audk/ArmPkg/Library/ArmMmuLib/Arm/ArmMmuLibCore.c

429 lines
14 KiB
C

/** @file
* File managing the MMU for ARMv7 architecture
*
* Copyright (c) 2011-2016, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Uefi.h>
#include <Chipset/ArmV7.h>
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/ArmLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
#define ID_MMFR0_SHARELVL_SHIFT 12
#define ID_MMFR0_SHARELVL_MASK 0xf
#define ID_MMFR0_SHARELVL_ONE 0
#define ID_MMFR0_SHARELVL_TWO 1
#define ID_MMFR0_INNERSHR_SHIFT 28
#define ID_MMFR0_INNERSHR_MASK 0xf
#define ID_MMFR0_OUTERSHR_SHIFT 8
#define ID_MMFR0_OUTERSHR_MASK 0xf
#define ID_MMFR0_SHR_IMP_UNCACHED 0
#define ID_MMFR0_SHR_IMP_HW_COHERENT 1
#define ID_MMFR0_SHR_IGNORED 0xf
UINTN
EFIAPI
ArmReadIdMmfr0 (
VOID
);
BOOLEAN
EFIAPI
ArmHasMpExtensions (
VOID
);
STATIC
BOOLEAN
PreferNonshareableMemory (
VOID
)
{
UINTN Mmfr;
UINTN Val;
if (FeaturePcdGet (PcdNormalMemoryNonshareableOverride)) {
return TRUE;
}
//
// Check whether the innermost level of shareability (the level we will use
// by default to map normal memory) is implemented with hardware coherency
// support. Otherwise, revert to mapping as non-shareable.
//
Mmfr = ArmReadIdMmfr0 ();
switch ((Mmfr >> ID_MMFR0_SHARELVL_SHIFT) & ID_MMFR0_SHARELVL_MASK) {
case ID_MMFR0_SHARELVL_ONE:
// one level of shareability
Val = (Mmfr >> ID_MMFR0_OUTERSHR_SHIFT) & ID_MMFR0_OUTERSHR_MASK;
break;
case ID_MMFR0_SHARELVL_TWO:
// two levels of shareability
Val = (Mmfr >> ID_MMFR0_INNERSHR_SHIFT) & ID_MMFR0_INNERSHR_MASK;
break;
default:
// unexpected value -> shareable is the safe option
ASSERT (FALSE);
return FALSE;
}
return Val != ID_MMFR0_SHR_IMP_HW_COHERENT;
}
STATIC
VOID
PopulateLevel2PageTable (
IN UINT32 *SectionEntry,
IN UINT32 PhysicalBase,
IN UINT32 RemainLength,
IN ARM_MEMORY_REGION_ATTRIBUTES Attributes
)
{
UINT32 *PageEntry;
UINT32 Pages;
UINT32 Index;
UINT32 PageAttributes;
UINT32 SectionDescriptor;
UINT32 TranslationTable;
UINT32 BaseSectionAddress;
UINT32 FirstPageOffset;
switch (Attributes) {
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
PageAttributes = TT_DESCRIPTOR_PAGE_WRITE_BACK;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_NONSHAREABLE:
PageAttributes = TT_DESCRIPTOR_PAGE_WRITE_BACK;
PageAttributes &= ~TT_DESCRIPTOR_PAGE_S_SHARED;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_RO:
PageAttributes = TT_DESCRIPTOR_PAGE_WRITE_BACK;
PageAttributes |= TT_DESCRIPTOR_PAGE_AP_NO_RO;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_XP:
PageAttributes = TT_DESCRIPTOR_PAGE_WRITE_BACK;
PageAttributes |= TT_DESCRIPTOR_PAGE_XN_MASK;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
PageAttributes = TT_DESCRIPTOR_PAGE_WRITE_THROUGH;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
PageAttributes = TT_DESCRIPTOR_PAGE_DEVICE;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
PageAttributes = TT_DESCRIPTOR_PAGE_UNCACHED;
break;
default:
PageAttributes = TT_DESCRIPTOR_PAGE_UNCACHED;
break;
}
if (PreferNonshareableMemory ()) {
PageAttributes &= ~TT_DESCRIPTOR_PAGE_S_SHARED;
}
// Check if the Section Entry has already been populated. Otherwise attach a
// Level 2 Translation Table to it
if (*SectionEntry != 0) {
// The entry must be a page table. Otherwise it exists an overlapping in the memory map
if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE (*SectionEntry)) {
TranslationTable = *SectionEntry & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK;
} else if ((*SectionEntry & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) {
// Case where a virtual memory map descriptor overlapped a section entry
// Allocate a Level2 Page Table for this Section
TranslationTable = (UINTN)AllocateAlignedPages (
EFI_SIZE_TO_PAGES (TRANSLATION_TABLE_PAGE_SIZE),
TRANSLATION_TABLE_PAGE_ALIGNMENT
);
// Translate the Section Descriptor into Page Descriptor
SectionDescriptor = TT_DESCRIPTOR_PAGE_TYPE_PAGE | ConvertSectionAttributesToPageAttributes (*SectionEntry);
BaseSectionAddress = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (*SectionEntry);
//
// Make sure we are not inadvertently hitting in the caches
// when populating the page tables
//
InvalidateDataCacheRange (
(VOID *)TranslationTable,
TRANSLATION_TABLE_PAGE_SIZE
);
// Populate the new Level2 Page Table for the section
PageEntry = (UINT32 *)TranslationTable;
for (Index = 0; Index < TRANSLATION_TABLE_PAGE_COUNT; Index++) {
PageEntry[Index] = TT_DESCRIPTOR_PAGE_BASE_ADDRESS (BaseSectionAddress + (Index << 12)) | SectionDescriptor;
}
// Overwrite the section entry to point to the new Level2 Translation Table
*SectionEntry = (TranslationTable & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK) |
(IS_ARM_MEMORY_REGION_ATTRIBUTES_SECURE (Attributes) ? (1 << 3) : 0) |
TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE;
} else {
// We do not support the other section type (16MB Section)
ASSERT (0);
return;
}
} else {
TranslationTable = (UINTN)AllocateAlignedPages (
EFI_SIZE_TO_PAGES (TRANSLATION_TABLE_PAGE_SIZE),
TRANSLATION_TABLE_PAGE_ALIGNMENT
);
//
// Make sure we are not inadvertently hitting in the caches
// when populating the page tables
//
InvalidateDataCacheRange (
(VOID *)TranslationTable,
TRANSLATION_TABLE_PAGE_SIZE
);
ZeroMem ((VOID *)TranslationTable, TRANSLATION_TABLE_PAGE_SIZE);
*SectionEntry = (TranslationTable & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK) |
(IS_ARM_MEMORY_REGION_ATTRIBUTES_SECURE (Attributes) ? (1 << 3) : 0) |
TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE;
}
FirstPageOffset = (PhysicalBase & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
PageEntry = (UINT32 *)TranslationTable + FirstPageOffset;
Pages = RemainLength / TT_DESCRIPTOR_PAGE_SIZE;
ASSERT (FirstPageOffset + Pages <= TRANSLATION_TABLE_PAGE_COUNT);
for (Index = 0; Index < Pages; Index++) {
*PageEntry++ = TT_DESCRIPTOR_PAGE_BASE_ADDRESS (PhysicalBase) | PageAttributes;
PhysicalBase += TT_DESCRIPTOR_PAGE_SIZE;
}
//
// Invalidate again to ensure that any line fetches that may have occurred
// [speculatively] since the previous invalidate are evicted again.
//
ArmDataMemoryBarrier ();
InvalidateDataCacheRange (
(UINT32 *)TranslationTable + FirstPageOffset,
RemainLength / TT_DESCRIPTOR_PAGE_SIZE * sizeof (*PageEntry)
);
}
STATIC
VOID
FillTranslationTable (
IN UINT32 *TranslationTable,
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
)
{
UINT32 *SectionEntry;
UINT32 Attributes;
UINT32 PhysicalBase;
UINT64 RemainLength;
UINT32 PageMapLength;
ASSERT (MemoryRegion->Length > 0);
if (MemoryRegion->PhysicalBase >= SIZE_4GB) {
return;
}
PhysicalBase = (UINT32)MemoryRegion->PhysicalBase;
RemainLength = MIN (MemoryRegion->Length, SIZE_4GB - PhysicalBase);
switch (MemoryRegion->Attributes) {
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
Attributes = TT_DESCRIPTOR_SECTION_WRITE_BACK;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_NONSHAREABLE:
Attributes = TT_DESCRIPTOR_SECTION_WRITE_BACK;
Attributes &= ~TT_DESCRIPTOR_SECTION_S_SHARED;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_RO:
Attributes = TT_DESCRIPTOR_SECTION_WRITE_BACK;
Attributes |= TT_DESCRIPTOR_SECTION_AP_NO_RO;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_XP:
Attributes = TT_DESCRIPTOR_SECTION_WRITE_BACK;
Attributes |= TT_DESCRIPTOR_SECTION_XN_MASK;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
Attributes = TT_DESCRIPTOR_SECTION_WRITE_THROUGH;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
Attributes = TT_DESCRIPTOR_SECTION_DEVICE;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
Attributes = TT_DESCRIPTOR_SECTION_UNCACHED;
break;
default:
Attributes = TT_DESCRIPTOR_SECTION_UNCACHED;
break;
}
if (PreferNonshareableMemory ()) {
Attributes &= ~TT_DESCRIPTOR_SECTION_S_SHARED;
}
// Get the first section entry for this mapping
SectionEntry = TRANSLATION_TABLE_ENTRY_FOR_VIRTUAL_ADDRESS (TranslationTable, MemoryRegion->VirtualBase);
while (RemainLength != 0) {
if ((PhysicalBase % TT_DESCRIPTOR_SECTION_SIZE == 0) &&
(RemainLength >= TT_DESCRIPTOR_SECTION_SIZE))
{
// Case: Physical address aligned on the Section Size (1MB) && the length
// is greater than the Section Size
*SectionEntry = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (PhysicalBase) | Attributes;
//
// Issue a DMB to ensure that the page table entry update made it to
// memory before we issue the invalidate, otherwise, a subsequent
// speculative fetch could observe the old value.
//
ArmDataMemoryBarrier ();
ArmInvalidateDataCacheEntryByMVA ((UINTN)SectionEntry++);
PhysicalBase += TT_DESCRIPTOR_SECTION_SIZE;
RemainLength -= TT_DESCRIPTOR_SECTION_SIZE;
} else {
PageMapLength = MIN (
(UINT32)RemainLength,
TT_DESCRIPTOR_SECTION_SIZE -
(PhysicalBase % TT_DESCRIPTOR_SECTION_SIZE)
);
// Case: Physical address aligned on the Section Size (1MB) && the length
// does not fill a section
// Case: Physical address NOT aligned on the Section Size (1MB)
PopulateLevel2PageTable (
SectionEntry,
PhysicalBase,
PageMapLength,
MemoryRegion->Attributes
);
//
// Issue a DMB to ensure that the page table entry update made it to
// memory before we issue the invalidate, otherwise, a subsequent
// speculative fetch could observe the old value.
//
ArmDataMemoryBarrier ();
ArmInvalidateDataCacheEntryByMVA ((UINTN)SectionEntry++);
// If it is the last entry
if (RemainLength < TT_DESCRIPTOR_SECTION_SIZE) {
break;
}
PhysicalBase += PageMapLength;
RemainLength -= PageMapLength;
}
}
}
RETURN_STATUS
EFIAPI
ArmConfigureMmu (
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
OUT VOID **TranslationTableBase OPTIONAL,
OUT UINTN *TranslationTableSize OPTIONAL
)
{
VOID *TranslationTable;
UINT32 TTBRAttributes;
TranslationTable = AllocateAlignedPages (
EFI_SIZE_TO_PAGES (TRANSLATION_TABLE_SECTION_SIZE),
TRANSLATION_TABLE_SECTION_ALIGNMENT
);
if (TranslationTable == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
if (TranslationTableBase != NULL) {
*TranslationTableBase = TranslationTable;
}
if (TranslationTableSize != NULL) {
*TranslationTableSize = TRANSLATION_TABLE_SECTION_SIZE;
}
//
// Make sure we are not inadvertently hitting in the caches
// when populating the page tables
//
InvalidateDataCacheRange (TranslationTable, TRANSLATION_TABLE_SECTION_SIZE);
ZeroMem (TranslationTable, TRANSLATION_TABLE_SECTION_SIZE);
while (MemoryTable->Length != 0) {
FillTranslationTable (TranslationTable, MemoryTable);
MemoryTable++;
}
TTBRAttributes = ArmHasMpExtensions () ? TTBR_MP_WRITE_BACK_ALLOC
: TTBR_WRITE_BACK_ALLOC;
if (TTBRAttributes & TTBR_SHAREABLE) {
if (PreferNonshareableMemory ()) {
TTBRAttributes ^= TTBR_SHAREABLE;
} else {
//
// Unlike the S bit in the short descriptors, which implies inner shareable
// on an implementation that supports two levels, the meaning of the S bit
// in the TTBR depends on the NOS bit, which defaults to Outer Shareable.
// However, we should only set this bit after we have confirmed that the
// implementation supports multiple levels, or else the NOS bit is UNK/SBZP
//
if (((ArmReadIdMmfr0 () >> 12) & 0xf) != 0) {
TTBRAttributes |= TTBR_NOT_OUTER_SHAREABLE;
}
}
}
ArmSetTTBR0 ((VOID *)((UINTN)TranslationTable | TTBRAttributes));
//
// The TTBCR register value is undefined at reset in the Non-Secure world.
// Writing 0 has the effect of:
// Clearing EAE: Use short descriptors, as mandated by specification.
// Clearing PD0 and PD1: Translation Table Walk Disable is off.
// Clearing N: Perform all translation table walks through TTBR0.
// (0 is the default reset value in systems not implementing
// the Security Extensions.)
//
ArmSetTTBCR (0);
ArmSetDomainAccessControl (
DOMAIN_ACCESS_CONTROL_NONE (15) |
DOMAIN_ACCESS_CONTROL_NONE (14) |
DOMAIN_ACCESS_CONTROL_NONE (13) |
DOMAIN_ACCESS_CONTROL_NONE (12) |
DOMAIN_ACCESS_CONTROL_NONE (11) |
DOMAIN_ACCESS_CONTROL_NONE (10) |
DOMAIN_ACCESS_CONTROL_NONE (9) |
DOMAIN_ACCESS_CONTROL_NONE (8) |
DOMAIN_ACCESS_CONTROL_NONE (7) |
DOMAIN_ACCESS_CONTROL_NONE (6) |
DOMAIN_ACCESS_CONTROL_NONE (5) |
DOMAIN_ACCESS_CONTROL_NONE (4) |
DOMAIN_ACCESS_CONTROL_NONE (3) |
DOMAIN_ACCESS_CONTROL_NONE (2) |
DOMAIN_ACCESS_CONTROL_NONE (1) |
DOMAIN_ACCESS_CONTROL_CLIENT (0)
);
ArmEnableInstructionCache ();
ArmEnableDataCache ();
ArmEnableMmu ();
return RETURN_SUCCESS;
}