mirror of
				https://github.com/acidanthera/audk.git
				synced 2025-10-31 19:23:54 +01:00 
			
		
		
		
	- Add Brotli algorithm decompression library support Cc: Liming Gao <liming.gao@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Bell Song <binx.song@intel.com> Reviewed-by: Liming Gao <liming.gao@intel.com>
		
			
				
	
	
		
			358 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			358 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright 2013 Google Inc. All Rights Reserved.
 | |
| 
 | |
|    Distributed under MIT license.
 | |
|    See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
 | |
| */
 | |
| 
 | |
| /* Utilities for building Huffman decoding tables. */
 | |
| 
 | |
| #include "./huffman.h"
 | |
| 
 | |
| //#include <string.h>  /* memcpy, memset */
 | |
| 
 | |
| #include "../common/constants.h"
 | |
| #include "../common/types.h"
 | |
| #include "./port.h"
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #define BROTLI_REVERSE_BITS_MAX 8
 | |
| 
 | |
| #ifdef BROTLI_RBIT
 | |
| #define BROTLI_REVERSE_BITS_BASE (32 - BROTLI_REVERSE_BITS_MAX)
 | |
| #else
 | |
| #define BROTLI_REVERSE_BITS_BASE 0
 | |
| static uint8_t kReverseBits[1 << BROTLI_REVERSE_BITS_MAX] = {
 | |
|   0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
 | |
|   0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
 | |
|   0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
 | |
|   0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
 | |
|   0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
 | |
|   0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
 | |
|   0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
 | |
|   0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
 | |
|   0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
 | |
|   0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
 | |
|   0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
 | |
|   0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
 | |
|   0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
 | |
|   0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
 | |
|   0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
 | |
|   0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
 | |
|   0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
 | |
|   0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
 | |
|   0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
 | |
|   0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
 | |
|   0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
 | |
|   0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
 | |
|   0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
 | |
|   0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
 | |
|   0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
 | |
|   0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
 | |
|   0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
 | |
|   0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
 | |
|   0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
 | |
|   0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
 | |
|   0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
 | |
|   0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
 | |
| };
 | |
| #endif  /* BROTLI_RBIT */
 | |
| 
 | |
| #define BROTLI_REVERSE_BITS_LOWEST \
 | |
|   (1U << (BROTLI_REVERSE_BITS_MAX - 1 + BROTLI_REVERSE_BITS_BASE))
 | |
| 
 | |
| /* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
 | |
|    where reverse(value, len) is the bit-wise reversal of the len least
 | |
|    significant bits of value. */
 | |
| static BROTLI_INLINE uint32_t BrotliReverseBits(uint32_t num) {
 | |
| #ifdef BROTLI_RBIT
 | |
|   return BROTLI_RBIT(num);
 | |
| #else
 | |
|   return kReverseBits[num];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Stores code in table[0], table[step], table[2*step], ..., table[end] */
 | |
| /* Assumes that end is an integer multiple of step */
 | |
| static BROTLI_INLINE void ReplicateValue(HuffmanCode* table,
 | |
|                                          int step, int end,
 | |
|                                          HuffmanCode code) {
 | |
|   do {
 | |
|     end -= step;
 | |
|     table[end] = code;
 | |
|   } while (end > 0);
 | |
| }
 | |
| 
 | |
| /* Returns the table width of the next 2nd level table. count is the histogram
 | |
|    of bit lengths for the remaining symbols, len is the code length of the next
 | |
|    processed symbol */
 | |
| static BROTLI_INLINE int NextTableBitSize(const uint16_t* const count,
 | |
|                                           int len, int root_bits) {
 | |
|   int left = 1 << (len - root_bits);
 | |
|   while (len < BROTLI_HUFFMAN_MAX_CODE_LENGTH) {
 | |
|     left -= count[len];
 | |
|     if (left <= 0) break;
 | |
|     ++len;
 | |
|     left <<= 1;
 | |
|   }
 | |
|   return len - root_bits;
 | |
| }
 | |
| 
 | |
| void BrotliBuildCodeLengthsHuffmanTable(HuffmanCode* table,
 | |
|                                         const uint8_t* const code_lengths,
 | |
|                                         uint16_t* count) {
 | |
|   HuffmanCode code;   /* current table entry */
 | |
|   int symbol;         /* symbol index in original or sorted table */
 | |
|   uint32_t key;       /* prefix code */
 | |
|   uint32_t key_step;  /* prefix code addend */
 | |
|   int step;           /* step size to replicate values in current table */
 | |
|   int table_size;     /* size of current table */
 | |
|   int sorted[BROTLI_CODE_LENGTH_CODES];  /* symbols sorted by code length */
 | |
|   /* offsets in sorted table for each length */
 | |
|   int offset[BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH + 1];
 | |
|   int bits;
 | |
|   int bits_count;
 | |
|   BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH <=
 | |
|                 BROTLI_REVERSE_BITS_MAX);
 | |
| 
 | |
|   /* generate offsets into sorted symbol table by code length */
 | |
|   symbol = -1;
 | |
|   bits = 1;
 | |
|   BROTLI_REPEAT(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH, {
 | |
|     symbol += count[bits];
 | |
|     offset[bits] = symbol;
 | |
|     bits++;
 | |
|   });
 | |
|   /* Symbols with code length 0 are placed after all other symbols. */
 | |
|   offset[0] = BROTLI_CODE_LENGTH_CODES - 1;
 | |
| 
 | |
|   /* sort symbols by length, by symbol order within each length */
 | |
|   symbol = BROTLI_CODE_LENGTH_CODES;
 | |
|   do {
 | |
|     BROTLI_REPEAT(6, {
 | |
|       symbol--;
 | |
|       sorted[offset[code_lengths[symbol]]--] = symbol;
 | |
|     });
 | |
|   } while (symbol != 0);
 | |
| 
 | |
|   table_size = 1 << BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH;
 | |
| 
 | |
|   /* Special case: all symbols but one have 0 code length. */
 | |
|   if (offset[0] == 0) {
 | |
|     code.bits = 0;
 | |
|     code.value = (uint16_t)sorted[0];
 | |
|     for (key = 0; key < (uint32_t)table_size; ++key) {
 | |
|       table[key] = code;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* fill in table */
 | |
|   key = 0;
 | |
|   key_step = BROTLI_REVERSE_BITS_LOWEST;
 | |
|   symbol = 0;
 | |
|   bits = 1;
 | |
|   step = 2;
 | |
|   do {
 | |
|     code.bits = (uint8_t)bits;
 | |
|     for (bits_count = count[bits]; bits_count != 0; --bits_count) {
 | |
|       code.value = (uint16_t)sorted[symbol++];
 | |
|       ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
 | |
|       key += key_step;
 | |
|     }
 | |
|     step <<= 1;
 | |
|     key_step >>= 1;
 | |
|   } while (++bits <= BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH);
 | |
| }
 | |
| 
 | |
| uint32_t BrotliBuildHuffmanTable(HuffmanCode* root_table,
 | |
|                                  int root_bits,
 | |
|                                  const uint16_t* const symbol_lists,
 | |
|                                  uint16_t* count) {
 | |
|   HuffmanCode code;       /* current table entry */
 | |
|   HuffmanCode* table;     /* next available space in table */
 | |
|   int len;                /* current code length */
 | |
|   int symbol;             /* symbol index in original or sorted table */
 | |
|   uint32_t key;           /* prefix code */
 | |
|   uint32_t key_step;      /* prefix code addend */
 | |
|   uint32_t sub_key;       /* 2nd level table prefix code */
 | |
|   uint32_t sub_key_step;  /* 2nd level table prefix code addend */
 | |
|   int step;               /* step size to replicate values in current table */
 | |
|   int table_bits;         /* key length of current table */
 | |
|   int table_size;         /* size of current table */
 | |
|   int total_size;         /* sum of root table size and 2nd level table sizes */
 | |
|   int max_length = -1;
 | |
|   int bits;
 | |
|   int bits_count;
 | |
| 
 | |
|   BROTLI_DCHECK(root_bits <= BROTLI_REVERSE_BITS_MAX);
 | |
|   BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH - root_bits <=
 | |
|                 BROTLI_REVERSE_BITS_MAX);
 | |
| 
 | |
|   while (symbol_lists[max_length] == 0xFFFF) max_length--;
 | |
|   max_length += BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1;
 | |
| 
 | |
|   table = root_table;
 | |
|   table_bits = root_bits;
 | |
|   table_size = 1 << table_bits;
 | |
|   total_size = table_size;
 | |
| 
 | |
|   /* fill in root table */
 | |
|   /* let's reduce the table size to a smaller size if possible, and */
 | |
|   /* create the repetitions by memcpy if possible in the coming loop */
 | |
|   if (table_bits > max_length) {
 | |
|     table_bits = max_length;
 | |
|     table_size = 1 << table_bits;
 | |
|   }
 | |
|   key = 0;
 | |
|   key_step = BROTLI_REVERSE_BITS_LOWEST;
 | |
|   bits = 1;
 | |
|   step = 2;
 | |
|   do {
 | |
|     code.bits = (uint8_t)bits;
 | |
|     symbol = bits - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
 | |
|     for (bits_count = count[bits]; bits_count != 0; --bits_count) {
 | |
|       symbol = symbol_lists[symbol];
 | |
|       code.value = (uint16_t)symbol;
 | |
|       ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
 | |
|       key += key_step;
 | |
|     }
 | |
|     step <<= 1;
 | |
|     key_step >>= 1;
 | |
|   } while (++bits <= table_bits);
 | |
| 
 | |
|   /* if root_bits != table_bits we only created one fraction of the */
 | |
|   /* table, and we need to replicate it now. */
 | |
|   while (total_size != table_size) {
 | |
|     memcpy(&table[table_size], &table[0],
 | |
|            (size_t)table_size * sizeof(table[0]));
 | |
|     table_size <<= 1;
 | |
|   }
 | |
| 
 | |
|   /* fill in 2nd level tables and add pointers to root table */
 | |
|   key_step = BROTLI_REVERSE_BITS_LOWEST >> (root_bits - 1);
 | |
|   sub_key = (BROTLI_REVERSE_BITS_LOWEST << 1);
 | |
|   sub_key_step = BROTLI_REVERSE_BITS_LOWEST;
 | |
|   for (len = root_bits + 1, step = 2; len <= max_length; ++len) {
 | |
|     symbol = len - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
 | |
|     for (; count[len] != 0; --count[len]) {
 | |
|       if (sub_key == (BROTLI_REVERSE_BITS_LOWEST << 1U)) {
 | |
|         table += table_size;
 | |
|         table_bits = NextTableBitSize(count, len, root_bits);
 | |
|         table_size = 1 << table_bits;
 | |
|         total_size += table_size;
 | |
|         sub_key = BrotliReverseBits(key);
 | |
|         key += key_step;
 | |
|         root_table[sub_key].bits = (uint8_t)(table_bits + root_bits);
 | |
|         root_table[sub_key].value =
 | |
|             (uint16_t)(((size_t)(table - root_table)) - sub_key);
 | |
|         sub_key = 0;
 | |
|       }
 | |
|       code.bits = (uint8_t)(len - root_bits);
 | |
|       symbol = symbol_lists[symbol];
 | |
|       code.value = (uint16_t)symbol;
 | |
|       ReplicateValue(
 | |
|           &table[BrotliReverseBits(sub_key)], step, table_size, code);
 | |
|       sub_key += sub_key_step;
 | |
|     }
 | |
|     step <<= 1;
 | |
|     sub_key_step >>= 1;
 | |
|   }
 | |
|   return (uint32_t)total_size;
 | |
| }
 | |
| 
 | |
| uint32_t BrotliBuildSimpleHuffmanTable(HuffmanCode* table,
 | |
|                                        int root_bits,
 | |
|                                        uint16_t* val,
 | |
|                                        uint32_t num_symbols) {
 | |
|   uint32_t table_size = 1;
 | |
|   const uint32_t goal_size = 1U << root_bits;
 | |
|   switch (num_symbols) {
 | |
|     case 0:
 | |
|       table[0].bits = 0;
 | |
|       table[0].value = val[0];
 | |
|       break;
 | |
|     case 1:
 | |
|       table[0].bits = 1;
 | |
|       table[1].bits = 1;
 | |
|       if (val[1] > val[0]) {
 | |
|         table[0].value = val[0];
 | |
|         table[1].value = val[1];
 | |
|       } else {
 | |
|         table[0].value = val[1];
 | |
|         table[1].value = val[0];
 | |
|       }
 | |
|       table_size = 2;
 | |
|       break;
 | |
|     case 2:
 | |
|       table[0].bits = 1;
 | |
|       table[0].value = val[0];
 | |
|       table[2].bits = 1;
 | |
|       table[2].value = val[0];
 | |
|       if (val[2] > val[1]) {
 | |
|         table[1].value = val[1];
 | |
|         table[3].value = val[2];
 | |
|       } else {
 | |
|         table[1].value = val[2];
 | |
|         table[3].value = val[1];
 | |
|       }
 | |
|       table[1].bits = 2;
 | |
|       table[3].bits = 2;
 | |
|       table_size = 4;
 | |
|       break;
 | |
|     case 3: {
 | |
|       int i, k;
 | |
|       for (i = 0; i < 3; ++i) {
 | |
|         for (k = i + 1; k < 4; ++k) {
 | |
|           if (val[k] < val[i]) {
 | |
|             uint16_t t = val[k];
 | |
|             val[k] = val[i];
 | |
|             val[i] = t;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       for (i = 0; i < 4; ++i) {
 | |
|         table[i].bits = 2;
 | |
|       }
 | |
|       table[0].value = val[0];
 | |
|       table[2].value = val[1];
 | |
|       table[1].value = val[2];
 | |
|       table[3].value = val[3];
 | |
|       table_size = 4;
 | |
|       break;
 | |
|     }
 | |
|     case 4: {
 | |
|       int i;
 | |
|       if (val[3] < val[2]) {
 | |
|         uint16_t t = val[3];
 | |
|         val[3] = val[2];
 | |
|         val[2] = t;
 | |
|       }
 | |
|       for (i = 0; i < 7; ++i) {
 | |
|         table[i].value = val[0];
 | |
|         table[i].bits = (uint8_t)(1 + (i & 1));
 | |
|       }
 | |
|       table[1].value = val[1];
 | |
|       table[3].value = val[2];
 | |
|       table[5].value = val[1];
 | |
|       table[7].value = val[3];
 | |
|       table[3].bits = 3;
 | |
|       table[7].bits = 3;
 | |
|       table_size = 8;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   while (table_size != goal_size) {
 | |
|     memcpy(&table[table_size], &table[0],
 | |
|            (size_t)table_size * sizeof(table[0]));
 | |
|     table_size <<= 1;
 | |
|   }
 | |
|   return goal_size;
 | |
| }
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| }  /* extern "C" */
 | |
| #endif
 |