audk/UefiCpuPkg/PiSmmCpuDxeSmm/Ia32/SmmFuncsArch.c

160 lines
5.2 KiB
C

/** @file
SMM CPU misc functions for Ia32 arch specific.
Copyright (c) 2015 - 2018, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "PiSmmCpuDxeSmm.h"
extern UINT64 gTaskGateDescriptor;
EFI_PHYSICAL_ADDRESS mGdtBuffer;
UINTN mGdtBufferSize;
/**
Initialize IDT for SMM Stack Guard.
**/
VOID
EFIAPI
InitializeIDTSmmStackGuard (
VOID
)
{
IA32_IDT_GATE_DESCRIPTOR *IdtGate;
//
// If SMM Stack Guard feature is enabled, the Page Fault Exception entry in IDT
// is a Task Gate Descriptor so that when a Page Fault Exception occurs,
// the processors can use a known good stack in case stack is ran out.
//
IdtGate = (IA32_IDT_GATE_DESCRIPTOR *)gcSmiIdtr.Base;
IdtGate += EXCEPT_IA32_PAGE_FAULT;
IdtGate->Uint64 = gTaskGateDescriptor;
}
/**
Initialize Gdt for all processors.
@param[in] Cr3 CR3 value.
@param[out] GdtStepSize The step size for GDT table.
@return GdtBase for processor 0.
GdtBase for processor X is: GdtBase + (GdtStepSize * X)
**/
VOID *
InitGdt (
IN UINTN Cr3,
OUT UINTN *GdtStepSize
)
{
UINTN Index;
IA32_SEGMENT_DESCRIPTOR *GdtDescriptor;
UINTN TssBase;
UINTN GdtTssTableSize;
UINT8 *GdtTssTables;
UINTN GdtTableStepSize;
if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
//
// For IA32 SMM, if SMM Stack Guard feature is enabled, we use 2 TSS.
// in this case, we allocate separate GDT/TSS for each CPUs to avoid TSS load contention
// on each SMI entry.
//
//
// Enlarge GDT to contain 2 TSS descriptors
//
gcSmiGdtr.Limit += (UINT16)(2 * sizeof (IA32_SEGMENT_DESCRIPTOR));
GdtTssTableSize = (gcSmiGdtr.Limit + 1 + TSS_SIZE * 2 + 7) & ~7; // 8 bytes aligned
mGdtBufferSize = GdtTssTableSize * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
//
// IA32 Stack Guard need use task switch to switch stack that need
// write GDT and TSS, so AllocateCodePages() could not be used here
// as code pages will be set to RO.
//
GdtTssTables = (UINT8*)AllocatePages (EFI_SIZE_TO_PAGES (mGdtBufferSize));
ASSERT (GdtTssTables != NULL);
mGdtBuffer = (UINTN)GdtTssTables;
GdtTableStepSize = GdtTssTableSize;
for (Index = 0; Index < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; Index++) {
CopyMem (GdtTssTables + GdtTableStepSize * Index, (VOID*)(UINTN)gcSmiGdtr.Base, gcSmiGdtr.Limit + 1 + TSS_SIZE * 2);
//
// Fixup TSS descriptors
//
TssBase = (UINTN)(GdtTssTables + GdtTableStepSize * Index + gcSmiGdtr.Limit + 1);
GdtDescriptor = (IA32_SEGMENT_DESCRIPTOR *)(TssBase) - 2;
GdtDescriptor->Bits.BaseLow = (UINT16)TssBase;
GdtDescriptor->Bits.BaseMid = (UINT8)(TssBase >> 16);
GdtDescriptor->Bits.BaseHigh = (UINT8)(TssBase >> 24);
TssBase += TSS_SIZE;
GdtDescriptor++;
GdtDescriptor->Bits.BaseLow = (UINT16)TssBase;
GdtDescriptor->Bits.BaseMid = (UINT8)(TssBase >> 16);
GdtDescriptor->Bits.BaseHigh = (UINT8)(TssBase >> 24);
//
// Fixup TSS segments
//
// ESP as known good stack
//
*(UINTN *)(TssBase + TSS_IA32_ESP_OFFSET) = mSmmStackArrayBase + EFI_PAGE_SIZE + Index * mSmmStackSize;
*(UINT32 *)(TssBase + TSS_IA32_CR3_OFFSET) = Cr3;
}
} else {
//
// Just use original table, AllocatePage and copy them here to make sure GDTs are covered in page memory.
//
GdtTssTableSize = gcSmiGdtr.Limit + 1;
mGdtBufferSize = GdtTssTableSize * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
GdtTssTables = (UINT8*)AllocateCodePages (EFI_SIZE_TO_PAGES (mGdtBufferSize));
ASSERT (GdtTssTables != NULL);
mGdtBuffer = (UINTN)GdtTssTables;
GdtTableStepSize = GdtTssTableSize;
for (Index = 0; Index < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; Index++) {
CopyMem (GdtTssTables + GdtTableStepSize * Index, (VOID*)(UINTN)gcSmiGdtr.Base, gcSmiGdtr.Limit + 1);
}
}
*GdtStepSize = GdtTableStepSize;
return GdtTssTables;
}
/**
Transfer AP to safe hlt-loop after it finished restore CPU features on S3 patch.
@param[in] ApHltLoopCode The address of the safe hlt-loop function.
@param[in] TopOfStack A pointer to the new stack to use for the ApHltLoopCode.
@param[in] NumberToFinishAddress Address of Semaphore of APs finish count.
**/
VOID
TransferApToSafeState (
IN UINTN ApHltLoopCode,
IN UINTN TopOfStack,
IN UINTN NumberToFinishAddress
)
{
SwitchStack (
(SWITCH_STACK_ENTRY_POINT)ApHltLoopCode,
(VOID *)NumberToFinishAddress,
NULL,
(VOID *)TopOfStack
);
//
// It should never reach here
//
ASSERT (FALSE);
}