//
// We do not want to over-allocate in case the alignment requirement does not
// require extra pages
if (Alignment > EFI_PAGE_SIZE) {
AlignmentMask = Alignment - 1;
Pages += EFI_SIZE_TO_PAGES (Alignment);
} else {
AlignmentMask = 0;
}
Status = gBS->AllocatePages (AllocateAnyPages, MemoryType, Pages, &Memory);
if (EFI_ERROR (Status)) {
return Status;
}
Status = gDS->GetMemorySpaceDescriptor (Memory, &Descriptor);
if (EFI_ERROR (Status)) {
goto FreePages;
}
Status = gDS->SetMemorySpaceAttributes (Memory, EFI_PAGES_TO_SIZE (Pages),
EFI_MEMORY_WC);
if (EFI_ERROR (Status)) {
goto FreePages;
}
//
// EFI_CPU_ARCH_PROTOCOL::SetMemoryAttributes() will preserve the original
// memory type attribute if no memory type is passed. Permission attributes
// will be replaced, so EFI_MEMORY_RO will be removed if present (although
// it would be a bug if that were the case for an AllocatePages() allocation)
//
Status = mCpu->SetMemoryAttributes (mCpu, Memory, EFI_PAGES_TO_SIZE (Pages),
EFI_MEMORY_XP);
if (EFI_ERROR (Status)) {
goto FreePages;
}
InvalidateDataCacheRange ((VOID *)(UINTN)Memory, EFI_PAGES_TO_SIZE (Pages));
NewNode = AllocatePool (sizeof (FREE_PAGE_NODE));
if (NewNode == NULL) {
ASSERT (FALSE);
Status = EFI_OUT_OF_RESOURCES;
goto FreePages;
}
NewNode->Base = Memory;
NewNode->Allocation = (VOID*)(((UINTN)Memory + AlignmentMask) & ~AlignmentMask);
NewNode->Pages = Pages;
NewNode->Allocated = TRUE;
NewNode->MemoryType = MemoryType;
NewNode->Attributes = Descriptor.Attributes;
InsertTailList (&mPageList, &NewNode->Link);
*Allocation = NewNode->Allocation;
return EFI_SUCCESS;
FreePages:
gBS->FreePages (Memory, Pages);
return Status;
}
/**
* Free the memory allocation
*
* This function will actually try to find the allocation in the linked list.
* And it will then mark the entry as freed.
*
* @param Allocation Base address of the buffer to free
*
* @return EFI_SUCCESS The allocation has been freed
* @return EFI_NOT_FOUND The allocation was not found in the pool.
* @return EFI_INVALID_PARAMETER If Allocation is NULL
*
*/
STATIC
EFI_STATUS
FreePagesFromList (
IN VOID *Allocation
)
{
LIST_ENTRY *Link;
FREE_PAGE_NODE *Node;
if (Allocation == NULL) {
return EFI_INVALID_PARAMETER;
}
for (Link = mPageList.ForwardLink; Link != &mPageList; Link = Link->ForwardLink) {
Node = BASE_CR (Link, FREE_PAGE_NODE, Link);
if ((UINTN)Node->Allocation == (UINTN)Allocation) {
Node->Allocated = FALSE;
// Update the size of the freed buffer
mFreedBufferSize += Node->Pages * EFI_PAGE_SIZE;
// If the size of the non-allocated reaches the threshold we raise a warning.
// It might be an expected behaviour in some cases.
// We might device to free some of these buffers later on.
if (mFreedBufferSize > PcdGet64 (PcdArmFreeUncachedMemorySizeThreshold)) {
DEBUG ((EFI_D_WARN, "Warning: The list of non-allocated buffer has reach the threshold.\n"));
}
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
/**
* This function is automatically invoked when the driver exits
* It frees all the non-allocated memory buffer.
* This function is not responsible to free allocated buffer (eg: case of memory leak,
* runtime allocation).
*/
EFI_STATUS
EFIAPI
UncachedMemoryAllocationLibConstructor (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
return gBS->LocateProtocol (&gEfiCpuArchProtocolGuid, NULL, (VOID **)&mCpu);
}
EFI_STATUS
EFIAPI
UncachedMemoryAllocationLibDestructor (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
LIST_ENTRY *Link;
FREE_PAGE_NODE *OldNode;
// Test if the list is empty
Link = mPageList.ForwardLink;
if (Link == &mPageList) {
return EFI_SUCCESS;
}
// Free all the pages and nodes
do {
OldNode = BASE_CR (Link, FREE_PAGE_NODE, Link);
// Point to the next entry
Link = Link->ForwardLink;
// We only free the non-allocated buffer
if (OldNode->Allocated == FALSE) {
gBS->FreePages ((EFI_PHYSICAL_ADDRESS)(UINTN)OldNode->Base, OldNode->Pages);
gDS->SetMemorySpaceAttributes ((EFI_PHYSICAL_ADDRESS)(UINTN)OldNode->Base,
EFI_PAGES_TO_SIZE (OldNode->Pages), OldNode->Attributes);
RemoveEntryList (&OldNode->Link);
FreePool (OldNode);
}
} while (Link != &mPageList);
return EFI_SUCCESS;
}
/**
Converts a cached or uncached address to a physical address suitable for use in SoC registers.
@param VirtualAddress The pointer to convert.
@return The physical address of the supplied virtual pointer.
**/
EFI_PHYSICAL_ADDRESS
ConvertToPhysicalAddress (
IN VOID *VirtualAddress
)
{
return (EFI_PHYSICAL_ADDRESS)(UINTN)VirtualAddress;
}
VOID *
UncachedInternalAllocatePages (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages
)
{
return UncachedInternalAllocateAlignedPages (MemoryType, Pages, EFI_PAGE_SIZE);
}
VOID *
EFIAPI
UncachedAllocatePages (
IN UINTN Pages
)
{
return UncachedInternalAllocatePages (EfiBootServicesData, Pages);
}
VOID *
EFIAPI
UncachedAllocateRuntimePages (
IN UINTN Pages
)
{
return UncachedInternalAllocatePages (EfiRuntimeServicesData, Pages);
}
VOID *
EFIAPI
UncachedAllocateReservedPages (
IN UINTN Pages
)
{
return UncachedInternalAllocatePages (EfiReservedMemoryType, Pages);
}
VOID
EFIAPI
UncachedFreePages (
IN VOID *Buffer,
IN UINTN Pages
)
{
UncachedFreeAlignedPages (Buffer, Pages);
return;
}
VOID *
UncachedInternalAllocateAlignedPages (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN UINTN Alignment
)
{
EFI_STATUS Status;
VOID *Allocation;
if (Pages == 0) {
return NULL;
}
Allocation = NULL;
Status = AllocatePagesFromList (MemoryType, Pages, Alignment, &Allocation);
if (EFI_ERROR (Status)) {
ASSERT_EFI_ERROR (Status);
return NULL;
} else {
return Allocation;
}
}
VOID
EFIAPI
UncachedFreeAlignedPages (
IN VOID *Buffer,
IN UINTN Pages
)
{
FreePagesFromList (Buffer);
}
VOID *
UncachedInternalAllocateAlignedPool (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN AllocationSize,
IN UINTN Alignment
)
{
VOID *AlignedAddress;
//
// Alignment must be a power of two or zero.
//
ASSERT ((Alignment & (Alignment - 1)) == 0);
if (Alignment < EFI_PAGE_SIZE) {
Alignment = EFI_PAGE_SIZE;
}
AlignedAddress = UncachedInternalAllocateAlignedPages (PoolType, EFI_SIZE_TO_PAGES (AllocationSize), Alignment);
if (AlignedAddress == NULL) {
return NULL;
}
return (VOID *) AlignedAddress;
}
VOID *
EFIAPI
UncachedAllocateAlignedPool (
IN UINTN AllocationSize,
IN UINTN Alignment
)
{
return UncachedInternalAllocateAlignedPool (EfiBootServicesData, AllocationSize, Alignment);
}
VOID *
EFIAPI
UncachedAllocateAlignedRuntimePool (
IN UINTN AllocationSize,
IN UINTN Alignment
)
{
return UncachedInternalAllocateAlignedPool (EfiRuntimeServicesData, AllocationSize, Alignment);
}
VOID *
EFIAPI
UncachedAllocateAlignedReservedPool (
IN UINTN AllocationSize,
IN UINTN Alignment
)
{
return UncachedInternalAllocateAlignedPool (EfiReservedMemoryType, AllocationSize, Alignment);
}
VOID *
UncachedInternalAllocateAlignedZeroPool (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN AllocationSize,
IN UINTN Alignment
)
{
VOID *Memory;
Memory = UncachedInternalAllocateAlignedPool (PoolType, AllocationSize, Alignment);
if (Memory != NULL) {
Memory = ZeroMem (Memory, AllocationSize);
}
return Memory;
}
VOID *
EFIAPI
UncachedAllocateAlignedZeroPool (
IN UINTN AllocationSize,
IN UINTN Alignment
)
{
return UncachedInternalAllocateAlignedZeroPool (EfiBootServicesData, AllocationSize, Alignment);
}
VOID *
EFIAPI
UncachedAllocateAlignedRuntimeZeroPool (
IN UINTN AllocationSize,
IN UINTN Alignment
)
{
return UncachedInternalAllocateAlignedZeroPool (EfiRuntimeServicesData, AllocationSize, Alignment);
}
VOID *
EFIAPI
UncachedAllocateAlignedReservedZeroPool (
IN UINTN AllocationSize,
IN UINTN Alignment
)
{
return UncachedInternalAllocateAlignedZeroPool (EfiReservedMemoryType, AllocationSize, Alignment);
}
VOID *
UncachedInternalAllocateAlignedCopyPool (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN AllocationSize,
IN CONST VOID *Buffer,
IN UINTN Alignment
)
{
VOID *Memory;
ASSERT (Buffer != NULL);
ASSERT (AllocationSize <= (MAX_ADDRESS - (UINTN) Buffer + 1));
Memory = UncachedInternalAllocateAlignedPool (PoolType, AllocationSize, Alignment);
if (Memory != NULL) {
Memory = CopyMem (Memory, Buffer, AllocationSize);
}
return Memory;
}
VOID *
EFIAPI
UncachedAllocateAlignedCopyPool (
IN UINTN AllocationSize,
IN CONST VOID *Buffer,
IN UINTN Alignment
)
{
return UncachedInternalAllocateAlignedCopyPool (EfiBootServicesData, AllocationSize, Buffer, Alignment);
}
VOID *
EFIAPI
UncachedAllocateAlignedRuntimeCopyPool (
IN UINTN AllocationSize,
IN CONST VOID *Buffer,
IN UINTN Alignment
)
{
return UncachedInternalAllocateAlignedCopyPool (EfiRuntimeServicesData, AllocationSize, Buffer, Alignment);
}
VOID *
EFIAPI
UncachedAllocateAlignedReservedCopyPool (
IN UINTN AllocationSize,
IN CONST VOID *Buffer,
IN UINTN Alignment
)
{
return UncachedInternalAllocateAlignedCopyPool (EfiReservedMemoryType, AllocationSize, Buffer, Alignment);
}
VOID
EFIAPI
UncachedFreeAlignedPool (
IN VOID *Allocation
)
{
UncachedFreePages (Allocation, 0);
}
VOID *
UncachedInternalAllocatePool (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN AllocationSize
)
{
UINTN CacheLineLength = ArmCacheWritebackGranule ();
return UncachedInternalAllocateAlignedPool (MemoryType, AllocationSize, CacheLineLength);
}
VOID *
EFIAPI
UncachedAllocatePool (
IN UINTN AllocationSize
)
{
return UncachedInternalAllocatePool (EfiBootServicesData, AllocationSize);
}
VOID *
EFIAPI
UncachedAllocateRuntimePool (
IN UINTN AllocationSize
)
{
return UncachedInternalAllocatePool (EfiRuntimeServicesData, AllocationSize);
}
VOID *
EFIAPI
UncachedAllocateReservedPool (
IN UINTN AllocationSize
)
{
return UncachedInternalAllocatePool (EfiReservedMemoryType, AllocationSize);
}
VOID *
UncachedInternalAllocateZeroPool (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN AllocationSize
)
{
VOID *Memory;
Memory = UncachedInternalAllocatePool (PoolType, AllocationSize);
if (Memory != NULL) {
Memory = ZeroMem (Memory, AllocationSize);
}
return Memory;
}
VOID *
EFIAPI
UncachedAllocateZeroPool (
IN UINTN AllocationSize
)
{
return UncachedInternalAllocateZeroPool (EfiBootServicesData, AllocationSize);
}
VOID *
EFIAPI
UncachedAllocateRuntimeZeroPool (
IN UINTN AllocationSize
)
{
return UncachedInternalAllocateZeroPool (EfiRuntimeServicesData, AllocationSize);
}
VOID *
EFIAPI
UncachedAllocateReservedZeroPool (
IN UINTN AllocationSize
)
{
return UncachedInternalAllocateZeroPool (EfiReservedMemoryType, AllocationSize);
}
VOID *
UncachedInternalAllocateCopyPool (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN AllocationSize,
IN CONST VOID *Buffer
)
{
VOID *Memory;
ASSERT (Buffer != NULL);
ASSERT (AllocationSize <= (MAX_ADDRESS - (UINTN) Buffer + 1));
Memory = UncachedInternalAllocatePool (PoolType, AllocationSize);
if (Memory != NULL) {
Memory = CopyMem (Memory, Buffer, AllocationSize);
}
return Memory;
}
VOID *
EFIAPI
UncachedAllocateCopyPool (
IN UINTN AllocationSize,
IN CONST VOID *Buffer
)
{
return UncachedInternalAllocateCopyPool (EfiBootServicesData, AllocationSize, Buffer);
}
VOID *
EFIAPI
UncachedAllocateRuntimeCopyPool (
IN UINTN AllocationSize,
IN CONST VOID *Buffer
)
{
return UncachedInternalAllocateCopyPool (EfiRuntimeServicesData, AllocationSize, Buffer);
}
VOID *
EFIAPI
UncachedAllocateReservedCopyPool (
IN UINTN AllocationSize,
IN CONST VOID *Buffer
)
{
return UncachedInternalAllocateCopyPool (EfiReservedMemoryType, AllocationSize, Buffer);
}
VOID
EFIAPI
UncachedFreePool (
IN VOID *Buffer
)
{
UncachedFreeAlignedPool (Buffer);
}
VOID
EFIAPI
UncachedSafeFreePool (
IN VOID *Buffer
)
{
if (Buffer != NULL) {
UncachedFreePool (Buffer);
Buffer = NULL;
}
}