mirror of https://github.com/acidanthera/audk.git
1517 lines
48 KiB
C
1517 lines
48 KiB
C
/** @file
|
|
Provides the basic UNID functions.
|
|
|
|
Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include "Undi32.h"
|
|
|
|
//
|
|
// Global variables defined in this file
|
|
//
|
|
UNDI_CALL_TABLE api_table[PXE_OPCODE_LAST_VALID+1] = { \
|
|
{PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0, (UINT16)(ANY_STATE),UNDI_GetState },\
|
|
{(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,0,(UINT16)(ANY_STATE),UNDI_Start },\
|
|
{PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0,MUST_BE_STARTED,UNDI_Stop },\
|
|
{PXE_CPBSIZE_NOT_USED,sizeof(PXE_DB_GET_INIT_INFO),0,MUST_BE_STARTED, UNDI_GetInitInfo },\
|
|
{PXE_CPBSIZE_NOT_USED,sizeof(PXE_DB_GET_CONFIG_INFO),0,MUST_BE_STARTED, UNDI_GetConfigInfo },\
|
|
{sizeof(PXE_CPB_INITIALIZE),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),MUST_BE_STARTED,UNDI_Initialize },\
|
|
{PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED,UNDI_Reset },\
|
|
{PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0, MUST_BE_INITIALIZED,UNDI_Shutdown },\
|
|
{PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED,UNDI_Interrupt },\
|
|
{(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_RecFilter },\
|
|
{(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_StnAddr },\
|
|
{PXE_CPBSIZE_NOT_USED, (UINT16)(DONT_CHECK), (UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Statistics },\
|
|
{sizeof(PXE_CPB_MCAST_IP_TO_MAC),sizeof(PXE_DB_MCAST_IP_TO_MAC), (UINT16)(DONT_CHECK),MUST_BE_INITIALIZED, UNDI_ip2mac },\
|
|
{(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_NVData },\
|
|
{PXE_CPBSIZE_NOT_USED,(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Status },\
|
|
{(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_FillHeader },\
|
|
{(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Transmit },\
|
|
{sizeof(PXE_CPB_RECEIVE),sizeof(PXE_DB_RECEIVE),0,MUST_BE_INITIALIZED, UNDI_Receive } \
|
|
};
|
|
|
|
//
|
|
// end of global variables
|
|
//
|
|
|
|
|
|
/**
|
|
This routine determines the operational state of the UNDI. It updates the state flags in the
|
|
Command Descriptor Block based on information derived from the AdapterInfo instance data.
|
|
To ensure the command has completed successfully, CdbPtr->StatCode will contain the result of
|
|
the command execution.
|
|
The CdbPtr->StatFlags will contain a STOPPED, STARTED, or INITIALIZED state once the command
|
|
has successfully completed.
|
|
Keep in mind the AdapterInfo->State is the active state of the adapter (based on software
|
|
interrogation), and the CdbPtr->StateFlags is the passed back information that is reflected
|
|
to the caller of the UNDI API.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_GetState (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
CdbPtr->StatFlags = (PXE_STATFLAGS) (CdbPtr->StatFlags | AdapterInfo->State);
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine is used to change the operational state of the UNDI from stopped to started.
|
|
It will do this as long as the adapter's state is PXE_STATFLAGS_GET_STATE_STOPPED, otherwise
|
|
the CdbPtr->StatFlags will reflect a command failure, and the CdbPtr->StatCode will reflect the
|
|
UNDI as having already been started.
|
|
This routine is modified to reflect the undi 1.1 specification changes. The
|
|
changes in the spec are mainly in the callback routines, the new spec adds
|
|
3 more callbacks and a unique id.
|
|
Since this UNDI supports both old and new undi specifications,
|
|
The NIC's data structure is filled in with the callback routines (depending
|
|
on the version) pointed to in the caller's CpbPtr. This seeds the Delay,
|
|
Virt2Phys, Block, and Mem_IO for old and new versions and Map_Mem, UnMap_Mem
|
|
and Sync_Mem routines and a unique id variable for the new version.
|
|
This is the function which an external entity (SNP, O/S, etc) would call
|
|
to provide it's I/O abstraction to the UNDI.
|
|
It's final action is to change the AdapterInfo->State to PXE_STATFLAGS_GET_STATE_STARTED.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_Start (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
PXE_CPB_START_30 *CpbPtr;
|
|
PXE_CPB_START_31 *CpbPtr_31;
|
|
|
|
//
|
|
// check if it is already started.
|
|
//
|
|
if (AdapterInfo->State != PXE_STATFLAGS_GET_STATE_STOPPED) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_ALREADY_STARTED;
|
|
return ;
|
|
}
|
|
|
|
if (CdbPtr->CPBsize != sizeof(PXE_CPB_START_30) &&
|
|
CdbPtr->CPBsize != sizeof(PXE_CPB_START_31)) {
|
|
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
CpbPtr = (PXE_CPB_START_30 *) (UINTN) (CdbPtr->CPBaddr);
|
|
CpbPtr_31 = (PXE_CPB_START_31 *) (UINTN) (CdbPtr->CPBaddr);
|
|
|
|
if (AdapterInfo->VersionFlag == 0x30) {
|
|
AdapterInfo->Delay_30 = (bsptr_30) (UINTN) CpbPtr->Delay;
|
|
AdapterInfo->Virt2Phys_30 = (virtphys_30) (UINTN) CpbPtr->Virt2Phys;
|
|
AdapterInfo->Block_30 = (block_30) (UINTN) CpbPtr->Block;
|
|
//
|
|
// patch for old buggy 3.0 code:
|
|
// In EFI1.0 undi used to provide the full (absolute) I/O address to the
|
|
// i/o calls and SNP used to provide a callback that used GlobalIoFncs and
|
|
// everything worked fine! In EFI 1.1, UNDI is not using the full
|
|
// i/o or memory address to access the device, The base values for the i/o
|
|
// and memory address is abstracted by the device specific PciIoFncs and
|
|
// UNDI only uses the offset values. Since UNDI3.0 cannot provide any
|
|
// identification to SNP, SNP cannot use nic specific PciIoFncs callback!
|
|
//
|
|
// To fix this and make undi3.0 work with SNP in EFI1.1 we
|
|
// use a TmpMemIo function that is defined in init.c
|
|
// This breaks the runtime driver feature of undi, but what to do
|
|
// if we have to provide the 3.0 compatibility (including the 3.0 bugs)
|
|
//
|
|
// This TmpMemIo function also takes a UniqueId parameter
|
|
// (as in undi3.1 design) and so initialize the UniqueId as well here
|
|
// Note: AdapterInfo->Mem_Io_30 is just filled for consistency with other
|
|
// parameters but never used, we only use Mem_Io field in the In/Out routines
|
|
// inside e100b.c.
|
|
//
|
|
AdapterInfo->Mem_Io_30 = (mem_io_30) (UINTN) CpbPtr->Mem_IO;
|
|
AdapterInfo->Mem_Io = (mem_io) (UINTN) TmpMemIo;
|
|
AdapterInfo->Unique_ID = (UINT64) (UINTN) AdapterInfo;
|
|
|
|
} else {
|
|
AdapterInfo->Delay = (bsptr) (UINTN) CpbPtr_31->Delay;
|
|
AdapterInfo->Virt2Phys = (virtphys) (UINTN) CpbPtr_31->Virt2Phys;
|
|
AdapterInfo->Block = (block) (UINTN) CpbPtr_31->Block;
|
|
AdapterInfo->Mem_Io = (mem_io) (UINTN) CpbPtr_31->Mem_IO;
|
|
|
|
AdapterInfo->Map_Mem = (map_mem) (UINTN) CpbPtr_31->Map_Mem;
|
|
AdapterInfo->UnMap_Mem = (unmap_mem) (UINTN) CpbPtr_31->UnMap_Mem;
|
|
AdapterInfo->Sync_Mem = (sync_mem) (UINTN) CpbPtr_31->Sync_Mem;
|
|
AdapterInfo->Unique_ID = CpbPtr_31->Unique_ID;
|
|
}
|
|
|
|
AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STARTED;
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine is used to change the operational state of the UNDI from started to stopped.
|
|
It will not do this if the adapter's state is PXE_STATFLAGS_GET_STATE_INITIALIZED, otherwise
|
|
the CdbPtr->StatFlags will reflect a command failure, and the CdbPtr->StatCode will reflect the
|
|
UNDI as having already not been shut down.
|
|
The NIC's data structure will have the Delay, Virt2Phys, and Block, pointers zero'd out..
|
|
It's final action is to change the AdapterInfo->State to PXE_STATFLAGS_GET_STATE_STOPPED.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_Stop (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_INITIALIZED) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_NOT_SHUTDOWN;
|
|
return ;
|
|
}
|
|
|
|
AdapterInfo->Delay_30 = 0;
|
|
AdapterInfo->Virt2Phys_30 = 0;
|
|
AdapterInfo->Block_30 = 0;
|
|
|
|
AdapterInfo->Delay = 0;
|
|
AdapterInfo->Virt2Phys = 0;
|
|
AdapterInfo->Block = 0;
|
|
|
|
AdapterInfo->Map_Mem = 0;
|
|
AdapterInfo->UnMap_Mem = 0;
|
|
AdapterInfo->Sync_Mem = 0;
|
|
|
|
AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STOPPED;
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine is used to retrieve the initialization information that is needed by drivers and
|
|
applications to initialize the UNDI. This will fill in data in the Data Block structure that is
|
|
pointed to by the caller's CdbPtr->DBaddr. The fields filled in are as follows:
|
|
MemoryRequired, FrameDataLen, LinkSpeeds[0-3], NvCount, NvWidth, MediaHeaderLen, HWaddrLen,
|
|
MCastFilterCnt, TxBufCnt, TxBufSize, RxBufCnt, RxBufSize, IFtype, Duplex, and LoopBack.
|
|
In addition, the CdbPtr->StatFlags ORs in that this NIC supports cable detection. (APRIORI knowledge)
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_GetInitInfo (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
PXE_DB_GET_INIT_INFO *DbPtr;
|
|
|
|
DbPtr = (PXE_DB_GET_INIT_INFO *) (UINTN) (CdbPtr->DBaddr);
|
|
|
|
DbPtr->MemoryRequired = MEMORY_NEEDED;
|
|
DbPtr->FrameDataLen = PXE_MAX_TXRX_UNIT_ETHER;
|
|
DbPtr->LinkSpeeds[0] = 10;
|
|
DbPtr->LinkSpeeds[1] = 100;
|
|
DbPtr->LinkSpeeds[2] = DbPtr->LinkSpeeds[3] = 0;
|
|
DbPtr->NvCount = MAX_EEPROM_LEN;
|
|
DbPtr->NvWidth = 4;
|
|
DbPtr->MediaHeaderLen = PXE_MAC_HEADER_LEN_ETHER;
|
|
DbPtr->HWaddrLen = PXE_HWADDR_LEN_ETHER;
|
|
DbPtr->MCastFilterCnt = MAX_MCAST_ADDRESS_CNT;
|
|
|
|
DbPtr->TxBufCnt = TX_BUFFER_COUNT;
|
|
DbPtr->TxBufSize = sizeof (TxCB);
|
|
DbPtr->RxBufCnt = RX_BUFFER_COUNT;
|
|
DbPtr->RxBufSize = sizeof (RxFD);
|
|
|
|
DbPtr->IFtype = PXE_IFTYPE_ETHERNET;
|
|
DbPtr->SupportedDuplexModes = PXE_DUPLEX_ENABLE_FULL_SUPPORTED |
|
|
PXE_DUPLEX_FORCE_FULL_SUPPORTED;
|
|
DbPtr->SupportedLoopBackModes = PXE_LOOPBACK_INTERNAL_SUPPORTED |
|
|
PXE_LOOPBACK_EXTERNAL_SUPPORTED;
|
|
|
|
CdbPtr->StatFlags |= (PXE_STATFLAGS_CABLE_DETECT_SUPPORTED |
|
|
PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED);
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine is used to retrieve the configuration information about the NIC being controlled by
|
|
this driver. This will fill in data in the Data Block structure that is pointed to by the caller's CdbPtr->DBaddr.
|
|
The fields filled in are as follows:
|
|
DbPtr->pci.BusType, DbPtr->pci.Bus, DbPtr->pci.Device, and DbPtr->pci.
|
|
In addition, the DbPtr->pci.Config.Dword[0-63] grabs a copy of this NIC's PCI configuration space.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_GetConfigInfo (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
UINT16 Index;
|
|
PXE_DB_GET_CONFIG_INFO *DbPtr;
|
|
|
|
DbPtr = (PXE_DB_GET_CONFIG_INFO *) (UINTN) (CdbPtr->DBaddr);
|
|
|
|
DbPtr->pci.BusType = PXE_BUSTYPE_PCI;
|
|
DbPtr->pci.Bus = AdapterInfo->Bus;
|
|
DbPtr->pci.Device = AdapterInfo->Device;
|
|
DbPtr->pci.Function = AdapterInfo->Function;
|
|
|
|
for (Index = 0; Index < MAX_PCI_CONFIG_LEN; Index++) {
|
|
DbPtr->pci.Config.Dword[Index] = AdapterInfo->Config[Index];
|
|
}
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine resets the network adapter and initializes the UNDI using the parameters supplied in
|
|
the CPB. This command must be issued before the network adapter can be setup to transmit and
|
|
receive packets.
|
|
Once the memory requirements of the UNDI are obtained by using the GetInitInfo command, a block
|
|
of non-swappable memory may need to be allocated. The address of this memory must be passed to
|
|
UNDI during the Initialize in the CPB. This memory is used primarily for transmit and receive buffers.
|
|
The fields CableDetect, LinkSpeed, Duplex, LoopBack, MemoryPtr, and MemoryLength are set with information
|
|
that was passed in the CPB and the NIC is initialized.
|
|
If the NIC initialization fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED
|
|
Otherwise, AdapterInfo->State is updated with PXE_STATFLAGS_GET_STATE_INITIALIZED showing the state of
|
|
the UNDI is now initialized.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_Initialize (
|
|
IN PXE_CDB *CdbPtr,
|
|
NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
PXE_CPB_INITIALIZE *CpbPtr;
|
|
|
|
if ((CdbPtr->OpFlags != PXE_OPFLAGS_INITIALIZE_DETECT_CABLE) &&
|
|
(CdbPtr->OpFlags != PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE)) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
//
|
|
// check if it is already initialized
|
|
//
|
|
if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_INITIALIZED) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_ALREADY_INITIALIZED;
|
|
return ;
|
|
}
|
|
|
|
CpbPtr = (PXE_CPB_INITIALIZE *) (UINTN) CdbPtr->CPBaddr;
|
|
|
|
if (CpbPtr->MemoryLength < (UINT32) MEMORY_NEEDED) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;
|
|
return ;
|
|
}
|
|
|
|
//
|
|
// default behaviour is to detect the cable, if the 3rd param is 1,
|
|
// do not do that
|
|
//
|
|
AdapterInfo->CableDetect = (UINT8) ((CdbPtr->OpFlags == (UINT16) PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE) ? (UINT8) 0 : (UINT8) 1);
|
|
AdapterInfo->LinkSpeedReq = (UINT16) CpbPtr->LinkSpeed;
|
|
AdapterInfo->DuplexReq = CpbPtr->DuplexMode;
|
|
AdapterInfo->LoopBack = CpbPtr->LoopBackMode;
|
|
AdapterInfo->MemoryPtr = CpbPtr->MemoryAddr;
|
|
AdapterInfo->MemoryLength = CpbPtr->MemoryLength;
|
|
|
|
CdbPtr->StatCode = (PXE_STATCODE) E100bInit (AdapterInfo);
|
|
|
|
if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
} else {
|
|
AdapterInfo->State = PXE_STATFLAGS_GET_STATE_INITIALIZED;
|
|
}
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine resets the network adapter and initializes the UNDI using the parameters supplied in
|
|
the CPB. The transmit and receive queues are emptied and any pending interrupts are cleared.
|
|
If the NIC reset fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_Reset (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
if (CdbPtr->OpFlags != PXE_OPFLAGS_NOT_USED &&
|
|
CdbPtr->OpFlags != PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS &&
|
|
CdbPtr->OpFlags != PXE_OPFLAGS_RESET_DISABLE_FILTERS ) {
|
|
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
CdbPtr->StatCode = (UINT16) E100bReset (AdapterInfo, CdbPtr->OpFlags);
|
|
|
|
if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
This routine resets the network adapter and leaves it in a safe state for another driver to
|
|
initialize. Any pending transmits or receives are lost. Receive filters and external
|
|
interrupt enables are disabled. Once the UNDI has been shutdown, it can then be stopped
|
|
or initialized again.
|
|
If the NIC reset fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED
|
|
Otherwise, AdapterInfo->State is updated with PXE_STATFLAGS_GET_STATE_STARTED showing the state of
|
|
the NIC as being started.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_Shutdown (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
//
|
|
// do the shutdown stuff here
|
|
//
|
|
CdbPtr->StatCode = (UINT16) E100bShutdown (AdapterInfo);
|
|
|
|
if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
} else {
|
|
AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STARTED;
|
|
}
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine can be used to read and/or change the current external interrupt enable
|
|
settings. Disabling an external interrupt enable prevents and external (hardware)
|
|
interrupt from being signaled by the network device. Internally the interrupt events
|
|
can still be polled by using the UNDI_GetState command.
|
|
The resulting information on the interrupt state will be passed back in the CdbPtr->StatFlags.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_Interrupt (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
UINT8 IntMask;
|
|
|
|
IntMask = (UINT8)(UINTN)(CdbPtr->OpFlags & (PXE_OPFLAGS_INTERRUPT_RECEIVE |
|
|
PXE_OPFLAGS_INTERRUPT_TRANSMIT |
|
|
PXE_OPFLAGS_INTERRUPT_COMMAND |
|
|
PXE_OPFLAGS_INTERRUPT_SOFTWARE));
|
|
|
|
switch (CdbPtr->OpFlags & PXE_OPFLAGS_INTERRUPT_OPMASK) {
|
|
case PXE_OPFLAGS_INTERRUPT_READ:
|
|
break;
|
|
|
|
case PXE_OPFLAGS_INTERRUPT_ENABLE:
|
|
if (IntMask == 0) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
AdapterInfo->int_mask = IntMask;
|
|
E100bSetInterruptState (AdapterInfo);
|
|
break;
|
|
|
|
case PXE_OPFLAGS_INTERRUPT_DISABLE:
|
|
if (IntMask != 0) {
|
|
AdapterInfo->int_mask = (UINT16) (AdapterInfo->int_mask & ~(IntMask));
|
|
E100bSetInterruptState (AdapterInfo);
|
|
break;
|
|
}
|
|
|
|
//
|
|
// else fall thru.
|
|
//
|
|
default:
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_RECEIVE) != 0) {
|
|
CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_RECEIVE;
|
|
|
|
}
|
|
|
|
if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_TRANSMIT) != 0) {
|
|
CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_TRANSMIT;
|
|
|
|
}
|
|
|
|
if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_COMMAND) != 0) {
|
|
CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_COMMAND;
|
|
|
|
}
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine is used to read and change receive filters and, if supported, read
|
|
and change multicast MAC address filter list.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_RecFilter (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
UINT16 NewFilter;
|
|
UINT16 OpFlags;
|
|
PXE_DB_RECEIVE_FILTERS *DbPtr;
|
|
UINT8 *MacAddr;
|
|
UINTN MacCount;
|
|
UINT16 Index;
|
|
UINT16 copy_len;
|
|
UINT8 *ptr1;
|
|
UINT8 *ptr2;
|
|
BOOLEAN InvalidMacAddr;
|
|
|
|
OpFlags = CdbPtr->OpFlags;
|
|
NewFilter = (UINT16) (OpFlags & 0x1F);
|
|
|
|
switch (OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_OPMASK) {
|
|
case PXE_OPFLAGS_RECEIVE_FILTER_READ:
|
|
|
|
//
|
|
// not expecting a cpb, not expecting any filter bits
|
|
//
|
|
if ((NewFilter != 0) || (CdbPtr->CPBsize != 0)) {
|
|
goto BadCdb;
|
|
|
|
}
|
|
|
|
if ((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) == 0) {
|
|
goto JustRead;
|
|
|
|
}
|
|
|
|
NewFilter = (UINT16) (NewFilter | AdapterInfo->Rx_Filter);
|
|
//
|
|
// all other flags are ignored except mcast_reset
|
|
//
|
|
break;
|
|
|
|
case PXE_OPFLAGS_RECEIVE_FILTER_ENABLE:
|
|
//
|
|
// there should be atleast one other filter bit set.
|
|
//
|
|
if (NewFilter == 0) {
|
|
//
|
|
// nothing to enable
|
|
//
|
|
goto BadCdb;
|
|
}
|
|
|
|
if (CdbPtr->CPBsize != 0) {
|
|
//
|
|
// this must be a multicast address list!
|
|
// don't accept the list unless selective_mcast is set
|
|
// don't accept confusing mcast settings with this
|
|
//
|
|
if (((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) == 0) ||
|
|
((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) ||
|
|
((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST) != 0) ||
|
|
((CdbPtr->CPBsize % sizeof (PXE_MAC_ADDR)) != 0) ) {
|
|
goto BadCdb;
|
|
}
|
|
|
|
MacAddr = (UINT8 *) ((UINTN) (CdbPtr->CPBaddr));
|
|
MacCount = CdbPtr->CPBsize / sizeof (PXE_MAC_ADDR);
|
|
|
|
//
|
|
// The format of Ethernet multicast address for IPv6 is defined in RFC2464,
|
|
// for IPv4 is defined in RFC1112. Check whether the address is valid.
|
|
//
|
|
InvalidMacAddr = FALSE;
|
|
|
|
for (; MacCount-- != 0; MacAddr += sizeof (PXE_MAC_ADDR)) {
|
|
if (MacAddr[0] == 0x01) {
|
|
//
|
|
// This multicast MAC address is mapped from IPv4 address.
|
|
//
|
|
if (MacAddr[1] != 0x00 || MacAddr[2] != 0x5E || (MacAddr[3] & 0x80) != 0) {
|
|
InvalidMacAddr = TRUE;
|
|
}
|
|
} else if (MacAddr[0] == 0x33) {
|
|
//
|
|
// This multicast MAC address is mapped from IPv6 address.
|
|
//
|
|
if (MacAddr[1] != 0x33) {
|
|
InvalidMacAddr = TRUE;
|
|
}
|
|
} else {
|
|
InvalidMacAddr = TRUE;
|
|
}
|
|
|
|
if (InvalidMacAddr) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;
|
|
return ;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// check selective mcast case enable case
|
|
//
|
|
if ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) != 0) {
|
|
if (((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) ||
|
|
((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST) != 0) ) {
|
|
goto BadCdb;
|
|
|
|
}
|
|
//
|
|
// if no cpb, make sure we have an old list
|
|
//
|
|
if ((CdbPtr->CPBsize == 0) && (AdapterInfo->mcast_list.list_len == 0)) {
|
|
goto BadCdb;
|
|
}
|
|
}
|
|
//
|
|
// if you want to enable anything, you got to have unicast
|
|
// and you have what you already enabled!
|
|
//
|
|
NewFilter = (UINT16) (NewFilter | (PXE_OPFLAGS_RECEIVE_FILTER_UNICAST | AdapterInfo->Rx_Filter));
|
|
|
|
break;
|
|
|
|
case PXE_OPFLAGS_RECEIVE_FILTER_DISABLE:
|
|
|
|
//
|
|
// mcast list not expected, i.e. no cpb here!
|
|
//
|
|
if (CdbPtr->CPBsize != PXE_CPBSIZE_NOT_USED) {
|
|
goto BadCdb;
|
|
}
|
|
|
|
NewFilter = (UINT16) ((~(CdbPtr->OpFlags & 0x1F)) & AdapterInfo->Rx_Filter);
|
|
|
|
break;
|
|
|
|
default:
|
|
goto BadCdb;
|
|
}
|
|
|
|
if ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) {
|
|
AdapterInfo->mcast_list.list_len = 0;
|
|
NewFilter &= (~PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST);
|
|
}
|
|
|
|
E100bSetfilter (AdapterInfo, NewFilter, CdbPtr->CPBaddr, CdbPtr->CPBsize);
|
|
|
|
JustRead:
|
|
//
|
|
// give the current mcast list
|
|
//
|
|
if ((CdbPtr->DBsize != 0) && (AdapterInfo->mcast_list.list_len != 0)) {
|
|
//
|
|
// copy the mc list to db
|
|
//
|
|
|
|
DbPtr = (PXE_DB_RECEIVE_FILTERS *) (UINTN) CdbPtr->DBaddr;
|
|
ptr1 = (UINT8 *) (&DbPtr->MCastList[0]);
|
|
|
|
//
|
|
// DbPtr->mc_count = AdapterInfo->mcast_list.list_len;
|
|
//
|
|
copy_len = (UINT16) (AdapterInfo->mcast_list.list_len * PXE_MAC_LENGTH);
|
|
|
|
if (copy_len > CdbPtr->DBsize) {
|
|
copy_len = CdbPtr->DBsize;
|
|
|
|
}
|
|
|
|
ptr2 = (UINT8 *) (&AdapterInfo->mcast_list.mc_list[0]);
|
|
for (Index = 0; Index < copy_len; Index++) {
|
|
ptr1[Index] = ptr2[Index];
|
|
}
|
|
}
|
|
//
|
|
// give the stat flags here
|
|
//
|
|
if (AdapterInfo->Receive_Started) {
|
|
CdbPtr->StatFlags = (PXE_STATFLAGS) (CdbPtr->StatFlags | AdapterInfo->Rx_Filter);
|
|
|
|
}
|
|
|
|
return ;
|
|
|
|
BadCdb:
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine is used to get the current station and broadcast MAC addresses, and to change the
|
|
current station MAC address.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_StnAddr (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
PXE_CPB_STATION_ADDRESS *CpbPtr;
|
|
PXE_DB_STATION_ADDRESS *DbPtr;
|
|
UINT16 Index;
|
|
|
|
if (CdbPtr->OpFlags == PXE_OPFLAGS_STATION_ADDRESS_RESET) {
|
|
//
|
|
// configure the permanent address.
|
|
// change the AdapterInfo->CurrentNodeAddress field.
|
|
//
|
|
if (CompareMem (
|
|
&AdapterInfo->CurrentNodeAddress[0],
|
|
&AdapterInfo->PermNodeAddress[0],
|
|
PXE_MAC_LENGTH
|
|
) != 0) {
|
|
for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {
|
|
AdapterInfo->CurrentNodeAddress[Index] = AdapterInfo->PermNodeAddress[Index];
|
|
}
|
|
|
|
E100bSetupIAAddr (AdapterInfo);
|
|
}
|
|
}
|
|
|
|
if (CdbPtr->CPBaddr != (UINT64) 0) {
|
|
CpbPtr = (PXE_CPB_STATION_ADDRESS *) (UINTN) (CdbPtr->CPBaddr);
|
|
//
|
|
// configure the new address
|
|
//
|
|
for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {
|
|
AdapterInfo->CurrentNodeAddress[Index] = CpbPtr->StationAddr[Index];
|
|
}
|
|
|
|
E100bSetupIAAddr (AdapterInfo);
|
|
}
|
|
|
|
if (CdbPtr->DBaddr != (UINT64) 0) {
|
|
DbPtr = (PXE_DB_STATION_ADDRESS *) (UINTN) (CdbPtr->DBaddr);
|
|
//
|
|
// fill it with the new values
|
|
//
|
|
for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {
|
|
DbPtr->StationAddr[Index] = AdapterInfo->CurrentNodeAddress[Index];
|
|
DbPtr->BroadcastAddr[Index] = AdapterInfo->BroadcastNodeAddress[Index];
|
|
DbPtr->PermanentAddr[Index] = AdapterInfo->PermNodeAddress[Index];
|
|
}
|
|
}
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine is used to read and clear the NIC traffic statistics. This command is supported only
|
|
if the !PXE structure's Implementation flags say so.
|
|
Results will be parsed out in the following manner:
|
|
CdbPtr->DBaddr.Data[0] R Total Frames (Including frames with errors and dropped frames)
|
|
CdbPtr->DBaddr.Data[1] R Good Frames (All frames copied into receive buffer)
|
|
CdbPtr->DBaddr.Data[2] R Undersize Frames (Frames below minimum length for media <64 for ethernet)
|
|
CdbPtr->DBaddr.Data[4] R Dropped Frames (Frames that were dropped because receive buffers were full)
|
|
CdbPtr->DBaddr.Data[8] R CRC Error Frames (Frames with alignment or CRC errors)
|
|
CdbPtr->DBaddr.Data[A] T Total Frames (Including frames with errors and dropped frames)
|
|
CdbPtr->DBaddr.Data[B] T Good Frames (All frames copied into transmit buffer)
|
|
CdbPtr->DBaddr.Data[C] T Undersize Frames (Frames below minimum length for media <64 for ethernet)
|
|
CdbPtr->DBaddr.Data[E] T Dropped Frames (Frames that were dropped because of collisions)
|
|
CdbPtr->DBaddr.Data[14] T Total Collision Frames (Total collisions on this subnet)
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_Statistics (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
if ((CdbPtr->OpFlags &~(PXE_OPFLAGS_STATISTICS_RESET)) != 0) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
if ((CdbPtr->OpFlags & PXE_OPFLAGS_STATISTICS_RESET) != 0) {
|
|
//
|
|
// Reset the statistics
|
|
//
|
|
CdbPtr->StatCode = (UINT16) E100bStatistics (AdapterInfo, 0, 0);
|
|
} else {
|
|
CdbPtr->StatCode = (UINT16) E100bStatistics (AdapterInfo, CdbPtr->DBaddr, CdbPtr->DBsize);
|
|
}
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine is used to translate a multicast IP address to a multicast MAC address.
|
|
This results in a MAC address composed of 25 bits of fixed data with the upper 23 bits of the IP
|
|
address being appended to it. Results passed back in the equivalent of CdbPtr->DBaddr->MAC[0-5].
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_ip2mac (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
PXE_CPB_MCAST_IP_TO_MAC *CpbPtr;
|
|
PXE_DB_MCAST_IP_TO_MAC *DbPtr;
|
|
UINT8 *TmpPtr;
|
|
|
|
CpbPtr = (PXE_CPB_MCAST_IP_TO_MAC *) (UINTN) CdbPtr->CPBaddr;
|
|
DbPtr = (PXE_DB_MCAST_IP_TO_MAC *) (UINTN) CdbPtr->DBaddr;
|
|
|
|
if ((CdbPtr->OpFlags & PXE_OPFLAGS_MCAST_IPV6_TO_MAC) != 0) {
|
|
//
|
|
// for now this is not supported
|
|
//
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_UNSUPPORTED;
|
|
return ;
|
|
}
|
|
|
|
TmpPtr = (UINT8 *) (&CpbPtr->IP.IPv4);
|
|
//
|
|
// check if the ip given is a mcast IP
|
|
//
|
|
if ((TmpPtr[0] & 0xF0) != 0xE0) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;
|
|
}
|
|
//
|
|
// take the last 23 bits in IP.
|
|
// be very careful. accessing word on a non-word boundary will hang motherboard codenamed Big Sur
|
|
// casting the mac array (in the middle) to a UINT32 pointer and accessing
|
|
// the UINT32 content hung the system...
|
|
//
|
|
DbPtr->MAC[0] = 0x01;
|
|
DbPtr->MAC[1] = 0x00;
|
|
DbPtr->MAC[2] = 0x5e;
|
|
DbPtr->MAC[3] = (UINT8) (TmpPtr[1] & 0x7f);
|
|
DbPtr->MAC[4] = (UINT8) TmpPtr[2];
|
|
DbPtr->MAC[5] = (UINT8) TmpPtr[3];
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine is used to read and write non-volatile storage on the NIC (if supported). The NVRAM
|
|
could be EEPROM, FLASH, or battery backed RAM.
|
|
This is an optional function according to the UNDI specification (or will be......)
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_NVData (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
PXE_DB_NVDATA *DbPtr;
|
|
UINT16 Index;
|
|
|
|
if ((CdbPtr->OpFlags == PXE_OPFLAGS_NVDATA_READ) != 0) {
|
|
|
|
if ((CdbPtr->DBsize == PXE_DBSIZE_NOT_USED) != 0) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
DbPtr = (PXE_DB_NVDATA *) (UINTN) CdbPtr->DBaddr;
|
|
|
|
for (Index = 0; Index < MAX_PCI_CONFIG_LEN; Index++) {
|
|
DbPtr->Data.Dword[Index] = AdapterInfo->NVData[Index];
|
|
|
|
}
|
|
|
|
} else {
|
|
//
|
|
// no write for now
|
|
//
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_UNSUPPORTED;
|
|
}
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine returns the current interrupt status and/or the transmitted buffer addresses.
|
|
If the current interrupt status is returned, pending interrupts will be acknowledged by this
|
|
command. Transmitted buffer addresses that are written to the DB are removed from the transmit
|
|
buffer queue.
|
|
Normally, this command would be polled with interrupts disabled.
|
|
The transmit buffers are returned in CdbPtr->DBaddr->TxBufer[0 - NumEntries].
|
|
The interrupt status is returned in CdbPtr->StatFlags.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_Status (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
PXE_DB_GET_STATUS *DbPtr;
|
|
PXE_DB_GET_STATUS TmpGetStatus;
|
|
UINT16 Index;
|
|
UINT16 Status;
|
|
UINT16 NumEntries;
|
|
RxFD *RxPtr;
|
|
|
|
//
|
|
// Fill in temporary GetStatus storage.
|
|
//
|
|
RxPtr = &AdapterInfo->rx_ring[AdapterInfo->cur_rx_ind];
|
|
|
|
if ((RxPtr->cb_header.status & RX_COMPLETE) != 0) {
|
|
TmpGetStatus.RxFrameLen = RxPtr->ActualCount & 0x3fff;
|
|
} else {
|
|
TmpGetStatus.RxFrameLen = 0;
|
|
}
|
|
|
|
TmpGetStatus.reserved = 0;
|
|
|
|
//
|
|
// Fill in size of next available receive packet and
|
|
// reserved field in caller's DB storage.
|
|
//
|
|
DbPtr = (PXE_DB_GET_STATUS *) (UINTN) CdbPtr->DBaddr;
|
|
|
|
if (CdbPtr->DBsize > 0 && CdbPtr->DBsize < sizeof (UINT32) * 2) {
|
|
CopyMem (DbPtr, &TmpGetStatus, CdbPtr->DBsize);
|
|
} else {
|
|
CopyMem (DbPtr, &TmpGetStatus, sizeof (UINT32) * 2);
|
|
}
|
|
|
|
//
|
|
//
|
|
//
|
|
if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS) != 0) {
|
|
//
|
|
// DBsize of zero is invalid if Tx buffers are requested.
|
|
//
|
|
if (CdbPtr->DBsize == 0) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
//
|
|
// remember this b4 we overwrite
|
|
//
|
|
NumEntries = (UINT16) (CdbPtr->DBsize - sizeof (UINT64));
|
|
|
|
//
|
|
// We already filled in 2 UINT32s.
|
|
//
|
|
CdbPtr->DBsize = sizeof (UINT32) * 2;
|
|
|
|
//
|
|
// will claim any hanging free CBs
|
|
//
|
|
CheckCBList (AdapterInfo);
|
|
|
|
if (AdapterInfo->xmit_done_head == AdapterInfo->xmit_done_tail) {
|
|
CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY;
|
|
} else {
|
|
for (Index = 0; NumEntries >= sizeof (UINT64); Index++, NumEntries -= sizeof (UINT64)) {
|
|
if (AdapterInfo->xmit_done_head != AdapterInfo->xmit_done_tail) {
|
|
DbPtr->TxBuffer[Index] = AdapterInfo->xmit_done[AdapterInfo->xmit_done_head];
|
|
AdapterInfo->xmit_done_head = next (AdapterInfo->xmit_done_head);
|
|
CdbPtr->DBsize += sizeof (UINT64);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (AdapterInfo->xmit_done_head != AdapterInfo->xmit_done_tail) {
|
|
CdbPtr->StatFlags |= PXE_STATFLAGS_DB_WRITE_TRUNCATED;
|
|
|
|
}
|
|
//
|
|
// check for a receive buffer and give it's size in db
|
|
//
|
|
}
|
|
//
|
|
//
|
|
//
|
|
if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_INTERRUPT_STATUS) != 0) {
|
|
|
|
Status = InWord (AdapterInfo, AdapterInfo->ioaddr + SCBStatus);
|
|
AdapterInfo->Int_Status = (UINT16) (AdapterInfo->Int_Status | Status);
|
|
|
|
//
|
|
// acknoledge the interrupts
|
|
//
|
|
OutWord (AdapterInfo, (UINT16) (Status & 0xfc00), (UINT32) (AdapterInfo->ioaddr + SCBStatus));
|
|
|
|
//
|
|
// report all the outstanding interrupts
|
|
//
|
|
Status = AdapterInfo->Int_Status;
|
|
if ((Status & SCB_STATUS_FR) != 0) {
|
|
CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_RECEIVE;
|
|
}
|
|
|
|
if ((Status & SCB_STATUS_SWI) != 0) {
|
|
CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_SOFTWARE;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Return current media status
|
|
//
|
|
if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_MEDIA_STATUS) != 0) {
|
|
AdapterInfo->PhyAddress = 0xFF;
|
|
AdapterInfo->CableDetect = 1;
|
|
|
|
if (!PhyDetect (AdapterInfo)) {
|
|
CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_NO_MEDIA;
|
|
}
|
|
}
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine is used to fill media header(s) in transmit packet(s).
|
|
Copies the MAC address into the media header whether it is dealing
|
|
with fragmented or non-fragmented packets.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_FillHeader (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
PXE_CPB_FILL_HEADER *Cpb;
|
|
PXE_CPB_FILL_HEADER_FRAGMENTED *Cpbf;
|
|
EtherHeader *MacHeader;
|
|
UINTN Index;
|
|
|
|
if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
if ((CdbPtr->OpFlags & PXE_OPFLAGS_FILL_HEADER_FRAGMENTED) != 0) {
|
|
Cpbf = (PXE_CPB_FILL_HEADER_FRAGMENTED *) (UINTN) CdbPtr->CPBaddr;
|
|
|
|
//
|
|
// assume 1st fragment is big enough for the mac header
|
|
//
|
|
if ((Cpbf->FragCnt == 0) || (Cpbf->FragDesc[0].FragLen < PXE_MAC_HEADER_LEN_ETHER)) {
|
|
//
|
|
// no buffers given
|
|
//
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
MacHeader = (EtherHeader *) (UINTN) Cpbf->FragDesc[0].FragAddr;
|
|
//
|
|
// we don't swap the protocol bytes
|
|
//
|
|
MacHeader->type = Cpbf->Protocol;
|
|
|
|
for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) {
|
|
MacHeader->dest_addr[Index] = Cpbf->DestAddr[Index];
|
|
MacHeader->src_addr[Index] = Cpbf->SrcAddr[Index];
|
|
}
|
|
} else {
|
|
Cpb = (PXE_CPB_FILL_HEADER *) (UINTN) CdbPtr->CPBaddr;
|
|
|
|
MacHeader = (EtherHeader *) (UINTN) Cpb->MediaHeader;
|
|
//
|
|
// we don't swap the protocol bytes
|
|
//
|
|
MacHeader->type = Cpb->Protocol;
|
|
|
|
for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) {
|
|
MacHeader->dest_addr[Index] = Cpb->DestAddr[Index];
|
|
MacHeader->src_addr[Index] = Cpb->SrcAddr[Index];
|
|
}
|
|
}
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
This routine is used to place a packet into the transmit queue. The data buffers given to
|
|
this command are to be considered locked and the application or network driver loses
|
|
ownership of these buffers and must not free or relocate them until the ownership returns.
|
|
When the packets are transmitted, a transmit complete interrupt is generated (if interrupts
|
|
are disabled, the transmit interrupt status is still set and can be checked using the UNDI_Status
|
|
command.
|
|
Some implementations and adapters support transmitting multiple packets with one transmit
|
|
command. If this feature is supported, the transmit CPBs can be linked in one transmit
|
|
command.
|
|
All UNDIs support fragmented frames, now all network devices or protocols do. If a fragmented
|
|
frame CPB is given to UNDI and the network device does not support fragmented frames
|
|
(see !PXE.Implementation flag), the UNDI will have to copy the fragments into a local buffer
|
|
before transmitting.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_Transmit (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
|
|
if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
CdbPtr->StatCode = (PXE_STATCODE) E100bTransmit (AdapterInfo, CdbPtr->CPBaddr, CdbPtr->OpFlags);
|
|
|
|
if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
}
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
When the network adapter has received a frame, this command is used to copy the frame
|
|
into the driver/application storage location. Once a frame has been copied, it is
|
|
removed from the receive queue.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
UNDI_Receive (
|
|
IN PXE_CDB *CdbPtr,
|
|
IN NIC_DATA_INSTANCE *AdapterInfo
|
|
)
|
|
{
|
|
|
|
//
|
|
// check if RU has started...
|
|
//
|
|
if (!AdapterInfo->Receive_Started) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_NOT_INITIALIZED;
|
|
return ;
|
|
}
|
|
|
|
|
|
CdbPtr->StatCode = (UINT16) E100bReceive (AdapterInfo, CdbPtr->CPBaddr, CdbPtr->DBaddr);
|
|
if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
|
|
}
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
This is the main SW UNDI API entry using the newer nii protocol.
|
|
The parameter passed in is a 64 bit flat model virtual
|
|
address of the cdb. We then jump into the common routine for both old and
|
|
new nii protocol entries.
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
// TODO: cdb - add argument and description to function comment
|
|
VOID
|
|
UNDI_APIEntry_new (
|
|
IN UINT64 cdb
|
|
)
|
|
{
|
|
PXE_CDB *CdbPtr;
|
|
NIC_DATA_INSTANCE *AdapterInfo;
|
|
|
|
if (cdb == (UINT64) 0) {
|
|
return ;
|
|
|
|
}
|
|
|
|
CdbPtr = (PXE_CDB *) (UINTN) cdb;
|
|
|
|
if (CdbPtr->IFnum >= pxe_31->IFcnt) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
AdapterInfo = &(UNDI32DeviceList[CdbPtr->IFnum]->NicInfo);
|
|
//
|
|
// entering from older entry point
|
|
//
|
|
AdapterInfo->VersionFlag = 0x31;
|
|
UNDI_APIEntry_Common (cdb);
|
|
}
|
|
|
|
|
|
/**
|
|
This is the common routine for both old and new entry point procedures.
|
|
The parameter passed in is a 64 bit flat model virtual
|
|
address of the cdb. We then jump into the service routine pointed to by the
|
|
Api_Table[OpCode].
|
|
|
|
@param CdbPtr Pointer to the command descriptor block.
|
|
@param AdapterInfo Pointer to the NIC data structure information which
|
|
the UNDI driver is layering on..
|
|
|
|
@return None
|
|
|
|
**/
|
|
// TODO: cdb - add argument and description to function comment
|
|
VOID
|
|
UNDI_APIEntry_Common (
|
|
IN UINT64 cdb
|
|
)
|
|
{
|
|
PXE_CDB *CdbPtr;
|
|
NIC_DATA_INSTANCE *AdapterInfo;
|
|
UNDI_CALL_TABLE *tab_ptr;
|
|
|
|
CdbPtr = (PXE_CDB *) (UINTN) cdb;
|
|
|
|
//
|
|
// check the OPCODE range
|
|
//
|
|
if ((CdbPtr->OpCode > PXE_OPCODE_LAST_VALID) ||
|
|
(CdbPtr->StatCode != PXE_STATCODE_INITIALIZE) ||
|
|
(CdbPtr->StatFlags != PXE_STATFLAGS_INITIALIZE) ||
|
|
(CdbPtr->IFnum >= pxe_31->IFcnt) ) {
|
|
goto badcdb;
|
|
|
|
}
|
|
|
|
if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {
|
|
if (CdbPtr->CPBaddr != PXE_CPBADDR_NOT_USED) {
|
|
goto badcdb;
|
|
}
|
|
} else if (CdbPtr->CPBaddr == PXE_CPBADDR_NOT_USED) {
|
|
goto badcdb;
|
|
}
|
|
|
|
if (CdbPtr->DBsize == PXE_DBSIZE_NOT_USED) {
|
|
if (CdbPtr->DBaddr != PXE_DBADDR_NOT_USED) {
|
|
goto badcdb;
|
|
}
|
|
} else if (CdbPtr->DBaddr == PXE_DBADDR_NOT_USED) {
|
|
goto badcdb;
|
|
}
|
|
|
|
//
|
|
// check if cpbsize and dbsize are as needed
|
|
// check if opflags are as expected
|
|
//
|
|
tab_ptr = &api_table[CdbPtr->OpCode];
|
|
|
|
if (tab_ptr->cpbsize != (UINT16) (DONT_CHECK) && tab_ptr->cpbsize != CdbPtr->CPBsize) {
|
|
goto badcdb;
|
|
}
|
|
|
|
if (tab_ptr->dbsize != (UINT16) (DONT_CHECK) && tab_ptr->dbsize != CdbPtr->DBsize) {
|
|
goto badcdb;
|
|
}
|
|
|
|
if (tab_ptr->opflags != (UINT16) (DONT_CHECK) && tab_ptr->opflags != CdbPtr->OpFlags) {
|
|
goto badcdb;
|
|
|
|
}
|
|
|
|
AdapterInfo = &(UNDI32DeviceList[CdbPtr->IFnum]->NicInfo);
|
|
|
|
//
|
|
// check if UNDI_State is valid for this call
|
|
//
|
|
if (tab_ptr->state != (UINT16) (-1)) {
|
|
//
|
|
// should atleast be started
|
|
//
|
|
if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_STOPPED) {
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_NOT_STARTED;
|
|
return ;
|
|
}
|
|
//
|
|
// check if it should be initialized
|
|
//
|
|
if (tab_ptr->state == 2) {
|
|
if (AdapterInfo->State != PXE_STATFLAGS_GET_STATE_INITIALIZED) {
|
|
CdbPtr->StatCode = PXE_STATCODE_NOT_INITIALIZED;
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
return ;
|
|
}
|
|
}
|
|
}
|
|
//
|
|
// set the return variable for success case here
|
|
//
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_COMPLETE;
|
|
CdbPtr->StatCode = PXE_STATCODE_SUCCESS;
|
|
|
|
tab_ptr->api_ptr (CdbPtr, AdapterInfo);
|
|
return ;
|
|
//
|
|
// %% AVL - check for command linking
|
|
//
|
|
badcdb:
|
|
CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
|
|
CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
When called with a null NicPtr, this routine decrements the number of NICs
|
|
this UNDI is supporting and removes the NIC_DATA_POINTER from the array.
|
|
Otherwise, it increments the number of NICs this UNDI is supported and
|
|
updates the pxe.Fudge to ensure a proper check sum results.
|
|
|
|
@param NicPtr Pointer to the NIC data structure.
|
|
|
|
@return None
|
|
|
|
**/
|
|
VOID
|
|
PxeUpdate (
|
|
IN NIC_DATA_INSTANCE *NicPtr,
|
|
IN PXE_SW_UNDI *PxePtr
|
|
)
|
|
{
|
|
if (NicPtr == NULL) {
|
|
if (PxePtr->IFcnt > 0) {
|
|
//
|
|
// number of NICs this undi supports
|
|
//
|
|
PxePtr->IFcnt--;
|
|
}
|
|
|
|
PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len));
|
|
return ;
|
|
}
|
|
|
|
//
|
|
// number of NICs this undi supports
|
|
//
|
|
PxePtr->IFcnt++;
|
|
PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len));
|
|
|
|
return ;
|
|
}
|
|
|
|
|
|
/**
|
|
Initialize the !PXE structure
|
|
|
|
@param PxePtr Pointer to SW_UNDI data structure.
|
|
|
|
@retval EFI_SUCCESS This driver is added to Controller.
|
|
@retval other This driver does not support this device.
|
|
|
|
**/
|
|
VOID
|
|
PxeStructInit (
|
|
IN PXE_SW_UNDI *PxePtr
|
|
)
|
|
{
|
|
//
|
|
// Initialize the !PXE structure
|
|
//
|
|
PxePtr->Signature = PXE_ROMID_SIGNATURE;
|
|
PxePtr->Len = sizeof (PXE_SW_UNDI);
|
|
//
|
|
// cksum
|
|
//
|
|
PxePtr->Fudge = 0;
|
|
//
|
|
// number of NICs this undi supports
|
|
//
|
|
PxePtr->IFcnt = 0;
|
|
PxePtr->Rev = PXE_ROMID_REV;
|
|
PxePtr->MajorVer = PXE_ROMID_MAJORVER;
|
|
PxePtr->MinorVer = PXE_ROMID_MINORVER;
|
|
PxePtr->reserved1 = 0;
|
|
|
|
PxePtr->Implementation = PXE_ROMID_IMP_SW_VIRT_ADDR |
|
|
PXE_ROMID_IMP_FRAG_SUPPORTED |
|
|
PXE_ROMID_IMP_CMD_LINK_SUPPORTED |
|
|
PXE_ROMID_IMP_NVDATA_READ_ONLY |
|
|
PXE_ROMID_IMP_STATION_ADDR_SETTABLE |
|
|
PXE_ROMID_IMP_PROMISCUOUS_MULTICAST_RX_SUPPORTED |
|
|
PXE_ROMID_IMP_PROMISCUOUS_RX_SUPPORTED |
|
|
PXE_ROMID_IMP_BROADCAST_RX_SUPPORTED |
|
|
PXE_ROMID_IMP_FILTERED_MULTICAST_RX_SUPPORTED |
|
|
PXE_ROMID_IMP_SOFTWARE_INT_SUPPORTED |
|
|
PXE_ROMID_IMP_PACKET_RX_INT_SUPPORTED;
|
|
|
|
PxePtr->EntryPoint = (UINT64) (UINTN) UNDI_APIEntry_new;
|
|
PxePtr->MinorVer = PXE_ROMID_MINORVER_31;
|
|
|
|
PxePtr->reserved2[0] = 0;
|
|
PxePtr->reserved2[1] = 0;
|
|
PxePtr->reserved2[2] = 0;
|
|
PxePtr->BusCnt = 1;
|
|
PxePtr->BusType[0] = PXE_BUSTYPE_PCI;
|
|
|
|
PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len));
|
|
}
|
|
|