mirror of https://github.com/acidanthera/audk.git
870 lines
25 KiB
C
870 lines
25 KiB
C
/*++
|
|
|
|
Copyright (c) 2006, Intel Corporation
|
|
All rights reserved. This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
Module Name:
|
|
|
|
EbcSupport.c
|
|
|
|
Abstract:
|
|
|
|
This module contains EBC support routines that are customized based on
|
|
the target processor.
|
|
|
|
--*/
|
|
|
|
#include "EbcInt.h"
|
|
#include "EbcExecute.h"
|
|
#include "EbcSupport.h"
|
|
|
|
STATIC
|
|
EFI_STATUS
|
|
WriteBundle (
|
|
IN VOID *MemPtr,
|
|
IN UINT8 Template,
|
|
IN UINT64 Slot0,
|
|
IN UINT64 Slot1,
|
|
IN UINT64 Slot2
|
|
);
|
|
|
|
STATIC
|
|
VOID
|
|
PushU64 (
|
|
VM_CONTEXT *VmPtr,
|
|
UINT64 Arg
|
|
)
|
|
{
|
|
//
|
|
// Advance the VM stack down, and then copy the argument to the stack.
|
|
// Hope it's aligned.
|
|
//
|
|
VmPtr->R[0] -= sizeof (UINT64);
|
|
*(UINT64 *) VmPtr->R[0] = Arg;
|
|
}
|
|
|
|
STATIC
|
|
UINT64
|
|
EbcInterpret (
|
|
UINT64 Arg1,
|
|
...
|
|
)
|
|
{
|
|
//
|
|
// Create a new VM context on the stack
|
|
//
|
|
VM_CONTEXT VmContext;
|
|
UINTN Addr;
|
|
EFI_STATUS Status;
|
|
UINTN StackIndex;
|
|
VA_LIST List;
|
|
UINT64 Arg2;
|
|
UINT64 Arg3;
|
|
UINT64 Arg4;
|
|
UINT64 Arg5;
|
|
UINT64 Arg6;
|
|
UINT64 Arg7;
|
|
UINT64 Arg8;
|
|
UINT64 Arg9;
|
|
UINT64 Arg10;
|
|
UINT64 Arg11;
|
|
UINT64 Arg12;
|
|
UINT64 Arg13;
|
|
UINT64 Arg14;
|
|
UINT64 Arg15;
|
|
UINT64 Arg16;
|
|
//
|
|
// Get the EBC entry point from the processor register. Make sure you don't
|
|
// call any functions before this or you could mess up the register the
|
|
// entry point is passed in.
|
|
//
|
|
Addr = EbcLLGetEbcEntryPoint ();
|
|
//
|
|
// Need the args off the stack.
|
|
//
|
|
VA_START (List, Arg1);
|
|
Arg2 = VA_ARG (List, UINT64);
|
|
Arg3 = VA_ARG (List, UINT64);
|
|
Arg4 = VA_ARG (List, UINT64);
|
|
Arg5 = VA_ARG (List, UINT64);
|
|
Arg6 = VA_ARG (List, UINT64);
|
|
Arg7 = VA_ARG (List, UINT64);
|
|
Arg8 = VA_ARG (List, UINT64);
|
|
Arg9 = VA_ARG (List, UINT64);
|
|
Arg10 = VA_ARG (List, UINT64);
|
|
Arg11 = VA_ARG (List, UINT64);
|
|
Arg12 = VA_ARG (List, UINT64);
|
|
Arg13 = VA_ARG (List, UINT64);
|
|
Arg14 = VA_ARG (List, UINT64);
|
|
Arg15 = VA_ARG (List, UINT64);
|
|
Arg16 = VA_ARG (List, UINT64);
|
|
//
|
|
// Now clear out our context
|
|
//
|
|
ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
|
|
//
|
|
// Set the VM instruction pointer to the correct location in memory.
|
|
//
|
|
VmContext.Ip = (VMIP) Addr;
|
|
//
|
|
// Initialize the stack pointer for the EBC. Get the current system stack
|
|
// pointer and adjust it down by the max needed for the interpreter.
|
|
//
|
|
//
|
|
// NOTE: Eventually we should have the interpreter allocate memory
|
|
// for stack space which it will use during its execution. This
|
|
// would likely improve performance because the interpreter would
|
|
// no longer be required to test each memory access and adjust
|
|
// those reading from the stack gap.
|
|
//
|
|
// For IPF, the stack looks like (assuming 10 args passed)
|
|
// arg10
|
|
// arg9 (Bottom of high stack)
|
|
// [ stack gap for interpreter execution ]
|
|
// [ magic value for detection of stack corruption ]
|
|
// arg8 (Top of low stack)
|
|
// arg7....
|
|
// arg1
|
|
// [ 64-bit return address ]
|
|
// [ ebc stack ]
|
|
// If the EBC accesses memory in the stack gap, then we assume that it's
|
|
// actually trying to access args9 and greater. Therefore we need to
|
|
// adjust memory accesses in this region to point above the stack gap.
|
|
//
|
|
//
|
|
// Now adjust the EBC stack pointer down to leave a gap for interpreter
|
|
// execution. Then stuff a magic value there.
|
|
//
|
|
|
|
Status = GetEBCStack((EFI_HANDLE)(UINTN)-1, &VmContext.StackPool, &StackIndex);
|
|
if (EFI_ERROR(Status)) {
|
|
return Status;
|
|
}
|
|
VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
|
|
VmContext.R[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
|
|
VmContext.HighStackBottom = (UINTN) VmContext.R[0];
|
|
VmContext.R[0] -= sizeof (UINTN);
|
|
|
|
|
|
PushU64 (&VmContext, (UINT64) VM_STACK_KEY_VALUE);
|
|
VmContext.StackMagicPtr = (UINTN *) VmContext.R[0];
|
|
VmContext.LowStackTop = (UINTN) VmContext.R[0];
|
|
//
|
|
// Push the EBC arguments on the stack. Does not matter that they may not
|
|
// all be valid.
|
|
//
|
|
PushU64 (&VmContext, Arg16);
|
|
PushU64 (&VmContext, Arg15);
|
|
PushU64 (&VmContext, Arg14);
|
|
PushU64 (&VmContext, Arg13);
|
|
PushU64 (&VmContext, Arg12);
|
|
PushU64 (&VmContext, Arg11);
|
|
PushU64 (&VmContext, Arg10);
|
|
PushU64 (&VmContext, Arg9);
|
|
PushU64 (&VmContext, Arg8);
|
|
PushU64 (&VmContext, Arg7);
|
|
PushU64 (&VmContext, Arg6);
|
|
PushU64 (&VmContext, Arg5);
|
|
PushU64 (&VmContext, Arg4);
|
|
PushU64 (&VmContext, Arg3);
|
|
PushU64 (&VmContext, Arg2);
|
|
PushU64 (&VmContext, Arg1);
|
|
//
|
|
// Push a bogus return address on the EBC stack because the
|
|
// interpreter expects one there. For stack alignment purposes on IPF,
|
|
// EBC return addresses are always 16 bytes. Push a bogus value as well.
|
|
//
|
|
PushU64 (&VmContext, 0);
|
|
PushU64 (&VmContext, 0xDEADBEEFDEADBEEF);
|
|
VmContext.StackRetAddr = (UINT64) VmContext.R[0];
|
|
//
|
|
// Begin executing the EBC code
|
|
//
|
|
EbcExecute (&VmContext);
|
|
//
|
|
// Return the value in R[7] unless there was an error
|
|
//
|
|
ReturnEBCStack(StackIndex);
|
|
return (UINT64) VmContext.R[7];
|
|
}
|
|
|
|
STATIC
|
|
UINT64
|
|
ExecuteEbcImageEntryPoint (
|
|
IN EFI_HANDLE ImageHandle,
|
|
IN EFI_SYSTEM_TABLE *SystemTable
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
IPF implementation.
|
|
|
|
Begin executing an EBC image. The address of the entry point is passed
|
|
in via a processor register, so we'll need to make a call to get the
|
|
value.
|
|
|
|
Arguments:
|
|
|
|
ImageHandle - image handle for the EBC application we're executing
|
|
SystemTable - standard system table passed into an driver's entry point
|
|
|
|
Returns:
|
|
|
|
The value returned by the EBC application we're going to run.
|
|
|
|
--*/
|
|
{
|
|
//
|
|
// Create a new VM context on the stack
|
|
//
|
|
VM_CONTEXT VmContext;
|
|
UINTN Addr;
|
|
EFI_STATUS Status;
|
|
UINTN StackIndex;
|
|
|
|
//
|
|
// Get the EBC entry point from the processor register. Make sure you don't
|
|
// call any functions before this or you could mess up the register the
|
|
// entry point is passed in.
|
|
//
|
|
Addr = EbcLLGetEbcEntryPoint ();
|
|
|
|
//
|
|
// Now clear out our context
|
|
//
|
|
ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
|
|
|
|
//
|
|
// Save the image handle so we can track the thunks created for this image
|
|
//
|
|
VmContext.ImageHandle = ImageHandle;
|
|
VmContext.SystemTable = SystemTable;
|
|
|
|
//
|
|
// Set the VM instruction pointer to the correct location in memory.
|
|
//
|
|
VmContext.Ip = (VMIP) Addr;
|
|
|
|
//
|
|
// Get the stack pointer. This is the bottom of the upper stack.
|
|
//
|
|
Addr = EbcLLGetStackPointer ();
|
|
|
|
Status = GetEBCStack(ImageHandle, &VmContext.StackPool, &StackIndex);
|
|
if (EFI_ERROR(Status)) {
|
|
return Status;
|
|
}
|
|
VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
|
|
VmContext.R[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
|
|
VmContext.HighStackBottom = (UINTN) VmContext.R[0];
|
|
VmContext.R[0] -= sizeof (UINTN);
|
|
|
|
|
|
//
|
|
// Allocate stack space for the interpreter. Then put a magic value
|
|
// at the bottom so we can detect stack corruption.
|
|
//
|
|
PushU64 (&VmContext, (UINT64) VM_STACK_KEY_VALUE);
|
|
VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.R[0];
|
|
|
|
//
|
|
// When we thunk to external native code, we copy the last 8 qwords from
|
|
// the EBC stack into the processor registers, and adjust the stack pointer
|
|
// up. If the caller is not passing 8 parameters, then we've moved the
|
|
// stack pointer up into the stack gap. If this happens, then the caller
|
|
// can mess up the stack gap contents (in particular our magic value).
|
|
// Therefore, leave another gap below the magic value. Pick 10 qwords down,
|
|
// just as a starting point.
|
|
//
|
|
VmContext.R[0] -= 10 * sizeof (UINT64);
|
|
|
|
//
|
|
// Align the stack pointer such that after pushing the system table,
|
|
// image handle, and return address on the stack, it's aligned on a 16-byte
|
|
// boundary as required for IPF.
|
|
//
|
|
VmContext.R[0] &= (INT64)~0x0f;
|
|
VmContext.LowStackTop = (UINTN) VmContext.R[0];
|
|
//
|
|
// Simply copy the image handle and system table onto the EBC stack.
|
|
// Greatly simplifies things by not having to spill the args
|
|
//
|
|
PushU64 (&VmContext, (UINT64) SystemTable);
|
|
PushU64 (&VmContext, (UINT64) ImageHandle);
|
|
|
|
//
|
|
// Interpreter assumes 64-bit return address is pushed on the stack.
|
|
// IPF does not do this so pad the stack accordingly. Also, a
|
|
// "return address" is 16 bytes as required for IPF stack alignments.
|
|
//
|
|
PushU64 (&VmContext, (UINT64) 0);
|
|
PushU64 (&VmContext, (UINT64) 0x1234567887654321);
|
|
VmContext.StackRetAddr = (UINT64) VmContext.R[0];
|
|
|
|
//
|
|
// Begin executing the EBC code
|
|
//
|
|
EbcExecute (&VmContext);
|
|
|
|
//
|
|
// Return the value in R[7] unless there was an error
|
|
//
|
|
ReturnEBCStack(StackIndex);
|
|
return (UINT64) VmContext.R[7];
|
|
}
|
|
|
|
EFI_STATUS
|
|
EbcCreateThunks (
|
|
IN EFI_HANDLE ImageHandle,
|
|
IN VOID *EbcEntryPoint,
|
|
OUT VOID **Thunk,
|
|
IN UINT32 Flags
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Create thunks for an EBC image entry point, or an EBC protocol service.
|
|
|
|
Arguments:
|
|
|
|
ImageHandle - Image handle for the EBC image. If not null, then we're
|
|
creating a thunk for an image entry point.
|
|
EbcEntryPoint - Address of the EBC code that the thunk is to call
|
|
Thunk - Returned thunk we create here
|
|
Flags - Flags indicating options for creating the thunk
|
|
|
|
Returns:
|
|
|
|
Standard EFI status.
|
|
|
|
--*/
|
|
{
|
|
UINT8 *Ptr;
|
|
UINT8 *ThunkBase;
|
|
UINT64 Addr;
|
|
UINT64 Code[3]; // Code in a bundle
|
|
UINT64 RegNum; // register number for MOVL
|
|
UINT64 I; // bits of MOVL immediate data
|
|
UINT64 Ic; // bits of MOVL immediate data
|
|
UINT64 Imm5c; // bits of MOVL immediate data
|
|
UINT64 Imm9d; // bits of MOVL immediate data
|
|
UINT64 Imm7b; // bits of MOVL immediate data
|
|
UINT64 Br; // branch register for loading and jumping
|
|
UINT64 *Data64Ptr;
|
|
UINT32 ThunkSize;
|
|
UINT32 Size;
|
|
|
|
//
|
|
// Check alignment of pointer to EBC code, which must always be aligned
|
|
// on a 2-byte boundary.
|
|
//
|
|
if ((UINT32) (UINTN) EbcEntryPoint & 0x01) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
//
|
|
// Allocate memory for the thunk. Make the (most likely incorrect) assumption
|
|
// that the returned buffer is not aligned, so round up to the next
|
|
// alignment size.
|
|
//
|
|
Size = EBC_THUNK_SIZE + EBC_THUNK_ALIGNMENT - 1;
|
|
ThunkSize = Size;
|
|
Ptr = AllocatePool (Size);
|
|
|
|
if (Ptr == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
//
|
|
// Save the start address of the buffer.
|
|
//
|
|
ThunkBase = Ptr;
|
|
|
|
//
|
|
// Make sure it's aligned for code execution. If not, then
|
|
// round up.
|
|
//
|
|
if ((UINT32) (UINTN) Ptr & (EBC_THUNK_ALIGNMENT - 1)) {
|
|
Ptr = (UINT8 *) (((UINTN) Ptr + (EBC_THUNK_ALIGNMENT - 1)) &~ (UINT64) (EBC_THUNK_ALIGNMENT - 1));
|
|
}
|
|
//
|
|
// Return the pointer to the thunk to the caller to user as the
|
|
// image entry point.
|
|
//
|
|
*Thunk = (VOID *) Ptr;
|
|
|
|
//
|
|
// Clear out the thunk entry
|
|
// ZeroMem(Ptr, Size);
|
|
//
|
|
// For IPF, when you do a call via a function pointer, the function pointer
|
|
// actually points to a function descriptor which consists of a 64-bit
|
|
// address of the function, followed by a 64-bit gp for the function being
|
|
// called. See the the Software Conventions and Runtime Architecture Guide
|
|
// for details.
|
|
// So first off in our thunk, create a descriptor for our actual thunk code.
|
|
// This means we need to create a pointer to the thunk code (which follows
|
|
// the descriptor we're going to create), followed by the gp of the Vm
|
|
// interpret function we're going to eventually execute.
|
|
//
|
|
Data64Ptr = (UINT64 *) Ptr;
|
|
|
|
//
|
|
// Write the function's entry point (which is our thunk code that follows
|
|
// this descriptor we're creating).
|
|
//
|
|
*Data64Ptr = (UINT64) (Data64Ptr + 2);
|
|
//
|
|
// Get the gp from the descriptor for EbcInterpret and stuff it in our thunk
|
|
// descriptor.
|
|
//
|
|
*(Data64Ptr + 1) = *(UINT64 *) ((UINT64 *) (UINTN) EbcInterpret + 1);
|
|
//
|
|
// Advance our thunk data pointer past the descriptor. Since the
|
|
// descriptor consists of 16 bytes, the pointer is still aligned for
|
|
// IPF code execution (on 16-byte boundary).
|
|
//
|
|
Ptr += sizeof (UINT64) * 2;
|
|
|
|
//
|
|
// *************************** MAGIC BUNDLE ********************************
|
|
//
|
|
// Write magic code bundle for: movl r8 = 0xca112ebcca112ebc to help the VM
|
|
// to recognize it is a thunk.
|
|
//
|
|
Addr = (UINT64) 0xCA112EBCCA112EBC;
|
|
|
|
//
|
|
// Now generate the code bytes. First is nop.m 0x0
|
|
//
|
|
Code[0] = OPCODE_NOP;
|
|
|
|
//
|
|
// Next is simply Addr[62:22] (41 bits) of the address
|
|
//
|
|
Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;
|
|
|
|
//
|
|
// Extract bits from the address for insertion into the instruction
|
|
// i = Addr[63:63]
|
|
//
|
|
I = RShiftU64 (Addr, 63) & 0x01;
|
|
//
|
|
// ic = Addr[21:21]
|
|
//
|
|
Ic = RShiftU64 (Addr, 21) & 0x01;
|
|
//
|
|
// imm5c = Addr[20:16] for 5 bits
|
|
//
|
|
Imm5c = RShiftU64 (Addr, 16) & 0x1F;
|
|
//
|
|
// imm9d = Addr[15:7] for 9 bits
|
|
//
|
|
Imm9d = RShiftU64 (Addr, 7) & 0x1FF;
|
|
//
|
|
// imm7b = Addr[6:0] for 7 bits
|
|
//
|
|
Imm7b = Addr & 0x7F;
|
|
|
|
//
|
|
// The EBC entry point will be put into r8, so r8 can be used here
|
|
// temporary. R8 is general register and is auto-serialized.
|
|
//
|
|
RegNum = 8;
|
|
|
|
//
|
|
// Next is jumbled data, including opcode and rest of address
|
|
//
|
|
Code[2] = LShiftU64 (Imm7b, 13);
|
|
Code[2] = Code[2] | LShiftU64 (0x00, 20); // vc
|
|
Code[2] = Code[2] | LShiftU64 (Ic, 21);
|
|
Code[2] = Code[2] | LShiftU64 (Imm5c, 22);
|
|
Code[2] = Code[2] | LShiftU64 (Imm9d, 27);
|
|
Code[2] = Code[2] | LShiftU64 (I, 36);
|
|
Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);
|
|
Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);
|
|
|
|
WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);
|
|
|
|
//
|
|
// *************************** FIRST BUNDLE ********************************
|
|
//
|
|
// Write code bundle for: movl r8 = EBC_ENTRY_POINT so we pass
|
|
// the ebc entry point in to the interpreter function via a processor
|
|
// register.
|
|
// Note -- we could easily change this to pass in a pointer to a structure
|
|
// that contained, among other things, the EBC image's entry point. But
|
|
// for now pass it directly.
|
|
//
|
|
Ptr += 16;
|
|
Addr = (UINT64) EbcEntryPoint;
|
|
|
|
//
|
|
// Now generate the code bytes. First is nop.m 0x0
|
|
//
|
|
Code[0] = OPCODE_NOP;
|
|
|
|
//
|
|
// Next is simply Addr[62:22] (41 bits) of the address
|
|
//
|
|
Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;
|
|
|
|
//
|
|
// Extract bits from the address for insertion into the instruction
|
|
// i = Addr[63:63]
|
|
//
|
|
I = RShiftU64 (Addr, 63) & 0x01;
|
|
//
|
|
// ic = Addr[21:21]
|
|
//
|
|
Ic = RShiftU64 (Addr, 21) & 0x01;
|
|
//
|
|
// imm5c = Addr[20:16] for 5 bits
|
|
//
|
|
Imm5c = RShiftU64 (Addr, 16) & 0x1F;
|
|
//
|
|
// imm9d = Addr[15:7] for 9 bits
|
|
//
|
|
Imm9d = RShiftU64 (Addr, 7) & 0x1FF;
|
|
//
|
|
// imm7b = Addr[6:0] for 7 bits
|
|
//
|
|
Imm7b = Addr & 0x7F;
|
|
|
|
//
|
|
// Put the EBC entry point in r8, which is the location of the return value
|
|
// for functions.
|
|
//
|
|
RegNum = 8;
|
|
|
|
//
|
|
// Next is jumbled data, including opcode and rest of address
|
|
//
|
|
Code[2] = LShiftU64 (Imm7b, 13);
|
|
Code[2] = Code[2] | LShiftU64 (0x00, 20); // vc
|
|
Code[2] = Code[2] | LShiftU64 (Ic, 21);
|
|
Code[2] = Code[2] | LShiftU64 (Imm5c, 22);
|
|
Code[2] = Code[2] | LShiftU64 (Imm9d, 27);
|
|
Code[2] = Code[2] | LShiftU64 (I, 36);
|
|
Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);
|
|
Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);
|
|
|
|
WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);
|
|
|
|
//
|
|
// *************************** NEXT BUNDLE *********************************
|
|
//
|
|
// Write code bundle for:
|
|
// movl rx = offset_of(EbcInterpret|ExecuteEbcImageEntryPoint)
|
|
//
|
|
// Advance pointer to next bundle, then compute the offset from this bundle
|
|
// to the address of the entry point of the interpreter.
|
|
//
|
|
Ptr += 16;
|
|
if (Flags & FLAG_THUNK_ENTRY_POINT) {
|
|
Addr = (UINT64) ExecuteEbcImageEntryPoint;
|
|
} else {
|
|
Addr = (UINT64) EbcInterpret;
|
|
}
|
|
//
|
|
// Indirection on Itanium-based systems
|
|
//
|
|
Addr = *(UINT64 *) Addr;
|
|
|
|
//
|
|
// Now write the code to load the offset into a register
|
|
//
|
|
Code[0] = OPCODE_NOP;
|
|
|
|
//
|
|
// Next is simply Addr[62:22] (41 bits) of the address
|
|
//
|
|
Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;
|
|
|
|
//
|
|
// Extract bits from the address for insertion into the instruction
|
|
// i = Addr[63:63]
|
|
//
|
|
I = RShiftU64 (Addr, 63) & 0x01;
|
|
//
|
|
// ic = Addr[21:21]
|
|
//
|
|
Ic = RShiftU64 (Addr, 21) & 0x01;
|
|
//
|
|
// imm5c = Addr[20:16] for 5 bits
|
|
//
|
|
Imm5c = RShiftU64 (Addr, 16) & 0x1F;
|
|
//
|
|
// imm9d = Addr[15:7] for 9 bits
|
|
//
|
|
Imm9d = RShiftU64 (Addr, 7) & 0x1FF;
|
|
//
|
|
// imm7b = Addr[6:0] for 7 bits
|
|
//
|
|
Imm7b = Addr & 0x7F;
|
|
|
|
//
|
|
// Put it in r31, a scratch register
|
|
//
|
|
RegNum = 31;
|
|
|
|
//
|
|
// Next is jumbled data, including opcode and rest of address
|
|
//
|
|
Code[2] = LShiftU64(Imm7b, 13);
|
|
Code[2] = Code[2] | LShiftU64 (0x00, 20); // vc
|
|
Code[2] = Code[2] | LShiftU64 (Ic, 21);
|
|
Code[2] = Code[2] | LShiftU64 (Imm5c, 22);
|
|
Code[2] = Code[2] | LShiftU64 (Imm9d, 27);
|
|
Code[2] = Code[2] | LShiftU64 (I, 36);
|
|
Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);
|
|
Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);
|
|
|
|
WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);
|
|
|
|
//
|
|
// *************************** NEXT BUNDLE *********************************
|
|
//
|
|
// Load branch register with EbcInterpret() function offset from the bundle
|
|
// address: mov b6 = RegNum
|
|
//
|
|
// See volume 3 page 4-29 of the Arch. Software Developer's Manual.
|
|
//
|
|
// Advance pointer to next bundle
|
|
//
|
|
Ptr += 16;
|
|
Code[0] = OPCODE_NOP;
|
|
Code[1] = OPCODE_NOP;
|
|
Code[2] = OPCODE_MOV_BX_RX;
|
|
|
|
//
|
|
// Pick a branch register to use. Then fill in the bits for the branch
|
|
// register and user register (same user register as previous bundle).
|
|
//
|
|
Br = 6;
|
|
Code[2] |= LShiftU64 (Br, 6);
|
|
Code[2] |= LShiftU64 (RegNum, 13);
|
|
WriteBundle ((VOID *) Ptr, 0x0d, Code[0], Code[1], Code[2]);
|
|
|
|
//
|
|
// *************************** NEXT BUNDLE *********************************
|
|
//
|
|
// Now do the branch: (p0) br.cond.sptk.few b6
|
|
//
|
|
// Advance pointer to next bundle.
|
|
// Fill in the bits for the branch register (same reg as previous bundle)
|
|
//
|
|
Ptr += 16;
|
|
Code[0] = OPCODE_NOP;
|
|
Code[1] = OPCODE_NOP;
|
|
Code[2] = OPCODE_BR_COND_SPTK_FEW;
|
|
Code[2] |= LShiftU64 (Br, 13);
|
|
WriteBundle ((VOID *) Ptr, 0x1d, Code[0], Code[1], Code[2]);
|
|
|
|
//
|
|
// Add the thunk to our list of allocated thunks so we can do some cleanup
|
|
// when the image is unloaded. Do this last since the Add function flushes
|
|
// the instruction cache for us.
|
|
//
|
|
EbcAddImageThunk (ImageHandle, (VOID *) ThunkBase, ThunkSize);
|
|
|
|
//
|
|
// Done
|
|
//
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
STATIC
|
|
EFI_STATUS
|
|
WriteBundle (
|
|
IN VOID *MemPtr,
|
|
IN UINT8 Template,
|
|
IN UINT64 Slot0,
|
|
IN UINT64 Slot1,
|
|
IN UINT64 Slot2
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Given raw bytes of Itanium based code, format them into a bundle and
|
|
write them out.
|
|
|
|
Arguments:
|
|
|
|
MemPtr - pointer to memory location to write the bundles to
|
|
Template - 5-bit template
|
|
Slot0-2 - instruction slot data for the bundle
|
|
|
|
Returns:
|
|
|
|
EFI_INVALID_PARAMETER - Pointer is not aligned
|
|
- No more than 5 bits in template
|
|
- More than 41 bits used in code
|
|
EFI_SUCCESS - All data is written.
|
|
|
|
--*/
|
|
{
|
|
UINT8 *BPtr;
|
|
UINT32 Index;
|
|
UINT64 Low64;
|
|
UINT64 High64;
|
|
|
|
//
|
|
// Verify pointer is aligned
|
|
//
|
|
if ((UINT64) MemPtr & 0xF) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
//
|
|
// Verify no more than 5 bits in template
|
|
//
|
|
if (Template &~0x1F) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
//
|
|
// Verify max of 41 bits used in code
|
|
//
|
|
if ((Slot0 | Slot1 | Slot2) &~0x1ffffffffff) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
Low64 = LShiftU64 (Slot1, 46);
|
|
Low64 = Low64 | LShiftU64 (Slot0, 5) | Template;
|
|
|
|
High64 = RShiftU64 (Slot1, 18);
|
|
High64 = High64 | LShiftU64 (Slot2, 23);
|
|
|
|
//
|
|
// Now write it all out
|
|
//
|
|
BPtr = (UINT8 *) MemPtr;
|
|
for (Index = 0; Index < 8; Index++) {
|
|
*BPtr = (UINT8) Low64;
|
|
Low64 = RShiftU64 (Low64, 8);
|
|
BPtr++;
|
|
}
|
|
|
|
for (Index = 0; Index < 8; Index++) {
|
|
*BPtr = (UINT8) High64;
|
|
High64 = RShiftU64 (High64, 8);
|
|
BPtr++;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
VOID
|
|
EbcLLCALLEX (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN FuncAddr,
|
|
IN UINTN NewStackPointer,
|
|
IN VOID *FramePtr,
|
|
IN UINT8 Size
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This function is called to execute an EBC CALLEX instruction.
|
|
The function check the callee's content to see whether it is common native
|
|
code or a thunk to another piece of EBC code.
|
|
If the callee is common native code, use EbcLLCAllEXASM to manipulate,
|
|
otherwise, set the VM->IP to target EBC code directly to avoid another VM
|
|
be startup which cost time and stack space.
|
|
|
|
Arguments:
|
|
|
|
VmPtr - Pointer to a VM context.
|
|
FuncAddr - Callee's address
|
|
NewStackPointer - New stack pointer after the call
|
|
FramePtr - New frame pointer after the call
|
|
Size - The size of call instruction
|
|
|
|
Returns:
|
|
|
|
None.
|
|
|
|
--*/
|
|
{
|
|
UINTN IsThunk;
|
|
UINTN TargetEbcAddr;
|
|
UINTN CodeOne18;
|
|
UINTN CodeOne23;
|
|
UINTN CodeTwoI;
|
|
UINTN CodeTwoIc;
|
|
UINTN CodeTwo7b;
|
|
UINTN CodeTwo5c;
|
|
UINTN CodeTwo9d;
|
|
UINTN CalleeAddr;
|
|
|
|
IsThunk = 1;
|
|
TargetEbcAddr = 0;
|
|
|
|
//
|
|
// FuncAddr points to the descriptor of the target instructions.
|
|
//
|
|
CalleeAddr = *((UINT64 *)FuncAddr);
|
|
|
|
//
|
|
// Processor specific code to check whether the callee is a thunk to EBC.
|
|
//
|
|
if (*((UINT64 *)CalleeAddr) != 0xBCCA000100000005) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT64 *)CalleeAddr + 1) != 0x697623C1004A112E) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
|
|
CodeOne18 = RShiftU64 (*((UINT64 *)CalleeAddr + 2), 46) & 0x3FFFF;
|
|
CodeOne23 = (*((UINT64 *)CalleeAddr + 3)) & 0x7FFFFF;
|
|
CodeTwoI = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 59) & 0x1;
|
|
CodeTwoIc = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 44) & 0x1;
|
|
CodeTwo7b = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 36) & 0x7F;
|
|
CodeTwo5c = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 45) & 0x1F;
|
|
CodeTwo9d = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 50) & 0x1FF;
|
|
|
|
TargetEbcAddr = CodeTwo7b;
|
|
TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwo9d, 7);
|
|
TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwo5c, 16);
|
|
TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwoIc, 21);
|
|
TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeOne18, 22);
|
|
TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeOne23, 40);
|
|
TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwoI, 63);
|
|
|
|
Action:
|
|
if (IsThunk == 1){
|
|
//
|
|
// The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and
|
|
// put our return address and frame pointer on the VM stack.
|
|
// Then set the VM's IP to new EBC code.
|
|
//
|
|
VmPtr->R[0] -= 8;
|
|
VmWriteMemN (VmPtr, (UINTN) VmPtr->R[0], (UINTN) FramePtr);
|
|
VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->R[0];
|
|
VmPtr->R[0] -= 8;
|
|
VmWriteMem64 (VmPtr, (UINTN) VmPtr->R[0], (UINT64) (VmPtr->Ip + Size));
|
|
|
|
VmPtr->Ip = (VMIP) (UINTN) TargetEbcAddr;
|
|
} else {
|
|
//
|
|
// The callee is not a thunk to EBC, call native code.
|
|
//
|
|
EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);
|
|
|
|
//
|
|
// Get return value and advance the IP.
|
|
//
|
|
VmPtr->R[7] = EbcLLGetReturnValue ();
|
|
VmPtr->Ip += Size;
|
|
}
|
|
}
|