audk/MdeModulePkg/Bus/Pci/EhciDxe/EhciSched.c

1126 lines
31 KiB
C

/** @file
EHCI transfer scheduling routines.
Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "Ehci.h"
/**
Create helper QTD/QH for the EHCI device.
@param Ehc The EHCI device.
@retval EFI_OUT_OF_RESOURCES Failed to allocate resource for helper QTD/QH.
@retval EFI_SUCCESS Helper QH/QTD are created.
**/
EFI_STATUS
EhcCreateHelpQ (
IN USB2_HC_DEV *Ehc
)
{
USB_ENDPOINT Ep;
EHC_QH *Qh;
QH_HW *QhHw;
EHC_QTD *Qtd;
EFI_PHYSICAL_ADDRESS PciAddr;
//
// Create an inactive Qtd to terminate the short packet read.
//
Qtd = EhcCreateQtd (Ehc, NULL, NULL, 0, QTD_PID_INPUT, 0, 64);
if (Qtd == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Qtd->QtdHw.Status = QTD_STAT_HALTED;
Ehc->ShortReadStop = Qtd;
//
// Create a QH to act as the EHC reclamation header.
// Set the header to loopback to itself.
//
Ep.DevAddr = 0;
Ep.EpAddr = 1;
Ep.Direction = EfiUsbDataIn;
Ep.DevSpeed = EFI_USB_SPEED_HIGH;
Ep.MaxPacket = 64;
Ep.HubAddr = 0;
Ep.HubPort = 0;
Ep.Toggle = 0;
Ep.Type = EHC_BULK_TRANSFER;
Ep.PollRate = 1;
Qh = EhcCreateQh (Ehc, &Ep);
if (Qh == NULL) {
return EFI_OUT_OF_RESOURCES;
}
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Qh, sizeof (EHC_QH));
QhHw = &Qh->QhHw;
QhHw->HorizonLink = QH_LINK (PciAddr + OFFSET_OF(EHC_QH, QhHw), EHC_TYPE_QH, FALSE);
QhHw->Status = QTD_STAT_HALTED;
QhHw->ReclaimHead = 1;
Qh->NextQh = Qh;
Ehc->ReclaimHead = Qh;
//
// Create a dummy QH to act as the terminator for periodical schedule
//
Ep.EpAddr = 2;
Ep.Type = EHC_INT_TRANSFER_SYNC;
Qh = EhcCreateQh (Ehc, &Ep);
if (Qh == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Qh->QhHw.Status = QTD_STAT_HALTED;
Ehc->PeriodOne = Qh;
return EFI_SUCCESS;
}
/**
Initialize the schedule data structure such as frame list.
@param Ehc The EHCI device to init schedule data.
@retval EFI_OUT_OF_RESOURCES Failed to allocate resource to init schedule data.
@retval EFI_SUCCESS The schedule data is initialized.
**/
EFI_STATUS
EhcInitSched (
IN USB2_HC_DEV *Ehc
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
VOID *Buf;
EFI_PHYSICAL_ADDRESS PhyAddr;
VOID *Map;
UINTN Pages;
UINTN Bytes;
UINTN Index;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PciAddr;
//
// First initialize the periodical schedule data:
// 1. Allocate and map the memory for the frame list
// 2. Create the help QTD/QH
// 3. Initialize the frame entries
// 4. Set the frame list register
//
PciIo = Ehc->PciIo;
Bytes = 4096;
Pages = EFI_SIZE_TO_PAGES (Bytes);
Status = PciIo->AllocateBuffer (
PciIo,
AllocateAnyPages,
EfiBootServicesData,
Pages,
&Buf,
0
);
if (EFI_ERROR (Status)) {
return EFI_OUT_OF_RESOURCES;
}
Status = PciIo->Map (
PciIo,
EfiPciIoOperationBusMasterCommonBuffer,
Buf,
&Bytes,
&PhyAddr,
&Map
);
if (EFI_ERROR (Status) || (Bytes != 4096)) {
PciIo->FreeBuffer (PciIo, Pages, Buf);
return EFI_OUT_OF_RESOURCES;
}
Ehc->PeriodFrame = Buf;
Ehc->PeriodFrameMap = Map;
//
// Program the FRAMELISTBASE register with the low 32 bit addr
//
EhcWriteOpReg (Ehc, EHC_FRAME_BASE_OFFSET, EHC_LOW_32BIT (PhyAddr));
//
// Program the CTRLDSSEGMENT register with the high 32 bit addr
//
EhcWriteOpReg (Ehc, EHC_CTRLDSSEG_OFFSET, EHC_HIGH_32BIT (PhyAddr));
//
// Init memory pool management then create the helper
// QTD/QH. If failed, previously allocated resources
// will be freed by EhcFreeSched
//
Ehc->MemPool = UsbHcInitMemPool (
PciIo,
Ehc->Support64BitDma,
EHC_HIGH_32BIT (PhyAddr)
);
if (Ehc->MemPool == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ErrorExit1;
}
Status = EhcCreateHelpQ (Ehc);
if (EFI_ERROR (Status)) {
goto ErrorExit;
}
//
// Initialize the frame list entries then set the registers
//
Ehc->PeriodFrameHost = AllocateZeroPool (EHC_FRAME_LEN * sizeof (UINTN));
if (Ehc->PeriodFrameHost == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ErrorExit;
}
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Ehc->PeriodOne, sizeof (EHC_QH));
for (Index = 0; Index < EHC_FRAME_LEN; Index++) {
//
// Store the pci bus address of the QH in period frame list which will be accessed by pci bus master.
//
((UINT32 *)(Ehc->PeriodFrame))[Index] = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
//
// Store the host address of the QH in period frame list which will be accessed by host.
//
((UINTN *)(Ehc->PeriodFrameHost))[Index] = (UINTN)Ehc->PeriodOne;
}
//
// Second initialize the asynchronous schedule:
// Only need to set the AsynListAddr register to
// the reclamation header
//
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Ehc->ReclaimHead, sizeof (EHC_QH));
EhcWriteOpReg (Ehc, EHC_ASYNC_HEAD_OFFSET, EHC_LOW_32BIT (PciAddr));
return EFI_SUCCESS;
ErrorExit:
if (Ehc->PeriodOne != NULL) {
UsbHcFreeMem (Ehc->MemPool, Ehc->PeriodOne, sizeof (EHC_QH));
Ehc->PeriodOne = NULL;
}
if (Ehc->ReclaimHead != NULL) {
UsbHcFreeMem (Ehc->MemPool, Ehc->ReclaimHead, sizeof (EHC_QH));
Ehc->ReclaimHead = NULL;
}
if (Ehc->ShortReadStop != NULL) {
UsbHcFreeMem (Ehc->MemPool, Ehc->ShortReadStop, sizeof (EHC_QTD));
Ehc->ShortReadStop = NULL;
}
ErrorExit1:
PciIo->FreeBuffer (PciIo, Pages, Buf);
PciIo->Unmap (PciIo, Map);
return Status;
}
/**
Free the schedule data. It may be partially initialized.
@param Ehc The EHCI device.
**/
VOID
EhcFreeSched (
IN USB2_HC_DEV *Ehc
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
EhcWriteOpReg (Ehc, EHC_FRAME_BASE_OFFSET, 0);
EhcWriteOpReg (Ehc, EHC_ASYNC_HEAD_OFFSET, 0);
if (Ehc->PeriodOne != NULL) {
UsbHcFreeMem (Ehc->MemPool, Ehc->PeriodOne, sizeof (EHC_QH));
Ehc->PeriodOne = NULL;
}
if (Ehc->ReclaimHead != NULL) {
UsbHcFreeMem (Ehc->MemPool, Ehc->ReclaimHead, sizeof (EHC_QH));
Ehc->ReclaimHead = NULL;
}
if (Ehc->ShortReadStop != NULL) {
UsbHcFreeMem (Ehc->MemPool, Ehc->ShortReadStop, sizeof (EHC_QTD));
Ehc->ShortReadStop = NULL;
}
if (Ehc->MemPool != NULL) {
UsbHcFreeMemPool (Ehc->MemPool);
Ehc->MemPool = NULL;
}
if (Ehc->PeriodFrame != NULL) {
PciIo = Ehc->PciIo;
ASSERT (PciIo != NULL);
PciIo->Unmap (PciIo, Ehc->PeriodFrameMap);
PciIo->FreeBuffer (
PciIo,
EFI_SIZE_TO_PAGES (EFI_PAGE_SIZE),
Ehc->PeriodFrame
);
Ehc->PeriodFrame = NULL;
}
if (Ehc->PeriodFrameHost != NULL) {
FreePool (Ehc->PeriodFrameHost);
Ehc->PeriodFrameHost = NULL;
}
}
/**
Link the queue head to the asynchronous schedule list.
UEFI only supports one CTRL/BULK transfer at a time
due to its interfaces. This simplifies the AsynList
management: A reclamation header is always linked to
the AsyncListAddr, the only active QH is appended to it.
@param Ehc The EHCI device.
@param Qh The queue head to link.
**/
VOID
EhcLinkQhToAsync (
IN USB2_HC_DEV *Ehc,
IN EHC_QH *Qh
)
{
EHC_QH *Head;
EFI_PHYSICAL_ADDRESS PciAddr;
//
// Append the queue head after the reclaim header, then
// fix the hardware visiable parts (EHCI R1.0 page 72).
// ReclaimHead is always linked to the EHCI's AsynListAddr.
//
Head = Ehc->ReclaimHead;
Qh->NextQh = Head->NextQh;
Head->NextQh = Qh;
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Qh->NextQh, sizeof (EHC_QH));
Qh->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Head->NextQh, sizeof (EHC_QH));
Head->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
}
/**
Unlink a queue head from the asynchronous schedule list.
Need to synchronize with hardware.
@param Ehc The EHCI device.
@param Qh The queue head to unlink.
**/
VOID
EhcUnlinkQhFromAsync (
IN USB2_HC_DEV *Ehc,
IN EHC_QH *Qh
)
{
EHC_QH *Head;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PciAddr;
ASSERT (Ehc->ReclaimHead->NextQh == Qh);
//
// Remove the QH from reclamation head, then update the hardware
// visiable part: Only need to loopback the ReclaimHead. The Qh
// is pointing to ReclaimHead (which is staill in the list).
//
Head = Ehc->ReclaimHead;
Head->NextQh = Qh->NextQh;
Qh->NextQh = NULL;
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Head->NextQh, sizeof (EHC_QH));
Head->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
//
// Set and wait the door bell to synchronize with the hardware
//
Status = EhcSetAndWaitDoorBell (Ehc, EHC_GENERIC_TIMEOUT);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "EhcUnlinkQhFromAsync: Failed to synchronize with doorbell\n"));
}
}
/**
Link a queue head for interrupt transfer to the periodic
schedule frame list. This code is very much the same as
that in UHCI.
@param Ehc The EHCI device.
@param Qh The queue head to link.
**/
VOID
EhcLinkQhToPeriod (
IN USB2_HC_DEV *Ehc,
IN EHC_QH *Qh
)
{
UINTN Index;
EHC_QH *Prev;
EHC_QH *Next;
EFI_PHYSICAL_ADDRESS PciAddr;
for (Index = 0; Index < EHC_FRAME_LEN; Index += Qh->Interval) {
//
// First QH can't be NULL because we always keep PeriodOne
// heads on the frame list
//
ASSERT (!EHC_LINK_TERMINATED (((UINT32*)Ehc->PeriodFrame)[Index]));
Next = (EHC_QH*)((UINTN*)Ehc->PeriodFrameHost)[Index];
Prev = NULL;
//
// Now, insert the queue head (Qh) into this frame:
// 1. Find a queue head with the same poll interval, just insert
// Qh after this queue head, then we are done.
//
// 2. Find the position to insert the queue head into:
// Previous head's interval is bigger than Qh's
// Next head's interval is less than Qh's
// Then, insert the Qh between then
//
while (Next->Interval > Qh->Interval) {
Prev = Next;
Next = Next->NextQh;
}
ASSERT (Next != NULL);
//
// The entry may have been linked into the frame by early insertation.
// For example: if insert a Qh with Qh.Interval == 4, and there is a Qh
// with Qh.Interval == 8 on the frame. If so, we are done with this frame.
// It isn't necessary to compare all the QH with the same interval to
// Qh. This is because if there is other QH with the same interval, Qh
// should has been inserted after that at Frames[0] and at Frames[0] it is
// impossible for (Next == Qh)
//
if (Next == Qh) {
continue;
}
if (Next->Interval == Qh->Interval) {
//
// If there is a QH with the same interval, it locates at
// Frames[0], and we can simply insert it after this QH. We
// are all done.
//
ASSERT ((Index == 0) && (Qh->NextQh == NULL));
Prev = Next;
Next = Next->NextQh;
Qh->NextQh = Next;
Prev->NextQh = Qh;
Qh->QhHw.HorizonLink = Prev->QhHw.HorizonLink;
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Qh, sizeof (EHC_QH));
Prev->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
break;
}
//
// OK, find the right position, insert it in. If Qh's next
// link has already been set, it is in position. This is
// guarranted by 2^n polling interval.
//
if (Qh->NextQh == NULL) {
Qh->NextQh = Next;
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Next, sizeof (EHC_QH));
Qh->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
}
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Qh, sizeof (EHC_QH));
if (Prev == NULL) {
((UINT32*)Ehc->PeriodFrame)[Index] = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
((UINTN*)Ehc->PeriodFrameHost)[Index] = (UINTN)Qh;
} else {
Prev->NextQh = Qh;
Prev->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
}
}
}
/**
Unlink an interrupt queue head from the periodic
schedule frame list.
@param Ehc The EHCI device.
@param Qh The queue head to unlink.
**/
VOID
EhcUnlinkQhFromPeriod (
IN USB2_HC_DEV *Ehc,
IN EHC_QH *Qh
)
{
UINTN Index;
EHC_QH *Prev;
EHC_QH *This;
for (Index = 0; Index < EHC_FRAME_LEN; Index += Qh->Interval) {
//
// Frame link can't be NULL because we always keep PeroidOne
// on the frame list
//
ASSERT (!EHC_LINK_TERMINATED (((UINT32*)Ehc->PeriodFrame)[Index]));
This = (EHC_QH*)((UINTN*)Ehc->PeriodFrameHost)[Index];
Prev = NULL;
//
// Walk through the frame's QH list to find the
// queue head to remove
//
while ((This != NULL) && (This != Qh)) {
Prev = This;
This = This->NextQh;
}
//
// Qh may have already been unlinked from this frame
// by early action. See the comments in EhcLinkQhToPeriod.
//
if (This == NULL) {
continue;
}
if (Prev == NULL) {
//
// Qh is the first entry in the frame
//
((UINT32*)Ehc->PeriodFrame)[Index] = Qh->QhHw.HorizonLink;
((UINTN*)Ehc->PeriodFrameHost)[Index] = (UINTN)Qh->NextQh;
} else {
Prev->NextQh = Qh->NextQh;
Prev->QhHw.HorizonLink = Qh->QhHw.HorizonLink;
}
}
}
/**
Check the URB's execution result and update the URB's
result accordingly.
@param Ehc The EHCI device.
@param Urb The URB to check result.
@return Whether the result of URB transfer is finialized.
**/
BOOLEAN
EhcCheckUrbResult (
IN USB2_HC_DEV *Ehc,
IN URB *Urb
)
{
LIST_ENTRY *Entry;
EHC_QTD *Qtd;
QTD_HW *QtdHw;
UINT8 State;
BOOLEAN Finished;
EFI_PHYSICAL_ADDRESS PciAddr;
ASSERT ((Ehc != NULL) && (Urb != NULL) && (Urb->Qh != NULL));
Finished = TRUE;
Urb->Completed = 0;
Urb->Result = EFI_USB_NOERROR;
if (EhcIsHalt (Ehc) || EhcIsSysError (Ehc)) {
Urb->Result |= EFI_USB_ERR_SYSTEM;
goto ON_EXIT;
}
EFI_LIST_FOR_EACH (Entry, &Urb->Qh->Qtds) {
Qtd = EFI_LIST_CONTAINER (Entry, EHC_QTD, QtdList);
QtdHw = &Qtd->QtdHw;
State = (UINT8) QtdHw->Status;
if (EHC_BIT_IS_SET (State, QTD_STAT_HALTED)) {
//
// EHCI will halt the queue head when met some error.
// If it is halted, the result of URB is finialized.
//
if ((State & QTD_STAT_ERR_MASK) == 0) {
Urb->Result |= EFI_USB_ERR_STALL;
}
if (EHC_BIT_IS_SET (State, QTD_STAT_BABBLE_ERR)) {
Urb->Result |= EFI_USB_ERR_BABBLE;
}
if (EHC_BIT_IS_SET (State, QTD_STAT_BUFF_ERR)) {
Urb->Result |= EFI_USB_ERR_BUFFER;
}
if (EHC_BIT_IS_SET (State, QTD_STAT_TRANS_ERR) && (QtdHw->ErrCnt == 0)) {
Urb->Result |= EFI_USB_ERR_TIMEOUT;
}
Finished = TRUE;
goto ON_EXIT;
} else if (EHC_BIT_IS_SET (State, QTD_STAT_ACTIVE)) {
//
// The QTD is still active, no need to check furthur.
//
Urb->Result |= EFI_USB_ERR_NOTEXECUTE;
Finished = FALSE;
goto ON_EXIT;
} else {
//
// This QTD is finished OK or met short packet read. Update the
// transfer length if it isn't a setup.
//
if (QtdHw->Pid != QTD_PID_SETUP) {
Urb->Completed += Qtd->DataLen - QtdHw->TotalBytes;
}
if ((QtdHw->TotalBytes != 0) && (QtdHw->Pid == QTD_PID_INPUT)) {
EhcDumpQh (Urb->Qh, "Short packet read", FALSE);
//
// Short packet read condition. If it isn't a setup transfer,
// no need to check furthur: the queue head will halt at the
// ShortReadStop. If it is a setup transfer, need to check the
// Status Stage of the setup transfer to get the finial result
//
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Ehc->ShortReadStop, sizeof (EHC_QTD));
if (QtdHw->AltNext == QTD_LINK (PciAddr, FALSE)) {
DEBUG ((EFI_D_VERBOSE, "EhcCheckUrbResult: Short packet read, break\n"));
Finished = TRUE;
goto ON_EXIT;
}
DEBUG ((EFI_D_VERBOSE, "EhcCheckUrbResult: Short packet read, continue\n"));
}
}
}
ON_EXIT:
//
// Return the data toggle set by EHCI hardware, bulk and interrupt
// transfer will use this to initialize the next transaction. For
// Control transfer, it always start a new data toggle sequence for
// new transfer.
//
// NOTICE: don't move DT update before the loop, otherwise there is
// a race condition that DT is wrong.
//
Urb->DataToggle = (UINT8) Urb->Qh->QhHw.DataToggle;
return Finished;
}
/**
Execute the transfer by polling the URB. This is a synchronous operation.
@param Ehc The EHCI device.
@param Urb The URB to execute.
@param TimeOut The time to wait before abort, in millisecond.
@return EFI_DEVICE_ERROR The transfer failed due to transfer error.
@return EFI_TIMEOUT The transfer failed due to time out.
@return EFI_SUCCESS The transfer finished OK.
**/
EFI_STATUS
EhcExecTransfer (
IN USB2_HC_DEV *Ehc,
IN URB *Urb,
IN UINTN TimeOut
)
{
EFI_STATUS Status;
UINTN Index;
UINTN Loop;
BOOLEAN Finished;
BOOLEAN InfiniteLoop;
Status = EFI_SUCCESS;
Loop = TimeOut * EHC_1_MILLISECOND;
Finished = FALSE;
InfiniteLoop = FALSE;
//
// According to UEFI spec section 16.2.4, If Timeout is 0, then the caller
// must wait for the function to be completed until EFI_SUCCESS or EFI_DEVICE_ERROR
// is returned.
//
if (TimeOut == 0) {
InfiniteLoop = TRUE;
}
for (Index = 0; InfiniteLoop || (Index < Loop); Index++) {
Finished = EhcCheckUrbResult (Ehc, Urb);
if (Finished) {
break;
}
gBS->Stall (EHC_1_MICROSECOND);
}
if (!Finished) {
DEBUG ((EFI_D_ERROR, "EhcExecTransfer: transfer not finished in %dms\n", (UINT32)TimeOut));
EhcDumpQh (Urb->Qh, NULL, FALSE);
Status = EFI_TIMEOUT;
} else if (Urb->Result != EFI_USB_NOERROR) {
DEBUG ((EFI_D_ERROR, "EhcExecTransfer: transfer failed with %x\n", Urb->Result));
EhcDumpQh (Urb->Qh, NULL, FALSE);
Status = EFI_DEVICE_ERROR;
}
return Status;
}
/**
Delete a single asynchronous interrupt transfer for
the device and endpoint.
@param Ehc The EHCI device.
@param DevAddr The address of the target device.
@param EpNum The endpoint of the target.
@param DataToggle Return the next data toggle to use.
@retval EFI_SUCCESS An asynchronous transfer is removed.
@retval EFI_NOT_FOUND No transfer for the device is found.
**/
EFI_STATUS
EhciDelAsyncIntTransfer (
IN USB2_HC_DEV *Ehc,
IN UINT8 DevAddr,
IN UINT8 EpNum,
OUT UINT8 *DataToggle
)
{
LIST_ENTRY *Entry;
LIST_ENTRY *Next;
URB *Urb;
EFI_USB_DATA_DIRECTION Direction;
Direction = (((EpNum & 0x80) != 0) ? EfiUsbDataIn : EfiUsbDataOut);
EpNum &= 0x0F;
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Ehc->AsyncIntTransfers) {
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
if ((Urb->Ep.DevAddr == DevAddr) && (Urb->Ep.EpAddr == EpNum) &&
(Urb->Ep.Direction == Direction)) {
//
// Check the URB status to retrieve the next data toggle
// from the associated queue head.
//
EhcCheckUrbResult (Ehc, Urb);
*DataToggle = Urb->DataToggle;
EhcUnlinkQhFromPeriod (Ehc, Urb->Qh);
RemoveEntryList (&Urb->UrbList);
gBS->FreePool (Urb->Data);
EhcFreeUrb (Ehc, Urb);
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
/**
Remove all the asynchronous interrutp transfers.
@param Ehc The EHCI device.
**/
VOID
EhciDelAllAsyncIntTransfers (
IN USB2_HC_DEV *Ehc
)
{
LIST_ENTRY *Entry;
LIST_ENTRY *Next;
URB *Urb;
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Ehc->AsyncIntTransfers) {
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
EhcUnlinkQhFromPeriod (Ehc, Urb->Qh);
RemoveEntryList (&Urb->UrbList);
gBS->FreePool (Urb->Data);
EhcFreeUrb (Ehc, Urb);
}
}
/**
Insert a single asynchronous interrupt transfer for
the device and endpoint.
@param Ehc The EHCI device.
@param DevAddr The device address.
@param EpAddr Endpoint addrress & its direction.
@param DevSpeed The device speed.
@param Toggle Initial data toggle to use.
@param MaxPacket The max packet length of the endpoint.
@param Hub The transaction translator to use.
@param DataLen The length of data buffer.
@param Callback The function to call when data is transferred.
@param Context The context to the callback.
@param Interval The interval for interrupt transfer.
@return Created URB or NULL.
**/
URB *
EhciInsertAsyncIntTransfer (
IN USB2_HC_DEV *Ehc,
IN UINT8 DevAddr,
IN UINT8 EpAddr,
IN UINT8 DevSpeed,
IN UINT8 Toggle,
IN UINTN MaxPacket,
IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Hub,
IN UINTN DataLen,
IN EFI_ASYNC_USB_TRANSFER_CALLBACK Callback,
IN VOID *Context,
IN UINTN Interval
)
{
VOID *Data;
URB *Urb;
Data = AllocatePool (DataLen);
if (Data == NULL) {
DEBUG ((DEBUG_ERROR, "%a: failed to allocate buffer\n", __FUNCTION__));
return NULL;
}
Urb = EhcCreateUrb (
Ehc,
DevAddr,
EpAddr,
DevSpeed,
Toggle,
MaxPacket,
Hub,
EHC_INT_TRANSFER_ASYNC,
NULL,
Data,
DataLen,
Callback,
Context,
Interval
);
if (Urb == NULL) {
DEBUG ((DEBUG_ERROR, "%a: failed to create URB\n", __FUNCTION__));
gBS->FreePool (Data);
return NULL;
}
//
// New asynchronous transfer must inserted to the head.
// Check the comments in EhcMoniteAsyncRequests
//
EhcLinkQhToPeriod (Ehc, Urb->Qh);
InsertHeadList (&Ehc->AsyncIntTransfers, &Urb->UrbList);
return Urb;
}
/**
Flush data from PCI controller specific address to mapped system
memory address.
@param Ehc The EHCI device.
@param Urb The URB to unmap.
@retval EFI_SUCCESS Success to flush data to mapped system memory.
@retval EFI_DEVICE_ERROR Fail to flush data to mapped system memory.
**/
EFI_STATUS
EhcFlushAsyncIntMap (
IN USB2_HC_DEV *Ehc,
IN URB *Urb
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PhyAddr;
EFI_PCI_IO_PROTOCOL_OPERATION MapOp;
EFI_PCI_IO_PROTOCOL *PciIo;
UINTN Len;
VOID *Map;
PciIo = Ehc->PciIo;
Len = Urb->DataLen;
if (Urb->Ep.Direction == EfiUsbDataIn) {
MapOp = EfiPciIoOperationBusMasterWrite;
} else {
MapOp = EfiPciIoOperationBusMasterRead;
}
Status = PciIo->Unmap (PciIo, Urb->DataMap);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
Urb->DataMap = NULL;
Status = PciIo->Map (PciIo, MapOp, Urb->Data, &Len, &PhyAddr, &Map);
if (EFI_ERROR (Status) || (Len != Urb->DataLen)) {
goto ON_ERROR;
}
Urb->DataPhy = (VOID *) ((UINTN) PhyAddr);
Urb->DataMap = Map;
return EFI_SUCCESS;
ON_ERROR:
return EFI_DEVICE_ERROR;
}
/**
Update the queue head for next round of asynchronous transfer.
@param Ehc The EHCI device.
@param Urb The URB to update.
**/
VOID
EhcUpdateAsyncRequest (
IN USB2_HC_DEV *Ehc,
IN URB *Urb
)
{
LIST_ENTRY *Entry;
EHC_QTD *FirstQtd;
QH_HW *QhHw;
EHC_QTD *Qtd;
QTD_HW *QtdHw;
UINTN Index;
EFI_PHYSICAL_ADDRESS PciAddr;
Qtd = NULL;
if (Urb->Result == EFI_USB_NOERROR) {
FirstQtd = NULL;
EFI_LIST_FOR_EACH (Entry, &Urb->Qh->Qtds) {
Qtd = EFI_LIST_CONTAINER (Entry, EHC_QTD, QtdList);
if (FirstQtd == NULL) {
FirstQtd = Qtd;
}
//
// Update the QTD for next round of transfer. Host control
// may change dt/Total Bytes to Transfer/C_Page/Cerr/Status/
// Current Offset. These fields need to be updated. DT isn't
// used by interrupt transfer. It uses DT in queue head.
// Current Offset is in Page[0], only need to reset Page[0]
// to initial data buffer.
//
QtdHw = &Qtd->QtdHw;
QtdHw->Status = QTD_STAT_ACTIVE;
QtdHw->ErrCnt = QTD_MAX_ERR;
QtdHw->CurPage = 0;
QtdHw->TotalBytes = (UINT32) Qtd->DataLen;
//
// calculate physical address by offset.
//
PciAddr = (UINTN)Urb->DataPhy + ((UINTN)Qtd->Data - (UINTN)Urb->Data);
QtdHw->Page[0] = EHC_LOW_32BIT (PciAddr);
QtdHw->PageHigh[0]= EHC_HIGH_32BIT (PciAddr);
}
//
// Update QH for next round of transfer. Host control only
// touch the fields in transfer overlay area. Only need to
// zero out the overlay area and set NextQtd to the first
// QTD. DateToggle bit is left untouched.
//
QhHw = &Urb->Qh->QhHw;
QhHw->CurQtd = QTD_LINK (0, TRUE);
QhHw->AltQtd = 0;
QhHw->Status = 0;
QhHw->Pid = 0;
QhHw->ErrCnt = 0;
QhHw->CurPage = 0;
QhHw->Ioc = 0;
QhHw->TotalBytes = 0;
for (Index = 0; Index < 5; Index++) {
QhHw->Page[Index] = 0;
QhHw->PageHigh[Index] = 0;
}
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, FirstQtd, sizeof (EHC_QTD));
QhHw->NextQtd = QTD_LINK (PciAddr, FALSE);
}
return ;
}
/**
Interrupt transfer periodic check handler.
@param Event Interrupt event.
@param Context Pointer to USB2_HC_DEV.
**/
VOID
EFIAPI
EhcMonitorAsyncRequests (
IN EFI_EVENT Event,
IN VOID *Context
)
{
USB2_HC_DEV *Ehc;
EFI_TPL OldTpl;
LIST_ENTRY *Entry;
LIST_ENTRY *Next;
BOOLEAN Finished;
UINT8 *ProcBuf;
URB *Urb;
EFI_STATUS Status;
OldTpl = gBS->RaiseTPL (EHC_TPL);
Ehc = (USB2_HC_DEV *) Context;
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Ehc->AsyncIntTransfers) {
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
//
// Check the result of URB execution. If it is still
// active, check the next one.
//
Finished = EhcCheckUrbResult (Ehc, Urb);
if (!Finished) {
continue;
}
//
// Flush any PCI posted write transactions from a PCI host
// bridge to system memory.
//
Status = EhcFlushAsyncIntMap (Ehc, Urb);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "EhcMonitorAsyncRequests: Fail to Flush AsyncInt Mapped Memeory\n"));
}
//
// Allocate a buffer then copy the transferred data for user.
// If failed to allocate the buffer, update the URB for next
// round of transfer. Ignore the data of this round.
//
ProcBuf = NULL;
if (Urb->Result == EFI_USB_NOERROR) {
//
// Make sure the data received from HW is no more than expected.
//
if (Urb->Completed <= Urb->DataLen) {
ProcBuf = AllocatePool (Urb->Completed);
}
if (ProcBuf == NULL) {
EhcUpdateAsyncRequest (Ehc, Urb);
continue;
}
CopyMem (ProcBuf, Urb->Data, Urb->Completed);
}
EhcUpdateAsyncRequest (Ehc, Urb);
//
// Leave error recovery to its related device driver. A
// common case of the error recovery is to re-submit the
// interrupt transfer which is linked to the head of the
// list. This function scans from head to tail. So the
// re-submitted interrupt transfer's callback function
// will not be called again in this round. Don't touch this
// URB after the callback, it may have been removed by the
// callback.
//
if (Urb->Callback != NULL) {
//
// Restore the old TPL, USB bus maybe connect device in
// his callback. Some drivers may has a lower TPL restriction.
//
gBS->RestoreTPL (OldTpl);
(Urb->Callback) (ProcBuf, Urb->Completed, Urb->Context, Urb->Result);
OldTpl = gBS->RaiseTPL (EHC_TPL);
}
if (ProcBuf != NULL) {
FreePool (ProcBuf);
}
}
gBS->RestoreTPL (OldTpl);
}