mirror of https://github.com/acidanthera/audk.git
501 lines
11 KiB
C
501 lines
11 KiB
C
/** @file
|
|
|
|
Stateful and implicitly initialized fw_cfg library implementation.
|
|
|
|
Copyright (C) 2013 - 2014, Red Hat, Inc.
|
|
Copyright (c) 2011 - 2013, Intel Corporation. All rights reserved.<BR>
|
|
|
|
This program and the accompanying materials are licensed and made available
|
|
under the terms and conditions of the BSD License which accompanies this
|
|
distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT
|
|
WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
**/
|
|
|
|
#include <Uefi.h>
|
|
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/IoLib.h>
|
|
#include <Library/QemuFwCfgLib.h>
|
|
#include <Library/UefiBootServicesTableLib.h>
|
|
|
|
#include <Protocol/FdtClient.h>
|
|
|
|
STATIC UINTN mFwCfgSelectorAddress;
|
|
STATIC UINTN mFwCfgDataAddress;
|
|
STATIC UINTN mFwCfgDmaAddress;
|
|
|
|
/**
|
|
Reads firmware configuration bytes into a buffer
|
|
|
|
@param[in] Size Size in bytes to read
|
|
@param[in] Buffer Buffer to store data into (OPTIONAL if Size is 0)
|
|
|
|
**/
|
|
typedef
|
|
VOID (EFIAPI READ_BYTES_FUNCTION) (
|
|
IN UINTN Size,
|
|
IN VOID *Buffer OPTIONAL
|
|
);
|
|
|
|
//
|
|
// Forward declaration of the two implementations we have.
|
|
//
|
|
STATIC READ_BYTES_FUNCTION MmioReadBytes;
|
|
STATIC READ_BYTES_FUNCTION DmaReadBytes;
|
|
|
|
//
|
|
// This points to the one we detect at runtime.
|
|
//
|
|
STATIC READ_BYTES_FUNCTION *InternalQemuFwCfgReadBytes = MmioReadBytes;
|
|
|
|
|
|
/**
|
|
Returns a boolean indicating if the firmware configuration interface
|
|
is available or not.
|
|
|
|
This function may change fw_cfg state.
|
|
|
|
@retval TRUE The interface is available
|
|
@retval FALSE The interface is not available
|
|
|
|
**/
|
|
BOOLEAN
|
|
EFIAPI
|
|
QemuFwCfgIsAvailable (
|
|
VOID
|
|
)
|
|
{
|
|
return (BOOLEAN)(mFwCfgSelectorAddress != 0 && mFwCfgDataAddress != 0);
|
|
}
|
|
|
|
|
|
RETURN_STATUS
|
|
EFIAPI
|
|
QemuFwCfgInitialize (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
FDT_CLIENT_PROTOCOL *FdtClient;
|
|
CONST UINT64 *Reg;
|
|
UINT32 RegSize;
|
|
UINTN AddressCells, SizeCells;
|
|
UINT64 FwCfgSelectorAddress;
|
|
UINT64 FwCfgSelectorSize;
|
|
UINT64 FwCfgDataAddress;
|
|
UINT64 FwCfgDataSize;
|
|
UINT64 FwCfgDmaAddress;
|
|
UINT64 FwCfgDmaSize;
|
|
|
|
Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL,
|
|
(VOID **)&FdtClient);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
Status = FdtClient->FindCompatibleNodeReg (FdtClient, "qemu,fw-cfg-mmio",
|
|
(CONST VOID **)&Reg, &AddressCells, &SizeCells,
|
|
&RegSize);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_WARN,
|
|
"%a: No 'qemu,fw-cfg-mmio' compatible DT node found (Status == %r)\n",
|
|
__FUNCTION__, Status));
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
ASSERT (AddressCells == 2);
|
|
ASSERT (SizeCells == 2);
|
|
ASSERT (RegSize == 2 * sizeof (UINT64));
|
|
|
|
FwCfgDataAddress = SwapBytes64 (Reg[0]);
|
|
FwCfgDataSize = 8;
|
|
FwCfgSelectorAddress = FwCfgDataAddress + FwCfgDataSize;
|
|
FwCfgSelectorSize = 2;
|
|
|
|
//
|
|
// The following ASSERT()s express
|
|
//
|
|
// Address + Size - 1 <= MAX_UINTN
|
|
//
|
|
// for both registers, that is, that the last byte in each MMIO range is
|
|
// expressible as a MAX_UINTN. The form below is mathematically
|
|
// equivalent, and it also prevents any unsigned overflow before the
|
|
// comparison.
|
|
//
|
|
ASSERT (FwCfgSelectorAddress <= MAX_UINTN - FwCfgSelectorSize + 1);
|
|
ASSERT (FwCfgDataAddress <= MAX_UINTN - FwCfgDataSize + 1);
|
|
|
|
mFwCfgSelectorAddress = FwCfgSelectorAddress;
|
|
mFwCfgDataAddress = FwCfgDataAddress;
|
|
|
|
DEBUG ((EFI_D_INFO, "Found FwCfg @ 0x%Lx/0x%Lx\n", FwCfgSelectorAddress,
|
|
FwCfgDataAddress));
|
|
|
|
if (SwapBytes64 (Reg[1]) >= 0x18) {
|
|
FwCfgDmaAddress = FwCfgDataAddress + 0x10;
|
|
FwCfgDmaSize = 0x08;
|
|
|
|
//
|
|
// See explanation above.
|
|
//
|
|
ASSERT (FwCfgDmaAddress <= MAX_UINTN - FwCfgDmaSize + 1);
|
|
|
|
DEBUG ((EFI_D_INFO, "Found FwCfg DMA @ 0x%Lx\n", FwCfgDmaAddress));
|
|
} else {
|
|
FwCfgDmaAddress = 0;
|
|
}
|
|
|
|
if (QemuFwCfgIsAvailable ()) {
|
|
UINT32 Signature;
|
|
|
|
QemuFwCfgSelectItem (QemuFwCfgItemSignature);
|
|
Signature = QemuFwCfgRead32 ();
|
|
if (Signature == SIGNATURE_32 ('Q', 'E', 'M', 'U')) {
|
|
//
|
|
// For DMA support, we require the DTB to advertise the register, and the
|
|
// feature bitmap (which we read without DMA) to confirm the feature.
|
|
//
|
|
if (FwCfgDmaAddress != 0) {
|
|
UINT32 Features;
|
|
|
|
QemuFwCfgSelectItem (QemuFwCfgItemInterfaceVersion);
|
|
Features = QemuFwCfgRead32 ();
|
|
if ((Features & FW_CFG_F_DMA) != 0) {
|
|
mFwCfgDmaAddress = FwCfgDmaAddress;
|
|
InternalQemuFwCfgReadBytes = DmaReadBytes;
|
|
}
|
|
}
|
|
} else {
|
|
mFwCfgSelectorAddress = 0;
|
|
mFwCfgDataAddress = 0;
|
|
}
|
|
}
|
|
return RETURN_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Selects a firmware configuration item for reading.
|
|
|
|
Following this call, any data read from this item will start from the
|
|
beginning of the configuration item's data.
|
|
|
|
@param[in] QemuFwCfgItem Firmware Configuration item to read
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
QemuFwCfgSelectItem (
|
|
IN FIRMWARE_CONFIG_ITEM QemuFwCfgItem
|
|
)
|
|
{
|
|
if (QemuFwCfgIsAvailable ()) {
|
|
MmioWrite16 (mFwCfgSelectorAddress, SwapBytes16 ((UINT16)QemuFwCfgItem));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Slow READ_BYTES_FUNCTION.
|
|
**/
|
|
STATIC
|
|
VOID
|
|
EFIAPI
|
|
MmioReadBytes (
|
|
IN UINTN Size,
|
|
IN VOID *Buffer OPTIONAL
|
|
)
|
|
{
|
|
UINTN Left;
|
|
UINT8 *Ptr;
|
|
UINT8 *End;
|
|
|
|
#ifdef MDE_CPU_AARCH64
|
|
Left = Size & 7;
|
|
#else
|
|
Left = Size & 3;
|
|
#endif
|
|
|
|
Size -= Left;
|
|
Ptr = Buffer;
|
|
End = Ptr + Size;
|
|
|
|
#ifdef MDE_CPU_AARCH64
|
|
while (Ptr < End) {
|
|
*(UINT64 *)Ptr = MmioRead64 (mFwCfgDataAddress);
|
|
Ptr += 8;
|
|
}
|
|
if (Left & 4) {
|
|
*(UINT32 *)Ptr = MmioRead32 (mFwCfgDataAddress);
|
|
Ptr += 4;
|
|
}
|
|
#else
|
|
while (Ptr < End) {
|
|
*(UINT32 *)Ptr = MmioRead32 (mFwCfgDataAddress);
|
|
Ptr += 4;
|
|
}
|
|
#endif
|
|
|
|
if (Left & 2) {
|
|
*(UINT16 *)Ptr = MmioRead16 (mFwCfgDataAddress);
|
|
Ptr += 2;
|
|
}
|
|
if (Left & 1) {
|
|
*Ptr = MmioRead8 (mFwCfgDataAddress);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Fast READ_BYTES_FUNCTION.
|
|
**/
|
|
STATIC
|
|
VOID
|
|
EFIAPI
|
|
DmaReadBytes (
|
|
IN UINTN Size,
|
|
IN VOID *Buffer OPTIONAL
|
|
)
|
|
{
|
|
volatile FW_CFG_DMA_ACCESS Access;
|
|
UINT32 Status;
|
|
|
|
if (Size == 0) {
|
|
return;
|
|
}
|
|
|
|
ASSERT (Size <= MAX_UINT32);
|
|
|
|
Access.Control = SwapBytes32 (FW_CFG_DMA_CTL_READ);
|
|
Access.Length = SwapBytes32 ((UINT32)Size);
|
|
Access.Address = SwapBytes64 ((UINT64)(UINTN)Buffer);
|
|
|
|
//
|
|
// We shouldn't start the transfer before setting up Access.
|
|
//
|
|
MemoryFence ();
|
|
|
|
//
|
|
// This will fire off the transfer.
|
|
//
|
|
#ifdef MDE_CPU_AARCH64
|
|
MmioWrite64 (mFwCfgDmaAddress, SwapBytes64 ((UINT64)&Access));
|
|
#else
|
|
MmioWrite32 ((UINT32)(mFwCfgDmaAddress + 4), SwapBytes32 ((UINT32)&Access));
|
|
#endif
|
|
|
|
//
|
|
// We shouldn't look at Access.Control before starting the transfer.
|
|
//
|
|
MemoryFence ();
|
|
|
|
do {
|
|
Status = SwapBytes32 (Access.Control);
|
|
ASSERT ((Status & FW_CFG_DMA_CTL_ERROR) == 0);
|
|
} while (Status != 0);
|
|
|
|
//
|
|
// The caller will want to access the transferred data.
|
|
//
|
|
MemoryFence ();
|
|
}
|
|
|
|
|
|
/**
|
|
Reads firmware configuration bytes into a buffer
|
|
|
|
If called multiple times, then the data read will continue at the offset of
|
|
the firmware configuration item where the previous read ended.
|
|
|
|
@param[in] Size Size in bytes to read
|
|
@param[in] Buffer Buffer to store data into
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
QemuFwCfgReadBytes (
|
|
IN UINTN Size,
|
|
IN VOID *Buffer
|
|
)
|
|
{
|
|
if (QemuFwCfgIsAvailable ()) {
|
|
InternalQemuFwCfgReadBytes (Size, Buffer);
|
|
} else {
|
|
ZeroMem (Buffer, Size);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Write firmware configuration bytes from a buffer
|
|
|
|
If called multiple times, then the data written will continue at the offset
|
|
of the firmware configuration item where the previous write ended.
|
|
|
|
@param[in] Size Size in bytes to write
|
|
@param[in] Buffer Buffer to read data from
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
QemuFwCfgWriteBytes (
|
|
IN UINTN Size,
|
|
IN VOID *Buffer
|
|
)
|
|
{
|
|
if (QemuFwCfgIsAvailable ()) {
|
|
UINTN Idx;
|
|
|
|
for (Idx = 0; Idx < Size; ++Idx) {
|
|
MmioWrite8 (mFwCfgDataAddress, ((UINT8 *)Buffer)[Idx]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Reads a UINT8 firmware configuration value
|
|
|
|
@return Value of Firmware Configuration item read
|
|
|
|
**/
|
|
UINT8
|
|
EFIAPI
|
|
QemuFwCfgRead8 (
|
|
VOID
|
|
)
|
|
{
|
|
UINT8 Result;
|
|
|
|
QemuFwCfgReadBytes (sizeof Result, &Result);
|
|
return Result;
|
|
}
|
|
|
|
|
|
/**
|
|
Reads a UINT16 firmware configuration value
|
|
|
|
@return Value of Firmware Configuration item read
|
|
|
|
**/
|
|
UINT16
|
|
EFIAPI
|
|
QemuFwCfgRead16 (
|
|
VOID
|
|
)
|
|
{
|
|
UINT16 Result;
|
|
|
|
QemuFwCfgReadBytes (sizeof Result, &Result);
|
|
return Result;
|
|
}
|
|
|
|
|
|
/**
|
|
Reads a UINT32 firmware configuration value
|
|
|
|
@return Value of Firmware Configuration item read
|
|
|
|
**/
|
|
UINT32
|
|
EFIAPI
|
|
QemuFwCfgRead32 (
|
|
VOID
|
|
)
|
|
{
|
|
UINT32 Result;
|
|
|
|
QemuFwCfgReadBytes (sizeof Result, &Result);
|
|
return Result;
|
|
}
|
|
|
|
|
|
/**
|
|
Reads a UINT64 firmware configuration value
|
|
|
|
@return Value of Firmware Configuration item read
|
|
|
|
**/
|
|
UINT64
|
|
EFIAPI
|
|
QemuFwCfgRead64 (
|
|
VOID
|
|
)
|
|
{
|
|
UINT64 Result;
|
|
|
|
QemuFwCfgReadBytes (sizeof Result, &Result);
|
|
return Result;
|
|
}
|
|
|
|
|
|
/**
|
|
Find the configuration item corresponding to the firmware configuration file.
|
|
|
|
@param[in] Name Name of file to look up.
|
|
@param[out] Item Configuration item corresponding to the file, to be passed
|
|
to QemuFwCfgSelectItem ().
|
|
@param[out] Size Number of bytes in the file.
|
|
|
|
@retval RETURN_SUCCESS If file is found.
|
|
@retval RETURN_NOT_FOUND If file is not found.
|
|
@retval RETURN_UNSUPPORTED If firmware configuration is unavailable.
|
|
|
|
**/
|
|
RETURN_STATUS
|
|
EFIAPI
|
|
QemuFwCfgFindFile (
|
|
IN CONST CHAR8 *Name,
|
|
OUT FIRMWARE_CONFIG_ITEM *Item,
|
|
OUT UINTN *Size
|
|
)
|
|
{
|
|
UINT32 Count;
|
|
UINT32 Idx;
|
|
|
|
if (!QemuFwCfgIsAvailable ()) {
|
|
return RETURN_UNSUPPORTED;
|
|
}
|
|
|
|
QemuFwCfgSelectItem (QemuFwCfgItemFileDir);
|
|
Count = SwapBytes32 (QemuFwCfgRead32 ());
|
|
|
|
for (Idx = 0; Idx < Count; ++Idx) {
|
|
UINT32 FileSize;
|
|
UINT16 FileSelect;
|
|
CHAR8 FName[QEMU_FW_CFG_FNAME_SIZE];
|
|
|
|
FileSize = QemuFwCfgRead32 ();
|
|
FileSelect = QemuFwCfgRead16 ();
|
|
QemuFwCfgRead16 (); // skip the field called "reserved"
|
|
InternalQemuFwCfgReadBytes (sizeof (FName), FName);
|
|
|
|
if (AsciiStrCmp (Name, FName) == 0) {
|
|
*Item = (FIRMWARE_CONFIG_ITEM) SwapBytes16 (FileSelect);
|
|
*Size = SwapBytes32 (FileSize);
|
|
return RETURN_SUCCESS;
|
|
}
|
|
}
|
|
|
|
return RETURN_NOT_FOUND;
|
|
}
|
|
|
|
|
|
/**
|
|
Determine if S3 support is explicitly enabled.
|
|
|
|
@retval TRUE if S3 support is explicitly enabled.
|
|
FALSE otherwise. This includes unavailability of the firmware
|
|
configuration interface.
|
|
**/
|
|
BOOLEAN
|
|
EFIAPI
|
|
QemuFwCfgS3Enabled (
|
|
VOID
|
|
)
|
|
{
|
|
return FALSE;
|
|
}
|