audk/QuarkPlatformPkg/Pci/Dxe/PciHostBridge/PciRootBridgeIo.c

1611 lines
46 KiB
C

/** @file
IIO PCI Root Bridge Io Protocol code. Generic enough to work for all IIOs.
Does not support configuration accesses to the extended PCI Express registers yet.
Copyright (c) 2013-2015 Intel Corporation.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "PciRootBridge.h"
//
// Define PCI express offse
//
#define PCIE_OFF(Bus, Device, Function, Register) \
((UINT64) ((UINTN) (Bus << 20) + (UINTN) (Device << 15) + (UINTN) (Function << 12) + (UINTN) (Register)))
//
// Pci Root Bridge Io Module Variables
//
EFI_METRONOME_ARCH_PROTOCOL *mMetronome;
EFI_CPU_IO2_PROTOCOL *mCpuIo;
EFI_STATUS
SimpleIioRootBridgeConstructor (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *Protocol,
IN EFI_HANDLE HostBridgeHandle,
IN PCI_ROOT_BRIDGE_RESOURCE_APERTURE *ResAperture,
UINT64 AllocAttributes
)
/*++
Routine Description:
Construct the Pci Root Bridge Io protocol.
Arguments:
Protocol - Protocol to initialize.
HostBridgeHandle - Handle to the HostBridge.
ResAperture - Resource apperture of the root bridge.
AllocAttributes - Attribute of resouce allocated.
Returns:
EFI_SUCCESS - Success.
Others - Fail.
--*/
{
EFI_STATUS Status;
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
PCI_RESOURCE_TYPE Index;
UINT32 HecBase;
UINT32 HecSize;
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (Protocol);
//
// Initialize the apertures with default values
//
CopyMem (
&PrivateData->Aperture,
ResAperture,
sizeof (PCI_ROOT_BRIDGE_RESOURCE_APERTURE)
);
for (Index = TypeIo; Index < TypeMax; Index++) {
PrivateData->ResAllocNode[Index].Type = Index;
PrivateData->ResAllocNode[Index].Base = 0;
PrivateData->ResAllocNode[Index].Length = 0;
PrivateData->ResAllocNode[Index].Status = ResNone;
}
EfiInitializeLock (&PrivateData->PciLock, TPL_HIGH_LEVEL);
PrivateData->PciAddress = 0xCF8;
PrivateData->PciData = 0xCFC;
PrivateData->RootBridgeAllocAttrib = AllocAttributes;
PrivateData->Attributes = 0;
PrivateData->Supports = EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO |
EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO |
EFI_PCI_ATTRIBUTE_ISA_IO_16 |
EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 |
EFI_PCI_ATTRIBUTE_VGA_MEMORY |
EFI_PCI_ATTRIBUTE_VGA_IO_16;
//
// Don't support BASE above 4GB currently
// Position to bit 39:28
//
HecBase = (UINT32) PcdGet64 (PcdPciExpressBaseAddress);
HecSize = (UINT32) PcdGet64 (PcdPciExpressSize);
ASSERT ((HecBase & (HecSize - 1)) == 0);
ASSERT (HecBase != 0);
PrivateData->HecBase = HecBase;
PrivateData->HecLen = HecSize;
PrivateData->BusNumberAssigned = FALSE;
PrivateData->BusScanCount = 0;
Protocol->ParentHandle = HostBridgeHandle;
Protocol->PollMem = RootBridgeIoPollMem;
Protocol->PollIo = RootBridgeIoPollIo;
Protocol->Mem.Read = RootBridgeIoMemRead;
Protocol->Mem.Write = RootBridgeIoMemWrite;
Protocol->Io.Read = RootBridgeIoIoRead;
Protocol->Io.Write = RootBridgeIoIoWrite;
Protocol->CopyMem = RootBridgeIoCopyMem;
Protocol->Pci.Read = RootBridgeIoPciRead;
Protocol->Pci.Write = RootBridgeIoPciWrite;
Protocol->Map = RootBridgeIoMap;
Protocol->Unmap = RootBridgeIoUnmap;
Protocol->AllocateBuffer = RootBridgeIoAllocateBuffer;
Protocol->FreeBuffer = RootBridgeIoFreeBuffer;
Protocol->Flush = RootBridgeIoFlush;
Protocol->GetAttributes = RootBridgeIoGetAttributes;
Protocol->SetAttributes = RootBridgeIoSetAttributes;
Protocol->Configuration = RootBridgeIoConfiguration;
Protocol->SegmentNumber = 0;
Status = gBS->LocateProtocol (&gEfiMetronomeArchProtocolGuid, NULL, (VOID **) &mMetronome);
ASSERT_EFI_ERROR (Status);
Status = gBS->LocateProtocol (
&gEfiCpuIo2ProtocolGuid,
NULL,
(VOID **) &mCpuIo
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoPollMem (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
)
/*++
Routine Description:
Poll an address in memory mapped space until an exit condition is met
or a timeout occurs.
Arguments:
This - Pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance.
Width - Width of the memory operation.
Address - The base address of the memory operation.
Mask - Mask used for polling criteria.
Value - Comparison value used for polling exit criteria.
Delay - Number of 100ns units to poll.
Result - Pointer to the last value read from memory location.
Returns:
EFI_SUCCESS - Success.
EFI_INVALID_PARAMETER - Invalid parameter found.
EFI_TIMEOUT - Delay expired before a match occurred.
EFI_OUT_OF_RESOURCES - Fail due to lack of resources.
--*/
{
EFI_STATUS Status;
UINT64 NumberOfTicks;
UINT32 Remainder;
if (Result == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 || Width > EfiPciWidthUint64) {
return EFI_INVALID_PARAMETER;
}
//
// No matter what, always do a single poll.
//
Status = This->Mem.Read (
This,
Width,
Address,
1,
Result
);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
if (Delay != 0) {
//
// Determine the proper # of metronome ticks to wait for polling the
// location. The nuber of ticks is Roundup (Delay / mMetronome->TickPeriod)+1
// The "+1" to account for the possibility of the first tick being short
// because we started in the middle of a tick.
//
// BugBug: overriding mMetronome->TickPeriod with UINT32 until Metronome
// protocol definition is updated.
//
NumberOfTicks = DivU64x32Remainder (
Delay,
(UINT32) mMetronome->TickPeriod,
&Remainder
);
if (Remainder != 0) {
NumberOfTicks += 1;
}
NumberOfTicks += 1;
while (NumberOfTicks) {
mMetronome->WaitForTick (mMetronome, 1);
Status = This->Mem.Read (
This,
Width,
Address,
1,
Result
);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
NumberOfTicks -= 1;
}
}
return EFI_TIMEOUT;
}
EFI_STATUS
EFIAPI
RootBridgeIoPollIo (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
)
/*++
Routine Description:
Poll an address in I/O space until an exit condition is met
or a timeout occurs.
Arguments:
This - Pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance.
Width - Width of I/O operation.
Address - The base address of the I/O operation.
Mask - Mask used for polling criteria.
Value - Comparison value used for polling exit criteria.
Delay - Number of 100ns units to poll.
Result - Pointer to the last value read from memory location.
Returns:
EFI_SUCCESS - Success.
EFI_INVALID_PARAMETER - Invalid parameter found.
EFI_TIMEOUT - Delay expired before a match occurred.
EFI_OUT_OF_RESOURCES - Fail due to lack of resources.
--*/
{
EFI_STATUS Status;
UINT64 NumberOfTicks;
UINT32 Remainder;
//
// No matter what, always do a single poll.
//
if (Result == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 || Width > EfiPciWidthUint64) {
return EFI_INVALID_PARAMETER;
}
Status = This->Io.Read (
This,
Width,
Address,
1,
Result
);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
if (Delay != 0) {
//
// Determine the proper # of metronome ticks to wait for polling the
// location. The number of ticks is Roundup (Delay / mMetronome->TickPeriod)+1
// The "+1" to account for the possibility of the first tick being short
// because we started in the middle of a tick.
//
NumberOfTicks = DivU64x32Remainder (
Delay,
(UINT32) mMetronome->TickPeriod,
&Remainder
);
if (Remainder != 0) {
NumberOfTicks += 1;
}
NumberOfTicks += 1;
while (NumberOfTicks) {
mMetronome->WaitForTick (mMetronome, 1);
Status = This->Io.Read (
This,
Width,
Address,
1,
Result
);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
NumberOfTicks -= 1;
}
}
return EFI_TIMEOUT;
}
EFI_STATUS
EFIAPI
RootBridgeIoMemRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Allow read from memory mapped I/O space.
Arguments:
This - Pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance.
Width - The width of memory operation.
Address - Base address of the memory operation.
Count - Number of memory opeartion to perform.
Buffer - The destination buffer to store data.
Returns:
EFI_SUCCESS - Success.
EFI_INVALID_PARAMETER - Invalid parameter found.
EFI_OUT_OF_RESOURCES - Fail due to lack of resources.
--*/
{
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 ||
Width == EfiPciWidthUint64 ||
Width == EfiPciWidthFifoUint64 ||
Width == EfiPciWidthFillUint64 ||
Width >= EfiPciWidthMaximum
) {
return EFI_INVALID_PARAMETER;
}
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (This);
//
// Check memory access limit
//
if (PrivateData->Aperture.Mem64Limit > PrivateData->Aperture.Mem64Base) {
if (Address > PrivateData->Aperture.Mem64Limit) {
return EFI_INVALID_PARAMETER;
}
} else {
if (Address > PrivateData->Aperture.Mem32Limit) {
return EFI_INVALID_PARAMETER;
}
}
return mCpuIo->Mem.Read (
mCpuIo,
(EFI_CPU_IO_PROTOCOL_WIDTH) Width,
Address,
Count,
Buffer
);
}
EFI_STATUS
EFIAPI
RootBridgeIoMemWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Allow write to memory mapped I/O space.
Arguments:
This - Pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance.
Width - The width of memory operation.
Address - Base address of the memory operation.
Count - Number of memory opeartion to perform.
Buffer - The source buffer to write data from.
Returns:
EFI_SUCCESS - Success.
EFI_INVALID_PARAMETER - Invalid parameter found.
EFI_OUT_OF_RESOURCES - Fail due to lack of resources.
--*/
{
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 ||
Width == EfiPciWidthUint64 ||
Width == EfiPciWidthFifoUint64 ||
Width == EfiPciWidthFillUint64 ||
Width >= EfiPciWidthMaximum
) {
return EFI_INVALID_PARAMETER;
}
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (This);
//
// Check memory access limit
//
if (PrivateData->Aperture.Mem64Limit > PrivateData->Aperture.Mem64Base) {
if (Address > PrivateData->Aperture.Mem64Limit) {
return EFI_INVALID_PARAMETER;
}
} else {
if (Address > PrivateData->Aperture.Mem32Limit) {
return EFI_INVALID_PARAMETER;
}
}
return mCpuIo->Mem.Write (
mCpuIo,
(EFI_CPU_IO_PROTOCOL_WIDTH) Width,
Address,
Count,
Buffer
);
}
EFI_STATUS
EFIAPI
RootBridgeIoIoRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Enable a PCI driver to read PCI controller registers in the
PCI root bridge I/O space.
Arguments:
This - A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
Width - Signifies the width of the memory operation.
Address - The base address of the I/O operation.
Count - The number of I/O operations to perform.
Buffer - The destination buffer to store the results.
Returns:
EFI_SUCCESS - The data was read from the PCI root bridge.
EFI_INVALID_PARAMETER - Invalid parameters found.
EFI_OUT_OF_RESOURCES - The request could not be completed due to a lack of
resources.
--*/
{
UINTN AlignMask;
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 ||
Width == EfiPciWidthUint64 ||
Width == EfiPciWidthFifoUint64 ||
Width == EfiPciWidthFillUint64 ||
Width >= EfiPciWidthMaximum
) {
return EFI_INVALID_PARAMETER;
}
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (This);
//
// AlignMask = (1 << Width) - 1;
//
AlignMask = (1 << (Width & 0x03)) - 1;
//
// check Io access limit
//
if (Address > PrivateData->Aperture.IoLimit) {
return EFI_INVALID_PARAMETER;
}
if (Address & AlignMask) {
return EFI_INVALID_PARAMETER;
}
return mCpuIo->Io.Read (
mCpuIo,
(EFI_CPU_IO_PROTOCOL_WIDTH) Width,
Address,
Count,
Buffer
);
}
EFI_STATUS
EFIAPI
RootBridgeIoIoWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Enable a PCI driver to write to PCI controller registers in the
PCI root bridge I/O space.
Arguments:
This - A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
Width - Signifies the width of the memory operation.
Address - The base address of the I/O operation.
Count - The number of I/O operations to perform.
Buffer - The source buffer to write data from.
Returns:
EFI_SUCCESS - The data was written to the PCI root bridge.
EFI_INVALID_PARAMETER - Invalid parameters found.
EFI_OUT_OF_RESOURCES - The request could not be completed due to a lack of
resources.
--*/
{
UINTN AlignMask;
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 ||
Width == EfiPciWidthUint64 ||
Width == EfiPciWidthFifoUint64 ||
Width == EfiPciWidthFillUint64 ||
Width >= EfiPciWidthMaximum
) {
return EFI_INVALID_PARAMETER;
}
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (This);
//
// AlignMask = (1 << Width) - 1;
//
AlignMask = (1 << (Width & 0x03)) - 1;
//
// Check Io access limit
//
if (Address > PrivateData->Aperture.IoLimit) {
return EFI_INVALID_PARAMETER;
}
if (Address & AlignMask) {
return EFI_INVALID_PARAMETER;
}
return mCpuIo->Io.Write (
mCpuIo,
(EFI_CPU_IO_PROTOCOL_WIDTH) Width,
Address,
Count,
Buffer
);
}
EFI_STATUS
EFIAPI
RootBridgeIoCopyMem (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 DestAddress,
IN UINT64 SrcAddress,
IN UINTN Count
)
/*++
Routine Description:
Copy one region of PCI root bridge memory space to be copied to
another region of PCI root bridge memory space.
Arguments:
This - A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance.
Width - Signifies the width of the memory operation.
DestAddress - Destination address of the memory operation.
SrcAddress - Source address of the memory operation.
Count - Number of memory operations to perform.
Returns:
EFI_SUCCESS - The data was copied successfully.
EFI_INVALID_PARAMETER - Invalid parameters found.
EFI_OUT_OF_RESOURCES - The request could not be completed due to a lack of
resources.
--*/
{
EFI_STATUS Status;
BOOLEAN Direction;
UINTN Stride;
UINTN Index;
UINT64 Result;
if (Width < 0 || Width > EfiPciWidthUint64) {
return EFI_INVALID_PARAMETER;
}
if (DestAddress == SrcAddress) {
return EFI_SUCCESS;
}
Stride = (UINTN)1 << Width;
Direction = TRUE;
if ((DestAddress > SrcAddress) && (DestAddress < (SrcAddress + Count * Stride))) {
Direction = FALSE;
SrcAddress = SrcAddress + (Count - 1) * Stride;
DestAddress = DestAddress + (Count - 1) * Stride;
}
for (Index = 0; Index < Count; Index++) {
Status = RootBridgeIoMemRead (
This,
Width,
SrcAddress,
1,
&Result
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = RootBridgeIoMemWrite (
This,
Width,
DestAddress,
1,
&Result
);
if (EFI_ERROR (Status)) {
return Status;
}
if (Direction) {
SrcAddress += Stride;
DestAddress += Stride;
} else {
SrcAddress -= Stride;
DestAddress -= Stride;
}
}
return EFI_SUCCESS;
}
EFI_STATUS
RootBridgeIoPciRW (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN BOOLEAN Write,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 UserAddress,
IN UINTN Count,
IN OUT VOID *UserBuffer
)
/*++
Routine Description:
Arguments:
Returns:
--*/
{
PCI_CONFIG_ACCESS_CF8 Pci;
PCI_CONFIG_ACCESS_CF8 PciAligned;
UINT32 Stride;
UINTN PciData;
UINTN PciDataStride;
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
if (Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS(This);
ASSERT (((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS*)&UserAddress)->ExtendedRegister == 0x00);
Stride = 1 << Width;
Pci.Bits.Reg = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS*) &UserAddress)->Register;
Pci.Bits.Func = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS*) &UserAddress)->Function;
Pci.Bits.Dev = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS*) &UserAddress)->Device;
Pci.Bits.Bus = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS*) &UserAddress)->Bus;
Pci.Bits.Reserved = 0;
Pci.Bits.Enable = 1;
//
// PCI Configure access are all 32-bit aligned, but by accessing the
// CONFIG_DATA_REGISTER (0xcfc) with different widths more cycle types
// are possible on PCI.
//
// To read a byte of PCI configuration space you load 0xcf8 and
// read 0xcfc, 0xcfd, 0xcfe, 0xcff
//
PciDataStride = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS*) &UserAddress)->Register & 0x03;
while (Count) {
PciAligned = Pci;
PciAligned.Bits.Reg &= 0xfc;
PciData = PrivateData->PciData + PciDataStride;
EfiAcquireLock(&PrivateData->PciLock);
This->Io.Write (This, EfiPciWidthUint32, \
PrivateData->PciAddress, 1, &PciAligned);
if (Write) {
This->Io.Write (This, Width, PciData, 1, UserBuffer);
} else {
This->Io.Read (This, Width, PciData, 1, UserBuffer);
}
EfiReleaseLock(&PrivateData->PciLock);
UserBuffer = ((UINT8 *)UserBuffer) + Stride;
PciDataStride = (PciDataStride + Stride) % 4;
Count -= 1;
//
// Only increment the PCI address if Width is not a FIFO.
//
if (Width >= EfiPciWidthUint8 && Width <= EfiPciWidthUint64) {
Pci.Bits.Reg += Stride;
}
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoPciRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Allows read from PCI configuration space.
Arguments:
This - A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
Width - Signifies the width of the memory operation.
Address - The address within the PCI configuration space
for the PCI controller.
Count - The number of PCI configuration operations
to perform.
Buffer - The destination buffer to store the results.
Returns:
EFI_SUCCESS - The data was read from the PCI root bridge.
EFI_INVALID_PARAMETER - Invalid parameters found.
EFI_OUT_OF_RESOURCES - The request could not be completed due to a lack of
resources.
--*/
{
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
UINT32 PciBus;
UINT32 PciDev;
UINT32 PciFn;
UINT32 PciExtReg;
UINT64 ExtConfigAdd;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 ||
Width == EfiPciWidthUint64 ||
Width == EfiPciWidthFifoUint64 ||
Width == EfiPciWidthFillUint64 ||
Width >= EfiPciWidthMaximum
) {
return EFI_INVALID_PARAMETER;
}
//
// Read Pci configuration space
//
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (This);
if (PrivateData->HecBase == 0) {
return RootBridgeIoPciRW (This, FALSE, Width, Address, Count, Buffer);
}
if (!((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->ExtendedRegister) {
PciExtReg = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->Register;
} else {
PciExtReg = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->ExtendedRegister & 0x0FFF;
}
PciBus = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->Bus;
PciDev = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->Device;
PciFn = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->Function;
ExtConfigAdd = (UINT64) PrivateData->HecBase + PCIE_OFF (PciBus, PciDev, PciFn, PciExtReg);
return mCpuIo->Mem.Read (
mCpuIo,
(EFI_CPU_IO_PROTOCOL_WIDTH) Width,
ExtConfigAdd,
Count,
Buffer
);
}
EFI_STATUS
EFIAPI
RootBridgeIoPciWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Allows write to PCI configuration space.
Arguments:
This - A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
Width - Signifies the width of the memory operation.
Address - The address within the PCI configuration space
for the PCI controller.
Count - The number of PCI configuration operations
to perform.
Buffer - The source buffer to get the results.
Returns:
EFI_SUCCESS - The data was written to the PCI root bridge.
EFI_INVALID_PARAMETER - Invalid parameters found.
EFI_OUT_OF_RESOURCES - The request could not be completed due to a lack of
resources.
--*/
{
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
UINT32 PciBus;
UINT32 PciDev;
UINT32 PciFn;
UINT32 PciExtReg;
UINT64 ExtConfigAdd;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 || Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
//
// Write Pci configuration space
//
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (This);
if (PrivateData->HecBase == 0) {
return RootBridgeIoPciRW (This, TRUE, Width, Address, Count, Buffer);
}
if (!((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->ExtendedRegister) {
PciExtReg = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->Register;
} else {
PciExtReg = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->ExtendedRegister & 0x0FFF;
}
PciBus = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->Bus;
PciDev = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->Device;
PciFn = ((EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *) &Address)->Function;
ExtConfigAdd = (UINT64) PrivateData->HecBase + PCIE_OFF (PciBus, PciDev, PciFn, PciExtReg);
return mCpuIo->Mem.Write (
mCpuIo,
(EFI_CPU_IO_PROTOCOL_WIDTH) Width,
ExtConfigAdd,
Count,
Buffer
);
}
EFI_STATUS
EFIAPI
RootBridgeIoMap (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
/*++
Routine Description:
Provides the PCI controller-specific address needed to access
system memory for DMA.
Arguments:
This - A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Operation - Indicate if the bus master is going to read or write
to system memory.
HostAddress - The system memory address to map on the PCI controller.
NumberOfBytes - On input the number of bytes to map.
On output the number of bytes that were mapped.
DeviceAddress - The resulting map address for the bus master PCI
controller to use to access the system memory's HostAddress.
Mapping - The value to pass to Unmap() when the bus master DMA
operation is complete.
Returns:
EFI_SUCCESS - Success.
EFI_INVALID_PARAMETER - Invalid parameters found.
EFI_UNSUPPORTED - The HostAddress cannot be mapped as a common
buffer.
EFI_DEVICE_ERROR - The System hardware could not map the requested
address.
EFI_OUT_OF_RESOURCES - The request could not be completed due to
lack of resources.
--*/
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
MAP_INFO *MapInfo;
if (NumberOfBytes == NULL || Mapping == NULL || DeviceAddress == NULL || HostAddress == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Initialize the return values to their defaults
//
*Mapping = NULL;
//
// Make sure that Operation is valid
//
if ((Operation < 0) || (Operation > EfiPciOperationBusMasterCommonBuffer64)) {
return EFI_INVALID_PARAMETER;
}
//
// Most PCAT like chipsets can not handle performing DMA above 4GB.
// If any part of the DMA transfer being mapped is above 4GB, then
// map the DMA transfer to a buffer below 4GB.
//
PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress;
if ((PhysicalAddress +*NumberOfBytes) > 0x100000000ULL) {
//
// Common Buffer operations can not be remapped. If the common buffer
// if above 4GB, then it is not possible to generate a mapping, so return
// an error.
//
if (Operation == EfiPciOperationBusMasterCommonBuffer || Operation == EfiPciOperationBusMasterCommonBuffer64) {
return EFI_INVALID_PARAMETER;
}
}
if ((PhysicalAddress + *NumberOfBytes) > (DMA_MEMORY_TOP+1)) {
//
// Common Buffer operations can not be remapped.
//
if (Operation == EfiPciOperationBusMasterCommonBuffer || Operation == EfiPciOperationBusMasterCommonBuffer64) {
*DeviceAddress = PhysicalAddress;
return EFI_SUCCESS;
}
//
// Allocate a MAP_INFO structure to remember the mapping when Unmap() is
// called later.
//
Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (MAP_INFO),
(VOID **) &MapInfo
);
if (EFI_ERROR (Status)) {
*NumberOfBytes = 0;
return Status;
}
//
// Return a pointer to the MAP_INFO structure in Mapping
//
*Mapping = MapInfo;
//
// Initialize the MAP_INFO structure
//
MapInfo->Operation = Operation;
MapInfo->NumberOfBytes = *NumberOfBytes;
MapInfo->NumberOfPages = EFI_SIZE_TO_PAGES (*NumberOfBytes);
MapInfo->HostAddress = PhysicalAddress;
MapInfo->MappedHostAddress = DMA_MEMORY_TOP;
//
// Allocate a buffer below DMA_MEMORY_TOP to map the transfer to.
//
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiBootServicesData,
MapInfo->NumberOfPages,
&MapInfo->MappedHostAddress
);
if (EFI_ERROR (Status)) {
gBS->FreePool (MapInfo);
*NumberOfBytes = 0;
return Status;
}
//
// If this is a read operation from the Bus Master's point of view,
// then copy the contents of the real buffer into the mapped buffer
// so the Bus Master can read the contents of the real buffer.
//
if (Operation == EfiPciOperationBusMasterRead || Operation == EfiPciOperationBusMasterRead64) {
CopyMem (
(VOID *) (UINTN) MapInfo->MappedHostAddress,
(VOID *) (UINTN) MapInfo->HostAddress,
MapInfo->NumberOfBytes
);
}
//
// The DeviceAddress is the address of the maped buffer below DMA_MEMORY_TOP
//
*DeviceAddress = MapInfo->MappedHostAddress;
} else {
//
// The transfer is below DMA_MEMORY_TOP, so the DeviceAddress is simply the HostAddress
//
*DeviceAddress = PhysicalAddress;
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoUnmap (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN VOID *Mapping
)
/*++
Routine Description:
Completes the Map() operation and releases any corresponding resources.
Arguments:
This - Pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance.
Mapping - The value returned from Map() operation.
Returns:
EFI_SUCCESS - The range was unmapped successfully.
EFI_INVALID_PARAMETER - Mapping is not a value that was returned
by Map operation.
EFI_DEVICE_ERROR - The data was not committed to the target
system memory.
--*/
{
MAP_INFO *MapInfo;
//
// See if the Map() operation associated with this Unmap() required a mapping buffer.
// If a mapping buffer was not required, then this function simply returns EFI_SUCCESS.
//
if (Mapping != NULL) {
//
// Get the MAP_INFO structure from Mapping
//
MapInfo = (MAP_INFO *) Mapping;
//
// If this is a write operation from the Bus Master's point of view,
// then copy the contents of the mapped buffer into the real buffer
// so the processor can read the contents of the real buffer.
//
if ((MapInfo->Operation == EfiPciOperationBusMasterWrite) ||
(MapInfo->Operation == EfiPciOperationBusMasterWrite64)
) {
CopyMem (
(VOID *) (UINTN) MapInfo->HostAddress,
(VOID *) (UINTN) MapInfo->MappedHostAddress,
MapInfo->NumberOfBytes
);
}
//
// Free the mapped buffer and the MAP_INFO structure.
//
gBS->FreePages (MapInfo->MappedHostAddress, MapInfo->NumberOfPages);
gBS->FreePool (Mapping);
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoAllocateBuffer (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress,
IN UINT64 Attributes
)
/*++
Routine Description:
Allocates pages that are suitable for a common buffer mapping.
Arguments:
This - Pointer to EFI_ROOT_BRIDGE_IO_PROTOCOL instance.
Type - Not used and can be ignored.
MemoryType - Type of memory to allocate.
Pages - Number of pages to allocate.
HostAddress - Pointer to store the base system memory address
of the allocated range.
Attributes - Requested bit mask of attributes of the allocated
range.
Returns:
EFI_SUCCESS - The requested memory range were allocated.
EFI_INVALID_PARAMETER - Invalid parameter found.
EFI_UNSUPPORTED - Attributes is unsupported.
--*/
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
//
// Validate Attributes
//
if ((Attributes & EFI_PCI_ATTRIBUTE_INVALID_FOR_ALLOCATE_BUFFER) != 0) {
return EFI_UNSUPPORTED;
}
//
// Check for invalid inputs
//
if (HostAddress == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// The only valid memory types are EfiBootServicesData and EfiRuntimeServicesData
//
if ((MemoryType != EfiBootServicesData) && (MemoryType != EfiRuntimeServicesData)) {
return EFI_INVALID_PARAMETER;
}
//
// Limit allocations to memory below DMA_MEMORY_TOP
//
PhysicalAddress = DMA_MEMORY_TOP;
Status = gBS->AllocatePages (
AllocateMaxAddress,
MemoryType,
Pages,
&PhysicalAddress
);
if (EFI_ERROR (Status)) {
return Status;
}
*HostAddress = (VOID *) (UINTN) PhysicalAddress;
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoFreeBuffer (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN UINTN Pages,
OUT VOID *HostAddress
)
/*++
Routine Description:
Free memory allocated in AllocateBuffer.
Arguments:
This - Pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
instance.
Pages - Number of pages to free.
HostAddress - The base system memory address of the
allocated range.
Returns:
EFI_SUCCESS - Requested memory pages were freed.
EFI_INVALID_PARAMETER - Invalid parameter found.
--*/
{
return gBS->FreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress, Pages);
}
EFI_STATUS
EFIAPI
RootBridgeIoFlush (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This
)
/*++
Routine Description:
Flushes all PCI posted write transactions from a PCI host
bridge to system memory.
Arguments:
This - Pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance.
Returns:
EFI_SUCCESS - PCI posted write transactions were flushed
from PCI host bridge to system memory.
EFI_DEVICE_ERROR - Fail due to hardware error.
--*/
{
//
// not supported yet
//
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoGetAttributes (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
OUT UINT64 *Supported,
OUT UINT64 *Attributes
)
/*++
Routine Description:
Get the attributes that a PCI root bridge supports and
the attributes the PCI root bridge is currently using.
Arguments:
This - Pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
instance.
Supports - A pointer to the mask of attributes that
this PCI root bridge supports.
Attributes - A pointer to the mask of attributes that
this PCI root bridge is currently using.
Returns:
EFI_SUCCESS - Success.
EFI_INVALID_PARAMETER - Invalid parameter found.
--*/
// GC_TODO: Supported - add argument and description to function comment
//
// GC_TODO: Supported - add argument and description to function comment
//
// GC_TODO: Supported - add argument and description to function comment
//
{
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (This);
if (Attributes == NULL && Supported == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Set the return value for Supported and Attributes
//
if (Supported) {
*Supported = PrivateData->Supports;
}
if (Attributes) {
*Attributes = PrivateData->Attributes;
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoSetAttributes (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN UINT64 Attributes,
IN OUT UINT64 *ResourceBase,
IN OUT UINT64 *ResourceLength
)
/*++
Routine Description:
Sets the attributes for a resource range on a PCI root bridge.
Arguments:
This - Pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance.
Attributes - The mask of attributes to set.
ResourceBase - Pointer to the base address of the resource range
to be modified by the attributes specified by Attributes.
ResourceLength - Pointer to the length of the resource range to be modified.
Returns:
EFI_SUCCESS - Success.
EFI_INVALID_PARAMETER - Invalid parameter found.
EFI_OUT_OF_RESOURCES - Not enough resources to set the attributes upon.
--*/
//
// GC_TODO: EFI_UNSUPPORTED - add return value to function comment
//
{
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (This);
if (Attributes != 0) {
Attributes &= (PrivateData->Supports);
if (Attributes == 0) {
return EFI_UNSUPPORTED;
}
}
if (Attributes == PrivateData->Attributes) {
return EFI_SUCCESS;
}
//
// It is just a trick for some attribute can only be enabled or disabled
// otherwise it can impact on other devices
//
PrivateData->Attributes = Attributes;
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoConfiguration (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
OUT VOID **Resources
)
/*++
Routine Description:
Retrieves the current resource settings of this PCI root bridge
in the form of a set of ACPI 2.0 resource descriptor.
Arguments:
This - Pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance.
Resources - Pointer to the ACPI 2.0 resource descriptor that
describe the current configuration of this PCI root
bridge.
Returns:
EFI_SUCCESS - Success.
EFI_UNSUPPORTED - Current configuration of the PCI root bridge
could not be retrieved.
--*/
//
// GC_TODO: EFI_OUT_OF_RESOURCES - add return value to function comment
//
{
EFI_STATUS Status;
UINTN Idx;
PCI_ROOT_BRIDGE_INSTANCE *RbPrivateData;
PCI_RES_NODE *ResAllocNode;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Config;
//
// Get this instance of the Root Bridge.
//
RbPrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (This);
//
// If the pointer is not NULL, it points to a buffer already allocated.
//
if (RbPrivateData->ConfigBuffer == NULL) {
Status = gBS->AllocatePool (
EfiBootServicesData,
TypeMax * sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR),
&RbPrivateData->ConfigBuffer
);
if (EFI_ERROR (Status)) {
return EFI_OUT_OF_RESOURCES;
}
}
Config = RbPrivateData->ConfigBuffer;
ZeroMem (Config, TypeMax * sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR));
for (Idx = 0; Idx < TypeMax; Idx++) {
ResAllocNode = &RbPrivateData->ResAllocNode[Idx];
if (ResAllocNode->Status != ResAllocated) {
continue;
}
switch (ResAllocNode->Type) {
case TypeIo:
Config->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Config->Len = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;
Config->ResType = ACPI_ADDRESS_SPACE_TYPE_IO;
Config->AddrRangeMin = ResAllocNode->Base;
Config->AddrRangeMax = ResAllocNode->Base + ResAllocNode->Length - 1;
Config->AddrLen = ResAllocNode->Length;
break;
case TypeMem32:
Config->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Config->Len = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;
Config->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
Config->AddrSpaceGranularity = 32;
Config->AddrRangeMin = ResAllocNode->Base;
Config->AddrRangeMax = ResAllocNode->Base + ResAllocNode->Length - 1;
Config->AddrLen = ResAllocNode->Length;
break;
case TypePMem32:
Config->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Config->Len = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;
Config->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
Config->SpecificFlag = 6;
Config->AddrSpaceGranularity = 32;
Config->AddrRangeMin = ResAllocNode->Base;
Config->AddrRangeMax = ResAllocNode->Base + ResAllocNode->Length - 1;
Config->AddrLen = ResAllocNode->Length;
break;
case TypeMem64:
Config->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Config->Len = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;
Config->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
Config->SpecificFlag = 6;
Config->AddrSpaceGranularity = 64;
Config->AddrRangeMin = ResAllocNode->Base;
Config->AddrRangeMax = ResAllocNode->Base + ResAllocNode->Length - 1;
Config->AddrLen = ResAllocNode->Length;
break;
case TypePMem64:
Config->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Config->Len = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;
Config->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
Config->SpecificFlag = 6;
Config->AddrSpaceGranularity = 64;
Config->AddrRangeMin = ResAllocNode->Base;
Config->AddrRangeMax = ResAllocNode->Base + ResAllocNode->Length - 1;
Config->AddrLen = ResAllocNode->Length;
break;
case TypeBus:
Config->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Config->Len = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;
Config->ResType = ACPI_ADDRESS_SPACE_TYPE_BUS;
Config->AddrRangeMin = ResAllocNode->Base;
Config->AddrRangeMax = ResAllocNode->Base + ResAllocNode->Length - 1;
Config->AddrLen = ResAllocNode->Length;
break;
default:
break;
}
Config++;
}
//
// Terminate the entries.
//
((EFI_ACPI_END_TAG_DESCRIPTOR *) Config)->Desc = ACPI_END_TAG_DESCRIPTOR;
((EFI_ACPI_END_TAG_DESCRIPTOR *) Config)->Checksum = 0x0;
*Resources = RbPrivateData->ConfigBuffer;
return EFI_SUCCESS;
}