audk/IntelSiliconPkg/Feature/VTd/IntelVTdDxe/DmaProtection.c

518 lines
16 KiB
C

/** @file
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "DmaProtection.h"
UINT64 mBelow4GMemoryLimit;
UINT64 mAbove4GMemoryLimit;
EDKII_PLATFORM_VTD_POLICY_PROTOCOL *mPlatformVTdPolicy;
/**
return the UEFI memory information.
@param[out] Below4GMemoryLimit The below 4GiB memory limit
@param[out] Above4GMemoryLimit The above 4GiB memory limit
**/
VOID
ReturnUefiMemoryMap (
OUT UINT64 *Below4GMemoryLimit,
OUT UINT64 *Above4GMemoryLimit
)
{
EFI_STATUS Status;
EFI_MEMORY_DESCRIPTOR *EfiMemoryMap;
EFI_MEMORY_DESCRIPTOR *EfiMemoryMapEnd;
EFI_MEMORY_DESCRIPTOR *EfiEntry;
EFI_MEMORY_DESCRIPTOR *NextEfiEntry;
EFI_MEMORY_DESCRIPTOR TempEfiEntry;
UINTN EfiMemoryMapSize;
UINTN EfiMapKey;
UINTN EfiDescriptorSize;
UINT32 EfiDescriptorVersion;
UINT64 MemoryBlockLength;
*Below4GMemoryLimit = 0;
*Above4GMemoryLimit = 0;
//
// Get the EFI memory map.
//
EfiMemoryMapSize = 0;
EfiMemoryMap = NULL;
Status = gBS->GetMemoryMap (
&EfiMemoryMapSize,
EfiMemoryMap,
&EfiMapKey,
&EfiDescriptorSize,
&EfiDescriptorVersion
);
ASSERT (Status == EFI_BUFFER_TOO_SMALL);
do {
//
// Use size returned back plus 1 descriptor for the AllocatePool.
// We don't just multiply by 2 since the "for" loop below terminates on
// EfiMemoryMapEnd which is dependent upon EfiMemoryMapSize. Otherwize
// we process bogus entries and create bogus E820 entries.
//
EfiMemoryMap = (EFI_MEMORY_DESCRIPTOR *) AllocatePool (EfiMemoryMapSize);
ASSERT (EfiMemoryMap != NULL);
Status = gBS->GetMemoryMap (
&EfiMemoryMapSize,
EfiMemoryMap,
&EfiMapKey,
&EfiDescriptorSize,
&EfiDescriptorVersion
);
if (EFI_ERROR (Status)) {
FreePool (EfiMemoryMap);
}
} while (Status == EFI_BUFFER_TOO_SMALL);
ASSERT_EFI_ERROR (Status);
//
// Sort memory map from low to high
//
EfiEntry = EfiMemoryMap;
NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
while (EfiEntry < EfiMemoryMapEnd) {
while (NextEfiEntry < EfiMemoryMapEnd) {
if (EfiEntry->PhysicalStart > NextEfiEntry->PhysicalStart) {
CopyMem (&TempEfiEntry, EfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
CopyMem (EfiEntry, NextEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
CopyMem (NextEfiEntry, &TempEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
}
NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (NextEfiEntry, EfiDescriptorSize);
}
EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
}
//
//
//
DEBUG ((DEBUG_INFO, "MemoryMap:\n"));
EfiEntry = EfiMemoryMap;
EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
while (EfiEntry < EfiMemoryMapEnd) {
MemoryBlockLength = (UINT64) (LShiftU64 (EfiEntry->NumberOfPages, 12));
DEBUG ((DEBUG_INFO, "Entry(0x%02x) 0x%016lx - 0x%016lx\n", EfiEntry->Type, EfiEntry->PhysicalStart, EfiEntry->PhysicalStart + MemoryBlockLength));
switch (EfiEntry->Type) {
case EfiLoaderCode:
case EfiLoaderData:
case EfiBootServicesCode:
case EfiBootServicesData:
case EfiConventionalMemory:
case EfiRuntimeServicesCode:
case EfiRuntimeServicesData:
case EfiACPIReclaimMemory:
case EfiACPIMemoryNVS:
case EfiReservedMemoryType:
if ((EfiEntry->PhysicalStart + MemoryBlockLength) <= BASE_1MB) {
//
// Skip the memory block is under 1MB
//
} else if (EfiEntry->PhysicalStart >= BASE_4GB) {
if (*Above4GMemoryLimit < EfiEntry->PhysicalStart + MemoryBlockLength) {
*Above4GMemoryLimit = EfiEntry->PhysicalStart + MemoryBlockLength;
}
} else {
if (*Below4GMemoryLimit < EfiEntry->PhysicalStart + MemoryBlockLength) {
*Below4GMemoryLimit = EfiEntry->PhysicalStart + MemoryBlockLength;
}
}
break;
}
EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
}
FreePool (EfiMemoryMap);
DEBUG ((DEBUG_INFO, "Result:\n"));
DEBUG ((DEBUG_INFO, "Below4GMemoryLimit: 0x%016lx\n", *Below4GMemoryLimit));
DEBUG ((DEBUG_INFO, "Above4GMemoryLimit: 0x%016lx\n", *Above4GMemoryLimit));
return ;
}
/**
The scan bus callback function to always enable page attribute.
@param[in] Context The context of the callback.
@param[in] Segment The segment of the source.
@param[in] Bus The bus of the source.
@param[in] Device The device of the source.
@param[in] Function The function of the source.
@retval EFI_SUCCESS The VTd entry is updated to always enable all DMA access for the specific device.
**/
EFI_STATUS
EFIAPI
ScanBusCallbackAlwaysEnablePageAttribute (
IN VOID *Context,
IN UINT16 Segment,
IN UINT8 Bus,
IN UINT8 Device,
IN UINT8 Function
)
{
VTD_SOURCE_ID SourceId;
EFI_STATUS Status;
SourceId.Bits.Bus = Bus;
SourceId.Bits.Device = Device;
SourceId.Bits.Function = Function;
Status = AlwaysEnablePageAttribute (Segment, SourceId);
return Status;
}
/**
Always enable the VTd page attribute for the device in the DeviceScope.
@param[in] DeviceScope the input device scope data structure
@retval EFI_SUCCESS The VTd entry is updated to always enable all DMA access for the specific device in the device scope.
**/
EFI_STATUS
AlwaysEnablePageAttributeDeviceScope (
IN EDKII_PLATFORM_VTD_DEVICE_SCOPE *DeviceScope
)
{
UINT8 Bus;
UINT8 Device;
UINT8 Function;
VTD_SOURCE_ID SourceId;
UINT8 SecondaryBusNumber;
EFI_STATUS Status;
Status = GetPciBusDeviceFunction (DeviceScope->SegmentNumber, &DeviceScope->DeviceScope, &Bus, &Device, &Function);
if (DeviceScope->DeviceScope.Type == EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_BRIDGE) {
//
// Need scan the bridge and add all devices.
//
SecondaryBusNumber = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(DeviceScope->SegmentNumber, Bus, Device, Function, PCI_BRIDGE_SECONDARY_BUS_REGISTER_OFFSET));
Status = ScanPciBus (NULL, DeviceScope->SegmentNumber, SecondaryBusNumber, ScanBusCallbackAlwaysEnablePageAttribute);
return Status;
} else {
SourceId.Bits.Bus = Bus;
SourceId.Bits.Device = Device;
SourceId.Bits.Function = Function;
Status = AlwaysEnablePageAttribute (DeviceScope->SegmentNumber, SourceId);
return Status;
}
}
/**
Always enable the VTd page attribute for the device matching DeviceId.
@param[in] PciDeviceId the input PCI device ID
@retval EFI_SUCCESS The VTd entry is updated to always enable all DMA access for the specific device matching DeviceId.
**/
EFI_STATUS
AlwaysEnablePageAttributePciDeviceId (
IN EDKII_PLATFORM_VTD_PCI_DEVICE_ID *PciDeviceId
)
{
UINTN VtdIndex;
UINTN PciIndex;
PCI_DEVICE_DATA *PciDeviceData;
EFI_STATUS Status;
for (VtdIndex = 0; VtdIndex < mVtdUnitNumber; VtdIndex++) {
for (PciIndex = 0; PciIndex < mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDeviceDataNumber; PciIndex++) {
PciDeviceData = &mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDeviceData[PciIndex];
if (((PciDeviceId->VendorId == 0xFFFF) || (PciDeviceId->VendorId == PciDeviceData->PciDeviceId.VendorId)) &&
((PciDeviceId->DeviceId == 0xFFFF) || (PciDeviceId->DeviceId == PciDeviceData->PciDeviceId.DeviceId)) &&
((PciDeviceId->RevisionId == 0xFF) || (PciDeviceId->RevisionId == PciDeviceData->PciDeviceId.RevisionId)) &&
((PciDeviceId->SubsystemVendorId == 0xFFFF) || (PciDeviceId->SubsystemVendorId == PciDeviceData->PciDeviceId.SubsystemVendorId)) &&
((PciDeviceId->SubsystemDeviceId == 0xFFFF) || (PciDeviceId->SubsystemDeviceId == PciDeviceData->PciDeviceId.SubsystemDeviceId)) ) {
Status = AlwaysEnablePageAttribute (mVtdUnitInformation[VtdIndex].Segment, PciDeviceData->PciSourceId);
if (EFI_ERROR(Status)) {
continue;
}
}
}
}
return EFI_SUCCESS;
}
/**
Always enable the VTd page attribute for the device.
@param[in] DeviceInfo the exception device information
@retval EFI_SUCCESS The VTd entry is updated to always enable all DMA access for the specific device in the device info.
**/
EFI_STATUS
AlwaysEnablePageAttributeExceptionDeviceInfo (
IN EDKII_PLATFORM_VTD_EXCEPTION_DEVICE_INFO *DeviceInfo
)
{
switch (DeviceInfo->Type) {
case EDKII_PLATFORM_VTD_EXCEPTION_DEVICE_INFO_TYPE_DEVICE_SCOPE:
return AlwaysEnablePageAttributeDeviceScope ((VOID *)(DeviceInfo + 1));
case EDKII_PLATFORM_VTD_EXCEPTION_DEVICE_INFO_TYPE_PCI_DEVICE_ID:
return AlwaysEnablePageAttributePciDeviceId ((VOID *)(DeviceInfo + 1));
default:
return EFI_UNSUPPORTED;
}
}
/**
Initialize platform VTd policy.
**/
VOID
InitializePlatformVTdPolicy (
VOID
)
{
EFI_STATUS Status;
UINTN DeviceInfoCount;
VOID *DeviceInfo;
EDKII_PLATFORM_VTD_EXCEPTION_DEVICE_INFO *ThisDeviceInfo;
UINTN Index;
//
// It is optional.
//
Status = gBS->LocateProtocol (
&gEdkiiPlatformVTdPolicyProtocolGuid,
NULL,
(VOID **)&mPlatformVTdPolicy
);
if (!EFI_ERROR(Status)) {
DEBUG ((DEBUG_INFO, "InitializePlatformVTdPolicy\n"));
Status = mPlatformVTdPolicy->GetExceptionDeviceList (mPlatformVTdPolicy, &DeviceInfoCount, &DeviceInfo);
if (!EFI_ERROR(Status)) {
ThisDeviceInfo = DeviceInfo;
for (Index = 0; Index < DeviceInfoCount; Index++) {
if (ThisDeviceInfo->Type == EDKII_PLATFORM_VTD_EXCEPTION_DEVICE_INFO_TYPE_END) {
break;
}
AlwaysEnablePageAttributeExceptionDeviceInfo (ThisDeviceInfo);
ThisDeviceInfo = (VOID *)((UINTN)ThisDeviceInfo + ThisDeviceInfo->Length);
}
FreePool (DeviceInfo);
}
}
}
/**
Setup VTd engine.
**/
VOID
SetupVtd (
VOID
)
{
EFI_STATUS Status;
VOID *PciEnumerationComplete;
UINTN Index;
UINT64 Below4GMemoryLimit;
UINT64 Above4GMemoryLimit;
//
// PCI Enumeration must be done
//
Status = gBS->LocateProtocol (
&gEfiPciEnumerationCompleteProtocolGuid,
NULL,
&PciEnumerationComplete
);
ASSERT_EFI_ERROR (Status);
ReturnUefiMemoryMap (&Below4GMemoryLimit, &Above4GMemoryLimit);
Below4GMemoryLimit = ALIGN_VALUE_UP(Below4GMemoryLimit, SIZE_256MB);
DEBUG ((DEBUG_INFO, " Adjusted Below4GMemoryLimit: 0x%016lx\n", Below4GMemoryLimit));
mBelow4GMemoryLimit = Below4GMemoryLimit;
mAbove4GMemoryLimit = Above4GMemoryLimit;
//
// 1. setup
//
DEBUG ((DEBUG_INFO, "ParseDmarAcpiTable\n"));
Status = ParseDmarAcpiTableDrhd ();
if (EFI_ERROR (Status)) {
return;
}
DEBUG ((DEBUG_INFO, "PrepareVtdConfig\n"));
PrepareVtdConfig ();
//
// 2. initialization
//
DEBUG ((DEBUG_INFO, "SetupTranslationTable\n"));
Status = SetupTranslationTable ();
if (EFI_ERROR (Status)) {
return;
}
InitializePlatformVTdPolicy ();
ParseDmarAcpiTableRmrr ();
for (Index = 0; Index < mVtdUnitNumber; Index++) {
DEBUG ((DEBUG_INFO,"VTD Unit %d (Segment: %04x)\n", Index, mVtdUnitInformation[Index].Segment));
if (mVtdUnitInformation[Index].ExtRootEntryTable != NULL) {
DumpDmarExtContextEntryTable (mVtdUnitInformation[Index].ExtRootEntryTable);
}
if (mVtdUnitInformation[Index].RootEntryTable != NULL) {
DumpDmarContextEntryTable (mVtdUnitInformation[Index].RootEntryTable);
}
}
//
// 3. enable
//
DEBUG ((DEBUG_INFO, "EnableDmar\n"));
Status = EnableDmar ();
if (EFI_ERROR (Status)) {
return;
}
DEBUG ((DEBUG_INFO, "DumpVtdRegs\n"));
DumpVtdRegsAll ();
}
/**
Notification function of ACPI Table change.
This is a notification function registered on ACPI Table change event.
@param Event Event whose notification function is being invoked.
@param Context Pointer to the notification function's context.
**/
VOID
EFIAPI
AcpiNotificationFunc (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_STATUS Status;
Status = GetDmarAcpiTable ();
if (EFI_ERROR (Status)) {
if (Status == EFI_ALREADY_STARTED) {
gBS->CloseEvent (Event);
}
return;
}
SetupVtd ();
gBS->CloseEvent (Event);
}
/**
Exit boot service callback function.
@param[in] Event The event handle.
@param[in] Context The event content.
**/
VOID
EFIAPI
OnExitBootServices (
IN EFI_EVENT Event,
IN VOID *Context
)
{
DEBUG ((DEBUG_INFO, "Vtd OnExitBootServices\n"));
DumpVtdRegsAll ();
if ((PcdGet8(PcdVTdPolicyPropertyMask) & BIT1) == 0) {
DisableDmar ();
DumpVtdRegsAll ();
}
}
/**
Legacy boot callback function.
@param[in] Event The event handle.
@param[in] Context The event content.
**/
VOID
EFIAPI
OnLegacyBoot (
EFI_EVENT Event,
VOID *Context
)
{
DEBUG ((DEBUG_INFO, "Vtd OnLegacyBoot\n"));
DumpVtdRegsAll ();
DisableDmar ();
DumpVtdRegsAll ();
}
/**
Initialize DMA protection.
**/
VOID
InitializeDmaProtection (
VOID
)
{
EFI_STATUS Status;
EFI_EVENT ExitBootServicesEvent;
EFI_EVENT LegacyBootEvent;
EFI_EVENT Event;
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
AcpiNotificationFunc,
NULL,
&gEfiAcpi10TableGuid,
&Event
);
ASSERT_EFI_ERROR (Status);
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
AcpiNotificationFunc,
NULL,
&gEfiAcpi20TableGuid,
&Event
);
ASSERT_EFI_ERROR (Status);
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
OnExitBootServices,
NULL,
&gEfiEventExitBootServicesGuid,
&ExitBootServicesEvent
);
ASSERT_EFI_ERROR (Status);
Status = EfiCreateEventLegacyBootEx (
TPL_CALLBACK,
OnLegacyBoot,
NULL,
&LegacyBootEvent
);
ASSERT_EFI_ERROR (Status);
return ;
}