mirror of https://github.com/acidanthera/audk.git
2764 lines
93 KiB
C
2764 lines
93 KiB
C
/** @file
|
|
PEIM to produce gPeiUsb2HostControllerPpiGuid based on gPeiUsbControllerPpiGuid
|
|
which is used to enable recovery function from USB Drivers.
|
|
|
|
Copyright (c) 2014, Intel Corporation. All rights reserved.<BR>
|
|
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions
|
|
of the BSD License which accompanies this distribution. The
|
|
full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include "XhcPeim.h"
|
|
|
|
/**
|
|
Create a command transfer TRB to support XHCI command interfaces.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param CmdTrb The cmd TRB to be executed.
|
|
|
|
@return Created URB or NULL.
|
|
|
|
**/
|
|
URB*
|
|
XhcPeiCreateCmdTrb (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN TRB_TEMPLATE *CmdTrb
|
|
)
|
|
{
|
|
URB *Urb;
|
|
|
|
Urb = AllocateZeroPool (sizeof (URB));
|
|
if (Urb == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
Urb->Signature = XHC_URB_SIG;
|
|
|
|
Urb->Ring = &Xhc->CmdRing;
|
|
XhcPeiSyncTrsRing (Xhc, Urb->Ring);
|
|
Urb->TrbNum = 1;
|
|
Urb->TrbStart = Urb->Ring->RingEnqueue;
|
|
CopyMem (Urb->TrbStart, CmdTrb, sizeof (TRB_TEMPLATE));
|
|
Urb->TrbStart->CycleBit = Urb->Ring->RingPCS & BIT0;
|
|
Urb->TrbEnd = Urb->TrbStart;
|
|
|
|
return Urb;
|
|
}
|
|
|
|
/**
|
|
Execute a XHCI cmd TRB pointed by CmdTrb.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param CmdTrb The cmd TRB to be executed.
|
|
@param Timeout Indicates the maximum time, in millisecond, which the
|
|
transfer is allowed to complete.
|
|
@param EvtTrb The event TRB corresponding to the cmd TRB.
|
|
|
|
@retval EFI_SUCCESS The transfer was completed successfully.
|
|
@retval EFI_INVALID_PARAMETER Some parameters are invalid.
|
|
@retval EFI_TIMEOUT The transfer failed due to timeout.
|
|
@retval EFI_DEVICE_ERROR The transfer failed due to host controller error.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiCmdTransfer (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN TRB_TEMPLATE *CmdTrb,
|
|
IN UINTN Timeout,
|
|
OUT TRB_TEMPLATE **EvtTrb
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
URB *Urb;
|
|
|
|
//
|
|
// Validate the parameters
|
|
//
|
|
if ((Xhc == NULL) || (CmdTrb == NULL)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
Status = EFI_DEVICE_ERROR;
|
|
|
|
if (XhcPeiIsHalt (Xhc) || XhcPeiIsSysError (Xhc)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiCmdTransfer: HC is halted or has system error\n"));
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Create a new URB, then poll the execution status.
|
|
//
|
|
Urb = XhcPeiCreateCmdTrb (Xhc, CmdTrb);
|
|
if (Urb == NULL) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiCmdTransfer: failed to create URB\n"));
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
Status = XhcPeiExecTransfer (Xhc, TRUE, Urb, Timeout);
|
|
*EvtTrb = Urb->EvtTrb;
|
|
|
|
if (Urb->Result == EFI_USB_NOERROR) {
|
|
Status = EFI_SUCCESS;
|
|
}
|
|
|
|
XhcPeiFreeUrb (Xhc, Urb);
|
|
|
|
ON_EXIT:
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Create a new URB for a new transaction.
|
|
|
|
@param Xhc The XHCI device
|
|
@param BusAddr The logical device address assigned by UsbBus driver
|
|
@param EpAddr Endpoint addrress
|
|
@param DevSpeed The device speed
|
|
@param MaxPacket The max packet length of the endpoint
|
|
@param Type The transaction type
|
|
@param Request The standard USB request for control transfer
|
|
@param Data The user data to transfer
|
|
@param DataLen The length of data buffer
|
|
@param Callback The function to call when data is transferred
|
|
@param Context The context to the callback
|
|
|
|
@return Created URB or NULL
|
|
|
|
**/
|
|
URB*
|
|
XhcPeiCreateUrb (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINT8 BusAddr,
|
|
IN UINT8 EpAddr,
|
|
IN UINT8 DevSpeed,
|
|
IN UINTN MaxPacket,
|
|
IN UINTN Type,
|
|
IN EFI_USB_DEVICE_REQUEST *Request,
|
|
IN VOID *Data,
|
|
IN UINTN DataLen,
|
|
IN EFI_ASYNC_USB_TRANSFER_CALLBACK Callback,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
USB_ENDPOINT *Ep;
|
|
EFI_STATUS Status;
|
|
URB *Urb;
|
|
|
|
Urb = AllocateZeroPool (sizeof (URB));
|
|
if (Urb == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
Urb->Signature = XHC_URB_SIG;
|
|
|
|
Ep = &Urb->Ep;
|
|
Ep->BusAddr = BusAddr;
|
|
Ep->EpAddr = (UINT8) (EpAddr & 0x0F);
|
|
Ep->Direction = ((EpAddr & 0x80) != 0) ? EfiUsbDataIn : EfiUsbDataOut;
|
|
Ep->DevSpeed = DevSpeed;
|
|
Ep->MaxPacket = MaxPacket;
|
|
Ep->Type = Type;
|
|
|
|
Urb->Request = Request;
|
|
Urb->Data = Data;
|
|
Urb->DataLen = DataLen;
|
|
Urb->Callback = Callback;
|
|
Urb->Context = Context;
|
|
|
|
Status = XhcPeiCreateTransferTrb (Xhc, Urb);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiCreateUrb: XhcPeiCreateTransferTrb Failed, Status = %r\n", Status));
|
|
FreePool (Urb);
|
|
Urb = NULL;
|
|
}
|
|
|
|
return Urb;
|
|
}
|
|
|
|
/**
|
|
Free an allocated URB.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param Urb The URB to free.
|
|
|
|
**/
|
|
VOID
|
|
XhcPeiFreeUrb (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN URB *Urb
|
|
)
|
|
{
|
|
if ((Xhc == NULL) || (Urb == NULL)) {
|
|
return;
|
|
}
|
|
|
|
FreePool (Urb);
|
|
}
|
|
|
|
/**
|
|
Create a transfer TRB.
|
|
|
|
@param Xhc The XHCI device
|
|
@param Urb The urb used to construct the transfer TRB.
|
|
|
|
@return Created TRB or NULL
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiCreateTransferTrb (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN URB *Urb
|
|
)
|
|
{
|
|
VOID *OutputContext;
|
|
TRANSFER_RING *EPRing;
|
|
UINT8 EPType;
|
|
UINT8 SlotId;
|
|
UINT8 Dci;
|
|
TRB *TrbStart;
|
|
UINTN TotalLen;
|
|
UINTN Len;
|
|
UINTN TrbNum;
|
|
|
|
SlotId = XhcPeiBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
|
if (SlotId == 0) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
Urb->Finished = FALSE;
|
|
Urb->StartDone = FALSE;
|
|
Urb->EndDone = FALSE;
|
|
Urb->Completed = 0;
|
|
Urb->Result = EFI_USB_NOERROR;
|
|
|
|
Dci = XhcPeiEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
|
|
EPRing = (TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1];
|
|
Urb->Ring = EPRing;
|
|
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
|
|
if (Xhc->HcCParams.Data.Csz == 0) {
|
|
EPType = (UINT8) ((DEVICE_CONTEXT *)OutputContext)->EP[Dci-1].EPType;
|
|
} else {
|
|
EPType = (UINT8) ((DEVICE_CONTEXT_64 *)OutputContext)->EP[Dci-1].EPType;
|
|
}
|
|
|
|
Urb->DataPhy = Urb->Data;
|
|
|
|
//
|
|
// Construct the TRB
|
|
//
|
|
XhcPeiSyncTrsRing (Xhc, EPRing);
|
|
Urb->TrbStart = EPRing->RingEnqueue;
|
|
switch (EPType) {
|
|
case ED_CONTROL_BIDIR:
|
|
//
|
|
// For control transfer, create SETUP_STAGE_TRB first.
|
|
//
|
|
TrbStart = (TRB *) (UINTN) EPRing->RingEnqueue;
|
|
TrbStart->TrbCtrSetup.bmRequestType = Urb->Request->RequestType;
|
|
TrbStart->TrbCtrSetup.bRequest = Urb->Request->Request;
|
|
TrbStart->TrbCtrSetup.wValue = Urb->Request->Value;
|
|
TrbStart->TrbCtrSetup.wIndex = Urb->Request->Index;
|
|
TrbStart->TrbCtrSetup.wLength = Urb->Request->Length;
|
|
TrbStart->TrbCtrSetup.Length = 8;
|
|
TrbStart->TrbCtrSetup.IntTarget = 0;
|
|
TrbStart->TrbCtrSetup.IOC = 1;
|
|
TrbStart->TrbCtrSetup.IDT = 1;
|
|
TrbStart->TrbCtrSetup.Type = TRB_TYPE_SETUP_STAGE;
|
|
if (Urb->Ep.Direction == EfiUsbDataIn) {
|
|
TrbStart->TrbCtrSetup.TRT = 3;
|
|
} else if (Urb->Ep.Direction == EfiUsbDataOut) {
|
|
TrbStart->TrbCtrSetup.TRT = 2;
|
|
} else {
|
|
TrbStart->TrbCtrSetup.TRT = 0;
|
|
}
|
|
//
|
|
// Update the cycle bit
|
|
//
|
|
TrbStart->TrbCtrSetup.CycleBit = EPRing->RingPCS & BIT0;
|
|
Urb->TrbNum++;
|
|
|
|
//
|
|
// For control transfer, create DATA_STAGE_TRB.
|
|
//
|
|
if (Urb->DataLen > 0) {
|
|
XhcPeiSyncTrsRing (Xhc, EPRing);
|
|
TrbStart = (TRB *) (UINTN) EPRing->RingEnqueue;
|
|
TrbStart->TrbCtrData.TRBPtrLo = XHC_LOW_32BIT (Urb->DataPhy);
|
|
TrbStart->TrbCtrData.TRBPtrHi = XHC_HIGH_32BIT (Urb->DataPhy);
|
|
TrbStart->TrbCtrData.Length = (UINT32) Urb->DataLen;
|
|
TrbStart->TrbCtrData.TDSize = 0;
|
|
TrbStart->TrbCtrData.IntTarget = 0;
|
|
TrbStart->TrbCtrData.ISP = 1;
|
|
TrbStart->TrbCtrData.IOC = 1;
|
|
TrbStart->TrbCtrData.IDT = 0;
|
|
TrbStart->TrbCtrData.CH = 0;
|
|
TrbStart->TrbCtrData.Type = TRB_TYPE_DATA_STAGE;
|
|
if (Urb->Ep.Direction == EfiUsbDataIn) {
|
|
TrbStart->TrbCtrData.DIR = 1;
|
|
} else if (Urb->Ep.Direction == EfiUsbDataOut) {
|
|
TrbStart->TrbCtrData.DIR = 0;
|
|
} else {
|
|
TrbStart->TrbCtrData.DIR = 0;
|
|
}
|
|
//
|
|
// Update the cycle bit
|
|
//
|
|
TrbStart->TrbCtrData.CycleBit = EPRing->RingPCS & BIT0;
|
|
Urb->TrbNum++;
|
|
}
|
|
//
|
|
// For control transfer, create STATUS_STAGE_TRB.
|
|
// Get the pointer to next TRB for status stage use
|
|
//
|
|
XhcPeiSyncTrsRing (Xhc, EPRing);
|
|
TrbStart = (TRB *) (UINTN) EPRing->RingEnqueue;
|
|
TrbStart->TrbCtrStatus.IntTarget = 0;
|
|
TrbStart->TrbCtrStatus.IOC = 1;
|
|
TrbStart->TrbCtrStatus.CH = 0;
|
|
TrbStart->TrbCtrStatus.Type = TRB_TYPE_STATUS_STAGE;
|
|
if (Urb->Ep.Direction == EfiUsbDataIn) {
|
|
TrbStart->TrbCtrStatus.DIR = 0;
|
|
} else if (Urb->Ep.Direction == EfiUsbDataOut) {
|
|
TrbStart->TrbCtrStatus.DIR = 1;
|
|
} else {
|
|
TrbStart->TrbCtrStatus.DIR = 0;
|
|
}
|
|
//
|
|
// Update the cycle bit
|
|
//
|
|
TrbStart->TrbCtrStatus.CycleBit = EPRing->RingPCS & BIT0;
|
|
//
|
|
// Update the enqueue pointer
|
|
//
|
|
XhcPeiSyncTrsRing (Xhc, EPRing);
|
|
Urb->TrbNum++;
|
|
Urb->TrbEnd = (TRB_TEMPLATE *) (UINTN) TrbStart;
|
|
|
|
break;
|
|
|
|
case ED_BULK_OUT:
|
|
case ED_BULK_IN:
|
|
TotalLen = 0;
|
|
Len = 0;
|
|
TrbNum = 0;
|
|
TrbStart = (TRB *) (UINTN) EPRing->RingEnqueue;
|
|
while (TotalLen < Urb->DataLen) {
|
|
if ((TotalLen + 0x10000) >= Urb->DataLen) {
|
|
Len = Urb->DataLen - TotalLen;
|
|
} else {
|
|
Len = 0x10000;
|
|
}
|
|
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
|
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
|
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
|
TrbStart->TrbNormal.Length = (UINT32) Len;
|
|
TrbStart->TrbNormal.TDSize = 0;
|
|
TrbStart->TrbNormal.IntTarget = 0;
|
|
TrbStart->TrbNormal.ISP = 1;
|
|
TrbStart->TrbNormal.IOC = 1;
|
|
TrbStart->TrbNormal.Type = TRB_TYPE_NORMAL;
|
|
//
|
|
// Update the cycle bit
|
|
//
|
|
TrbStart->TrbNormal.CycleBit = EPRing->RingPCS & BIT0;
|
|
|
|
XhcPeiSyncTrsRing (Xhc, EPRing);
|
|
TrbNum++;
|
|
TotalLen += Len;
|
|
}
|
|
|
|
Urb->TrbNum = TrbNum;
|
|
Urb->TrbEnd = (TRB_TEMPLATE *)(UINTN)TrbStart;
|
|
break;
|
|
|
|
case ED_INTERRUPT_OUT:
|
|
case ED_INTERRUPT_IN:
|
|
TotalLen = 0;
|
|
Len = 0;
|
|
TrbNum = 0;
|
|
TrbStart = (TRB *) (UINTN) EPRing->RingEnqueue;
|
|
while (TotalLen < Urb->DataLen) {
|
|
if ((TotalLen + 0x10000) >= Urb->DataLen) {
|
|
Len = Urb->DataLen - TotalLen;
|
|
} else {
|
|
Len = 0x10000;
|
|
}
|
|
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
|
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
|
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
|
TrbStart->TrbNormal.Length = (UINT32) Len;
|
|
TrbStart->TrbNormal.TDSize = 0;
|
|
TrbStart->TrbNormal.IntTarget = 0;
|
|
TrbStart->TrbNormal.ISP = 1;
|
|
TrbStart->TrbNormal.IOC = 1;
|
|
TrbStart->TrbNormal.Type = TRB_TYPE_NORMAL;
|
|
//
|
|
// Update the cycle bit
|
|
//
|
|
TrbStart->TrbNormal.CycleBit = EPRing->RingPCS & BIT0;
|
|
|
|
XhcPeiSyncTrsRing (Xhc, EPRing);
|
|
TrbNum++;
|
|
TotalLen += Len;
|
|
}
|
|
|
|
Urb->TrbNum = TrbNum;
|
|
Urb->TrbEnd = (TRB_TEMPLATE *)(UINTN)TrbStart;
|
|
break;
|
|
|
|
default:
|
|
DEBUG ((EFI_D_INFO, "Not supported EPType 0x%x!\n",EPType));
|
|
ASSERT (FALSE);
|
|
break;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
System software shall use a Reset Endpoint Command (section 4.11.4.7) to remove the Halted
|
|
condition in the xHC. After the successful completion of the Reset Endpoint Command, the Endpoint
|
|
Context is transitioned from the Halted to the Stopped state and the Transfer Ring of the endpoint is
|
|
reenabled. The next write to the Doorbell of the Endpoint will transition the Endpoint Context from the
|
|
Stopped to the Running state.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param Urb The urb which makes the endpoint halted.
|
|
|
|
@retval EFI_SUCCESS The recovery is successful.
|
|
@retval Others Failed to recovery halted endpoint.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiRecoverHaltedEndpoint (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN URB *Urb
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
CMD_TRB_RESET_ENDPOINT CmdTrbResetED;
|
|
CMD_SET_TR_DEQ_POINTER CmdSetTRDeq;
|
|
UINT8 Dci;
|
|
UINT8 SlotId;
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
|
|
Status = EFI_SUCCESS;
|
|
SlotId = XhcPeiBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
|
if (SlotId == 0) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
Dci = XhcPeiEndpointToDci (Urb->Ep.EpAddr, (UINT8) (Urb->Ep.Direction));
|
|
|
|
DEBUG ((EFI_D_INFO, "XhcPeiRecoverHaltedEndpoint: Recovery Halted Slot = %x, Dci = %x\n", SlotId, Dci));
|
|
|
|
//
|
|
// 1) Send Reset endpoint command to transit from halt to stop state
|
|
//
|
|
ZeroMem (&CmdTrbResetED, sizeof (CmdTrbResetED));
|
|
CmdTrbResetED.CycleBit = 1;
|
|
CmdTrbResetED.Type = TRB_TYPE_RESET_ENDPOINT;
|
|
CmdTrbResetED.EDID = Dci;
|
|
CmdTrbResetED.SlotId = SlotId;
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbResetED,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR(Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiRecoverHaltedEndpoint: Reset Endpoint Failed, Status = %r\n", Status));
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// 2) Set dequeue pointer
|
|
//
|
|
ZeroMem (&CmdSetTRDeq, sizeof (CmdSetTRDeq));
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Urb->Ring->RingEnqueue, sizeof (CMD_SET_TR_DEQ_POINTER));
|
|
CmdSetTRDeq.PtrLo = XHC_LOW_32BIT (PhyAddr) | Urb->Ring->RingPCS;
|
|
CmdSetTRDeq.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
CmdSetTRDeq.CycleBit = 1;
|
|
CmdSetTRDeq.Type = TRB_TYPE_SET_TR_DEQUE;
|
|
CmdSetTRDeq.Endpoint = Dci;
|
|
CmdSetTRDeq.SlotId = SlotId;
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdSetTRDeq,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR(Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiRecoverHaltedEndpoint: Set Dequeue Pointer Failed, Status = %r\n", Status));
|
|
goto Done;
|
|
}
|
|
|
|
//
|
|
// 3) Ring the doorbell to transit from stop to active
|
|
//
|
|
XhcPeiRingDoorBell (Xhc, SlotId, Dci);
|
|
|
|
Done:
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Check if the Trb is a transaction of the URB.
|
|
|
|
@param Trb The TRB to be checked
|
|
@param Urb The transfer ring to be checked.
|
|
|
|
@retval TRUE It is a transaction of the URB.
|
|
@retval FALSE It is not any transaction of the URB.
|
|
|
|
**/
|
|
BOOLEAN
|
|
XhcPeiIsTransferRingTrb (
|
|
IN TRB_TEMPLATE *Trb,
|
|
IN URB *Urb
|
|
)
|
|
{
|
|
TRB_TEMPLATE *CheckedTrb;
|
|
UINTN Index;
|
|
|
|
CheckedTrb = Urb->Ring->RingSeg0;
|
|
|
|
ASSERT (Urb->Ring->TrbNumber == CMD_RING_TRB_NUMBER || Urb->Ring->TrbNumber == TR_RING_TRB_NUMBER);
|
|
|
|
for (Index = 0; Index < Urb->Ring->TrbNumber; Index++) {
|
|
if (Trb == CheckedTrb) {
|
|
return TRUE;
|
|
}
|
|
CheckedTrb++;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
Check the URB's execution result and update the URB's
|
|
result accordingly.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param Urb The URB to check result.
|
|
|
|
@return Whether the result of URB transfer is finialized.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiCheckUrbResult (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN URB *Urb
|
|
)
|
|
{
|
|
EVT_TRB_TRANSFER *EvtTrb;
|
|
TRB_TEMPLATE *TRBPtr;
|
|
UINTN Index;
|
|
UINT8 TRBType;
|
|
EFI_STATUS Status;
|
|
URB *CheckedUrb;
|
|
UINT64 XhcDequeue;
|
|
UINT32 High;
|
|
UINT32 Low;
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
|
|
ASSERT ((Xhc != NULL) && (Urb != NULL));
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
if (Urb->Finished) {
|
|
goto EXIT;
|
|
}
|
|
|
|
EvtTrb = NULL;
|
|
|
|
if (XhcPeiIsHalt (Xhc) || XhcPeiIsSysError (Xhc)) {
|
|
Urb->Result |= EFI_USB_ERR_SYSTEM;
|
|
Status = EFI_DEVICE_ERROR;
|
|
goto EXIT;
|
|
}
|
|
|
|
//
|
|
// Traverse the event ring to find out all new events from the previous check.
|
|
//
|
|
XhcPeiSyncEventRing (Xhc, &Xhc->EventRing);
|
|
for (Index = 0; Index < Xhc->EventRing.TrbNumber; Index++) {
|
|
Status = XhcPeiCheckNewEvent (Xhc, &Xhc->EventRing, ((TRB_TEMPLATE **) &EvtTrb));
|
|
if (Status == EFI_NOT_READY) {
|
|
//
|
|
// All new events are handled, return directly.
|
|
//
|
|
goto EXIT;
|
|
}
|
|
|
|
//
|
|
// Only handle COMMAND_COMPLETETION_EVENT and TRANSFER_EVENT.
|
|
//
|
|
if ((EvtTrb->Type != TRB_TYPE_COMMAND_COMPLT_EVENT) && (EvtTrb->Type != TRB_TYPE_TRANS_EVENT)) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Need convert pci device address to host address
|
|
//
|
|
PhyAddr = (EFI_PHYSICAL_ADDRESS) (EvtTrb->TRBPtrLo | LShiftU64 ((UINT64) EvtTrb->TRBPtrHi, 32));
|
|
TRBPtr = (TRB_TEMPLATE *) (UINTN) UsbHcGetHostAddrForPciAddr (Xhc->MemPool, (VOID *) (UINTN) PhyAddr, sizeof (TRB_TEMPLATE));
|
|
|
|
//
|
|
// Update the status of Urb according to the finished event regardless of whether
|
|
// the urb is current checked one or in the XHCI's async transfer list.
|
|
// This way is used to avoid that those completed async transfer events don't get
|
|
// handled in time and are flushed by newer coming events.
|
|
//
|
|
if (XhcPeiIsTransferRingTrb (TRBPtr, Urb)) {
|
|
CheckedUrb = Urb;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
switch (EvtTrb->Completecode) {
|
|
case TRB_COMPLETION_STALL_ERROR:
|
|
CheckedUrb->Result |= EFI_USB_ERR_STALL;
|
|
CheckedUrb->Finished = TRUE;
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiCheckUrbResult: STALL_ERROR! Completecode = %x\n", EvtTrb->Completecode));
|
|
goto EXIT;
|
|
|
|
case TRB_COMPLETION_BABBLE_ERROR:
|
|
CheckedUrb->Result |= EFI_USB_ERR_BABBLE;
|
|
CheckedUrb->Finished = TRUE;
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiCheckUrbResult: BABBLE_ERROR! Completecode = %x\n", EvtTrb->Completecode));
|
|
goto EXIT;
|
|
|
|
case TRB_COMPLETION_DATA_BUFFER_ERROR:
|
|
CheckedUrb->Result |= EFI_USB_ERR_BUFFER;
|
|
CheckedUrb->Finished = TRUE;
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiCheckUrbResult: ERR_BUFFER! Completecode = %x\n", EvtTrb->Completecode));
|
|
goto EXIT;
|
|
|
|
case TRB_COMPLETION_USB_TRANSACTION_ERROR:
|
|
CheckedUrb->Result |= EFI_USB_ERR_TIMEOUT;
|
|
CheckedUrb->Finished = TRUE;
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiCheckUrbResult: TRANSACTION_ERROR! Completecode = %x\n", EvtTrb->Completecode));
|
|
goto EXIT;
|
|
|
|
case TRB_COMPLETION_SHORT_PACKET:
|
|
case TRB_COMPLETION_SUCCESS:
|
|
if (EvtTrb->Completecode == TRB_COMPLETION_SHORT_PACKET) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiCheckUrbResult: short packet happens!\n"));
|
|
}
|
|
|
|
TRBType = (UINT8) (TRBPtr->Type);
|
|
if ((TRBType == TRB_TYPE_DATA_STAGE) ||
|
|
(TRBType == TRB_TYPE_NORMAL) ||
|
|
(TRBType == TRB_TYPE_ISOCH)) {
|
|
CheckedUrb->Completed += (CheckedUrb->DataLen - EvtTrb->Length);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiCheckUrbResult: Transfer Default Error Occur! Completecode = 0x%x!\n", EvtTrb->Completecode));
|
|
CheckedUrb->Result |= EFI_USB_ERR_TIMEOUT;
|
|
CheckedUrb->Finished = TRUE;
|
|
goto EXIT;
|
|
}
|
|
|
|
//
|
|
// Only check first and end Trb event address
|
|
//
|
|
if (TRBPtr == CheckedUrb->TrbStart) {
|
|
CheckedUrb->StartDone = TRUE;
|
|
}
|
|
|
|
if (TRBPtr == CheckedUrb->TrbEnd) {
|
|
CheckedUrb->EndDone = TRUE;
|
|
}
|
|
|
|
if (CheckedUrb->StartDone && CheckedUrb->EndDone) {
|
|
CheckedUrb->Finished = TRUE;
|
|
CheckedUrb->EvtTrb = (TRB_TEMPLATE *) EvtTrb;
|
|
}
|
|
}
|
|
|
|
EXIT:
|
|
|
|
//
|
|
// Advance event ring to last available entry
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
Low = XhcPeiReadRuntimeReg (Xhc, XHC_ERDP_OFFSET);
|
|
High = XhcPeiReadRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4);
|
|
XhcDequeue = (UINT64) (LShiftU64((UINT64) High, 32) | Low);
|
|
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->EventRing.EventRingDequeue, sizeof (TRB_TEMPLATE));
|
|
|
|
if ((XhcDequeue & (~0x0F)) != (PhyAddr & (~0x0F))) {
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
XhcPeiWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET, XHC_LOW_32BIT (PhyAddr) | BIT3);
|
|
XhcPeiWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4, XHC_HIGH_32BIT (PhyAddr));
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Execute the transfer by polling the URB. This is a synchronous operation.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param CmdTransfer The executed URB is for cmd transfer or not.
|
|
@param Urb The URB to execute.
|
|
@param Timeout The time to wait before abort, in millisecond.
|
|
|
|
@return EFI_DEVICE_ERROR The transfer failed due to transfer error.
|
|
@return EFI_TIMEOUT The transfer failed due to time out.
|
|
@return EFI_SUCCESS The transfer finished OK.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiExecTransfer (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN BOOLEAN CmdTransfer,
|
|
IN URB *Urb,
|
|
IN UINTN Timeout
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN Index;
|
|
UINTN Loop;
|
|
UINT8 SlotId;
|
|
UINT8 Dci;
|
|
|
|
if (CmdTransfer) {
|
|
SlotId = 0;
|
|
Dci = 0;
|
|
} else {
|
|
SlotId = XhcPeiBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
|
if (SlotId == 0) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
Dci = XhcPeiEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
Loop = Timeout * XHC_1_MILLISECOND;
|
|
if (Timeout == 0) {
|
|
Loop = 0xFFFFFFFF;
|
|
}
|
|
|
|
XhcPeiRingDoorBell (Xhc, SlotId, Dci);
|
|
|
|
for (Index = 0; Index < Loop; Index++) {
|
|
Status = XhcPeiCheckUrbResult (Xhc, Urb);
|
|
if (Urb->Finished) {
|
|
break;
|
|
}
|
|
MicroSecondDelay (XHC_1_MICROSECOND);
|
|
}
|
|
|
|
if (Index == Loop) {
|
|
Urb->Result = EFI_USB_ERR_TIMEOUT;
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Monitor the port status change. Enable/Disable device slot if there is a device attached/detached.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param ParentRouteChart The route string pointed to the parent device if it exists.
|
|
@param Port The port to be polled.
|
|
@param PortState The port state.
|
|
|
|
@retval EFI_SUCCESS Successfully enable/disable device slot according to port state.
|
|
@retval Others Should not appear.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiPollPortStatusChange (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN USB_DEV_ROUTE ParentRouteChart,
|
|
IN UINT8 Port,
|
|
IN EFI_USB_PORT_STATUS *PortState
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT8 Speed;
|
|
UINT8 SlotId;
|
|
USB_DEV_ROUTE RouteChart;
|
|
|
|
DEBUG ((EFI_D_INFO, "XhcPeiPollPortStatusChange: PortChangeStatus: %x PortStatus: %x\n", PortState->PortChangeStatus, PortState->PortStatus));
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
if ((PortState->PortChangeStatus & (USB_PORT_STAT_C_CONNECTION | USB_PORT_STAT_C_ENABLE | USB_PORT_STAT_C_OVERCURRENT | USB_PORT_STAT_C_RESET)) == 0) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
if (ParentRouteChart.Dword == 0) {
|
|
RouteChart.Route.RouteString = 0;
|
|
RouteChart.Route.RootPortNum = Port + 1;
|
|
RouteChart.Route.TierNum = 1;
|
|
} else {
|
|
if(Port < 14) {
|
|
RouteChart.Route.RouteString = ParentRouteChart.Route.RouteString | (Port << (4 * (ParentRouteChart.Route.TierNum - 1)));
|
|
} else {
|
|
RouteChart.Route.RouteString = ParentRouteChart.Route.RouteString | (15 << (4 * (ParentRouteChart.Route.TierNum - 1)));
|
|
}
|
|
RouteChart.Route.RootPortNum = ParentRouteChart.Route.RootPortNum;
|
|
RouteChart.Route.TierNum = ParentRouteChart.Route.TierNum + 1;
|
|
}
|
|
|
|
SlotId = XhcPeiRouteStringToSlotId (Xhc, RouteChart);
|
|
if (SlotId != 0) {
|
|
if (Xhc->HcCParams.Data.Csz == 0) {
|
|
Status = XhcPeiDisableSlotCmd (Xhc, SlotId);
|
|
} else {
|
|
Status = XhcPeiDisableSlotCmd64 (Xhc, SlotId);
|
|
}
|
|
}
|
|
|
|
if (((PortState->PortStatus & USB_PORT_STAT_ENABLE) != 0) &&
|
|
((PortState->PortStatus & USB_PORT_STAT_CONNECTION) != 0)) {
|
|
//
|
|
// Has a device attached, Identify device speed after port is enabled.
|
|
//
|
|
Speed = EFI_USB_SPEED_FULL;
|
|
if ((PortState->PortStatus & USB_PORT_STAT_LOW_SPEED) != 0) {
|
|
Speed = EFI_USB_SPEED_LOW;
|
|
} else if ((PortState->PortStatus & USB_PORT_STAT_HIGH_SPEED) != 0) {
|
|
Speed = EFI_USB_SPEED_HIGH;
|
|
} else if ((PortState->PortStatus & USB_PORT_STAT_SUPER_SPEED) != 0) {
|
|
Speed = EFI_USB_SPEED_SUPER;
|
|
}
|
|
//
|
|
// Execute Enable_Slot cmd for attached device, initialize device context and assign device address.
|
|
//
|
|
SlotId = XhcPeiRouteStringToSlotId (Xhc, RouteChart);
|
|
if ((SlotId == 0) && ((PortState->PortChangeStatus & USB_PORT_STAT_C_RESET) != 0)) {
|
|
if (Xhc->HcCParams.Data.Csz == 0) {
|
|
Status = XhcPeiInitializeDeviceSlot (Xhc, ParentRouteChart, Port, RouteChart, Speed);
|
|
} else {
|
|
Status = XhcPeiInitializeDeviceSlot64 (Xhc, ParentRouteChart, Port, RouteChart, Speed);
|
|
}
|
|
}
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Calculate the device context index by endpoint address and direction.
|
|
|
|
@param EpAddr The target endpoint number.
|
|
@param Direction The direction of the target endpoint.
|
|
|
|
@return The device context index of endpoint.
|
|
|
|
**/
|
|
UINT8
|
|
XhcPeiEndpointToDci (
|
|
IN UINT8 EpAddr,
|
|
IN EFI_USB_DATA_DIRECTION Direction
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
|
|
ASSERT (EpAddr <= 15);
|
|
|
|
if (EpAddr == 0) {
|
|
return 1;
|
|
} else {
|
|
Index = (UINT8) (2 * EpAddr);
|
|
if (Direction == EfiUsbDataIn) {
|
|
Index += 1;
|
|
}
|
|
return Index;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Find out the actual device address according to the requested device address from UsbBus.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param BusDevAddr The requested device address by UsbBus upper driver.
|
|
|
|
@return The actual device address assigned to the device.
|
|
|
|
**/
|
|
UINT8
|
|
XhcPeiBusDevAddrToSlotId (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINT8 BusDevAddr
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
|
|
for (Index = 0; Index < 255; Index++) {
|
|
if (Xhc->UsbDevContext[Index + 1].Enabled &&
|
|
(Xhc->UsbDevContext[Index + 1].SlotId != 0) &&
|
|
(Xhc->UsbDevContext[Index + 1].BusDevAddr == BusDevAddr)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Index == 255) {
|
|
return 0;
|
|
}
|
|
|
|
return Xhc->UsbDevContext[Index + 1].SlotId;
|
|
}
|
|
|
|
/**
|
|
Find out the slot id according to the device's route string.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param RouteString The route string described the device location.
|
|
|
|
@return The slot id used by the device.
|
|
|
|
**/
|
|
UINT8
|
|
XhcPeiRouteStringToSlotId (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN USB_DEV_ROUTE RouteString
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
|
|
for (Index = 0; Index < 255; Index++) {
|
|
if (Xhc->UsbDevContext[Index + 1].Enabled &&
|
|
(Xhc->UsbDevContext[Index + 1].SlotId != 0) &&
|
|
(Xhc->UsbDevContext[Index + 1].RouteString.Dword == RouteString.Dword)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Index == 255) {
|
|
return 0;
|
|
}
|
|
|
|
return Xhc->UsbDevContext[Index + 1].SlotId;
|
|
}
|
|
|
|
/**
|
|
Ring the door bell to notify XHCI there is a transaction to be executed.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param SlotId The slot id of the target device.
|
|
@param Dci The device context index of the target slot or endpoint.
|
|
|
|
**/
|
|
VOID
|
|
XhcPeiRingDoorBell (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT8 Dci
|
|
)
|
|
{
|
|
if (SlotId == 0) {
|
|
XhcPeiWriteDoorBellReg (Xhc, 0, 0);
|
|
} else {
|
|
XhcPeiWriteDoorBellReg (Xhc, SlotId * sizeof (UINT32), Dci);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Assign and initialize the device slot for a new device.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param ParentRouteChart The route string pointed to the parent device.
|
|
@param ParentPort The port at which the device is located.
|
|
@param RouteChart The route string pointed to the device.
|
|
@param DeviceSpeed The device speed.
|
|
|
|
@retval EFI_SUCCESS Successfully assign a slot to the device and assign an address to it.
|
|
@retval Others Fail to initialize device slot.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiInitializeDeviceSlot (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN USB_DEV_ROUTE ParentRouteChart,
|
|
IN UINT16 ParentPort,
|
|
IN USB_DEV_ROUTE RouteChart,
|
|
IN UINT8 DeviceSpeed
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT *InputContext;
|
|
DEVICE_CONTEXT *OutputContext;
|
|
TRANSFER_RING *EndpointTransferRing;
|
|
CMD_TRB_ADDRESS_DEVICE CmdTrbAddr;
|
|
UINT8 DeviceAddress;
|
|
CMD_TRB_ENABLE_SLOT CmdTrb;
|
|
UINT8 SlotId;
|
|
UINT8 ParentSlotId;
|
|
DEVICE_CONTEXT *ParentDeviceContext;
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
|
|
ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
|
|
CmdTrb.CycleBit = 1;
|
|
CmdTrb.Type = TRB_TYPE_EN_SLOT;
|
|
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrb,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiInitializeDeviceSlot: Enable Slot Failed, Status = %r\n", Status));
|
|
return Status;
|
|
}
|
|
ASSERT (EvtTrb->SlotId <= Xhc->MaxSlotsEn);
|
|
DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot: Enable Slot Successfully, The Slot ID = 0x%x\n", EvtTrb->SlotId));
|
|
SlotId = (UINT8) EvtTrb->SlotId;
|
|
ASSERT (SlotId != 0);
|
|
|
|
ZeroMem (&Xhc->UsbDevContext[SlotId], sizeof (USB_DEV_CONTEXT));
|
|
Xhc->UsbDevContext[SlotId].Enabled = TRUE;
|
|
Xhc->UsbDevContext[SlotId].SlotId = SlotId;
|
|
Xhc->UsbDevContext[SlotId].RouteString.Dword = RouteChart.Dword;
|
|
Xhc->UsbDevContext[SlotId].ParentRouteString.Dword = ParentRouteChart.Dword;
|
|
|
|
//
|
|
// 4.3.3 Device Slot Initialization
|
|
// 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
|
|
//
|
|
InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT));
|
|
ASSERT (InputContext != NULL);
|
|
ASSERT (((UINTN) InputContext & 0x3F) == 0);
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
|
|
|
|
Xhc->UsbDevContext[SlotId].InputContext = (VOID *) InputContext;
|
|
|
|
//
|
|
// 2) Initialize the Input Control Context (6.2.5.1) of the Input Context by setting the A0 and A1
|
|
// flags to '1'. These flags indicate that the Slot Context and the Endpoint 0 Context of the Input
|
|
// Context are affected by the command.
|
|
//
|
|
InputContext->InputControlContext.Dword2 |= (BIT0 | BIT1);
|
|
|
|
//
|
|
// 3) Initialize the Input Slot Context data structure
|
|
//
|
|
InputContext->Slot.RouteString = RouteChart.Route.RouteString;
|
|
InputContext->Slot.Speed = DeviceSpeed + 1;
|
|
InputContext->Slot.ContextEntries = 1;
|
|
InputContext->Slot.RootHubPortNum = RouteChart.Route.RootPortNum;
|
|
|
|
if (RouteChart.Route.RouteString != 0) {
|
|
//
|
|
// The device is behind of hub device.
|
|
//
|
|
ParentSlotId = XhcPeiRouteStringToSlotId (Xhc, ParentRouteChart);
|
|
ASSERT (ParentSlotId != 0);
|
|
//
|
|
// If the Full/Low device attached to a High Speed Hub, init the TTPortNum and TTHubSlotId field of slot context
|
|
//
|
|
ParentDeviceContext = (DEVICE_CONTEXT *) Xhc->UsbDevContext[ParentSlotId].OutputContext;
|
|
if ((ParentDeviceContext->Slot.TTPortNum == 0) &&
|
|
(ParentDeviceContext->Slot.TTHubSlotId == 0)) {
|
|
if ((ParentDeviceContext->Slot.Speed == (EFI_USB_SPEED_HIGH + 1)) && (DeviceSpeed < EFI_USB_SPEED_HIGH)) {
|
|
//
|
|
// Full/Low device attached to High speed hub port that isolates the high speed signaling
|
|
// environment from Full/Low speed signaling environment for a device
|
|
//
|
|
InputContext->Slot.TTPortNum = ParentPort;
|
|
InputContext->Slot.TTHubSlotId = ParentSlotId;
|
|
}
|
|
} else {
|
|
//
|
|
// Inherit the TT parameters from parent device.
|
|
//
|
|
InputContext->Slot.TTPortNum = ParentDeviceContext->Slot.TTPortNum;
|
|
InputContext->Slot.TTHubSlotId = ParentDeviceContext->Slot.TTHubSlotId;
|
|
//
|
|
// If the device is a High speed device then down the speed to be the same as its parent Hub
|
|
//
|
|
if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
|
|
InputContext->Slot.Speed = ParentDeviceContext->Slot.Speed;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// 4) Allocate and initialize the Transfer Ring for the Default Control Endpoint.
|
|
//
|
|
EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[0] = EndpointTransferRing;
|
|
XhcPeiCreateTransferRing (Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[0]);
|
|
//
|
|
// 5) Initialize the Input default control Endpoint 0 Context (6.2.3).
|
|
//
|
|
InputContext->EP[0].EPType = ED_CONTROL_BIDIR;
|
|
|
|
if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
|
|
InputContext->EP[0].MaxPacketSize = 512;
|
|
} else if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
|
|
InputContext->EP[0].MaxPacketSize = 64;
|
|
} else {
|
|
InputContext->EP[0].MaxPacketSize = 8;
|
|
}
|
|
//
|
|
// Initial value of Average TRB Length for Control endpoints would be 8B, Interrupt endpoints
|
|
// 1KB, and Bulk and Isoch endpoints 3KB.
|
|
//
|
|
InputContext->EP[0].AverageTRBLength = 8;
|
|
InputContext->EP[0].MaxBurstSize = 0;
|
|
InputContext->EP[0].Interval = 0;
|
|
InputContext->EP[0].MaxPStreams = 0;
|
|
InputContext->EP[0].Mult = 0;
|
|
InputContext->EP[0].CErr = 3;
|
|
|
|
//
|
|
// Init the DCS(dequeue cycle state) as the transfer ring's CCS
|
|
//
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
|
Xhc->MemPool,
|
|
((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0,
|
|
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
|
);
|
|
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0;
|
|
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
|
|
//
|
|
// 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
|
|
//
|
|
OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT));
|
|
ASSERT (OutputContext != NULL);
|
|
ASSERT (((UINTN) OutputContext & 0x3F) == 0);
|
|
ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT));
|
|
|
|
Xhc->UsbDevContext[SlotId].OutputContext = OutputContext;
|
|
//
|
|
// 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
|
|
// a pointer to the Output Device Context data structure (6.2.1).
|
|
//
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT));
|
|
//
|
|
// Fill DCBAA with PCI device address
|
|
//
|
|
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr;
|
|
|
|
//
|
|
// 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
|
|
// Context data structure described above.
|
|
//
|
|
ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT));
|
|
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
|
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
CmdTrbAddr.CycleBit = 1;
|
|
CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
|
|
CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbAddr,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
DeviceAddress = (UINT8) OutputContext->Slot.DeviceAddress;
|
|
DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot: Address %d assigned successfully\n", DeviceAddress));
|
|
Xhc->UsbDevContext[SlotId].XhciDevAddr = DeviceAddress;
|
|
}
|
|
|
|
DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot: Enable Slot, Status = %r\n", Status));
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Assign and initialize the device slot for a new device.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param ParentRouteChart The route string pointed to the parent device.
|
|
@param ParentPort The port at which the device is located.
|
|
@param RouteChart The route string pointed to the device.
|
|
@param DeviceSpeed The device speed.
|
|
|
|
@retval EFI_SUCCESS Successfully assign a slot to the device and assign an address to it.
|
|
@retval Others Fail to initialize device slot.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiInitializeDeviceSlot64 (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN USB_DEV_ROUTE ParentRouteChart,
|
|
IN UINT16 ParentPort,
|
|
IN USB_DEV_ROUTE RouteChart,
|
|
IN UINT8 DeviceSpeed
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT_64 *InputContext;
|
|
DEVICE_CONTEXT_64 *OutputContext;
|
|
TRANSFER_RING *EndpointTransferRing;
|
|
CMD_TRB_ADDRESS_DEVICE CmdTrbAddr;
|
|
UINT8 DeviceAddress;
|
|
CMD_TRB_ENABLE_SLOT CmdTrb;
|
|
UINT8 SlotId;
|
|
UINT8 ParentSlotId;
|
|
DEVICE_CONTEXT_64 *ParentDeviceContext;
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
|
|
ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
|
|
CmdTrb.CycleBit = 1;
|
|
CmdTrb.Type = TRB_TYPE_EN_SLOT;
|
|
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrb,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiInitializeDeviceSlot64: Enable Slot Failed, Status = %r\n", Status));
|
|
return Status;
|
|
}
|
|
ASSERT (EvtTrb->SlotId <= Xhc->MaxSlotsEn);
|
|
DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot64: Enable Slot Successfully, The Slot ID = 0x%x\n", EvtTrb->SlotId));
|
|
SlotId = (UINT8)EvtTrb->SlotId;
|
|
ASSERT (SlotId != 0);
|
|
|
|
ZeroMem (&Xhc->UsbDevContext[SlotId], sizeof (USB_DEV_CONTEXT));
|
|
Xhc->UsbDevContext[SlotId].Enabled = TRUE;
|
|
Xhc->UsbDevContext[SlotId].SlotId = SlotId;
|
|
Xhc->UsbDevContext[SlotId].RouteString.Dword = RouteChart.Dword;
|
|
Xhc->UsbDevContext[SlotId].ParentRouteString.Dword = ParentRouteChart.Dword;
|
|
|
|
//
|
|
// 4.3.3 Device Slot Initialization
|
|
// 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
|
|
//
|
|
InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT_64));
|
|
ASSERT (InputContext != NULL);
|
|
ASSERT (((UINTN) InputContext & 0x3F) == 0);
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
|
|
|
|
Xhc->UsbDevContext[SlotId].InputContext = (VOID *) InputContext;
|
|
|
|
//
|
|
// 2) Initialize the Input Control Context (6.2.5.1) of the Input Context by setting the A0 and A1
|
|
// flags to '1'. These flags indicate that the Slot Context and the Endpoint 0 Context of the Input
|
|
// Context are affected by the command.
|
|
//
|
|
InputContext->InputControlContext.Dword2 |= (BIT0 | BIT1);
|
|
|
|
//
|
|
// 3) Initialize the Input Slot Context data structure
|
|
//
|
|
InputContext->Slot.RouteString = RouteChart.Route.RouteString;
|
|
InputContext->Slot.Speed = DeviceSpeed + 1;
|
|
InputContext->Slot.ContextEntries = 1;
|
|
InputContext->Slot.RootHubPortNum = RouteChart.Route.RootPortNum;
|
|
|
|
if (RouteChart.Route.RouteString != 0) {
|
|
//
|
|
// The device is behind of hub device.
|
|
//
|
|
ParentSlotId = XhcPeiRouteStringToSlotId (Xhc, ParentRouteChart);
|
|
ASSERT (ParentSlotId != 0);
|
|
//
|
|
//if the Full/Low device attached to a High Speed Hub, Init the TTPortNum and TTHubSlotId field of slot context
|
|
//
|
|
ParentDeviceContext = (DEVICE_CONTEXT_64 *) Xhc->UsbDevContext[ParentSlotId].OutputContext;
|
|
if ((ParentDeviceContext->Slot.TTPortNum == 0) &&
|
|
(ParentDeviceContext->Slot.TTHubSlotId == 0)) {
|
|
if ((ParentDeviceContext->Slot.Speed == (EFI_USB_SPEED_HIGH + 1)) && (DeviceSpeed < EFI_USB_SPEED_HIGH)) {
|
|
//
|
|
// Full/Low device attached to High speed hub port that isolates the high speed signaling
|
|
// environment from Full/Low speed signaling environment for a device
|
|
//
|
|
InputContext->Slot.TTPortNum = ParentPort;
|
|
InputContext->Slot.TTHubSlotId = ParentSlotId;
|
|
}
|
|
} else {
|
|
//
|
|
// Inherit the TT parameters from parent device.
|
|
//
|
|
InputContext->Slot.TTPortNum = ParentDeviceContext->Slot.TTPortNum;
|
|
InputContext->Slot.TTHubSlotId = ParentDeviceContext->Slot.TTHubSlotId;
|
|
//
|
|
// If the device is a High speed device then down the speed to be the same as its parent Hub
|
|
//
|
|
if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
|
|
InputContext->Slot.Speed = ParentDeviceContext->Slot.Speed;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// 4) Allocate and initialize the Transfer Ring for the Default Control Endpoint.
|
|
//
|
|
EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[0] = EndpointTransferRing;
|
|
XhcPeiCreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[0]);
|
|
//
|
|
// 5) Initialize the Input default control Endpoint 0 Context (6.2.3).
|
|
//
|
|
InputContext->EP[0].EPType = ED_CONTROL_BIDIR;
|
|
|
|
if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
|
|
InputContext->EP[0].MaxPacketSize = 512;
|
|
} else if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
|
|
InputContext->EP[0].MaxPacketSize = 64;
|
|
} else {
|
|
InputContext->EP[0].MaxPacketSize = 8;
|
|
}
|
|
//
|
|
// Initial value of Average TRB Length for Control endpoints would be 8B, Interrupt endpoints
|
|
// 1KB, and Bulk and Isoch endpoints 3KB.
|
|
//
|
|
InputContext->EP[0].AverageTRBLength = 8;
|
|
InputContext->EP[0].MaxBurstSize = 0;
|
|
InputContext->EP[0].Interval = 0;
|
|
InputContext->EP[0].MaxPStreams = 0;
|
|
InputContext->EP[0].Mult = 0;
|
|
InputContext->EP[0].CErr = 3;
|
|
|
|
//
|
|
// Init the DCS(dequeue cycle state) as the transfer ring's CCS
|
|
//
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
|
Xhc->MemPool,
|
|
((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0,
|
|
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
|
);
|
|
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0;
|
|
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
|
|
//
|
|
// 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
|
|
//
|
|
OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT_64));
|
|
ASSERT (OutputContext != NULL);
|
|
ASSERT (((UINTN) OutputContext & 0x3F) == 0);
|
|
ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT_64));
|
|
|
|
Xhc->UsbDevContext[SlotId].OutputContext = OutputContext;
|
|
//
|
|
// 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
|
|
// a pointer to the Output Device Context data structure (6.2.1).
|
|
//
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT_64));
|
|
//
|
|
// Fill DCBAA with PCI device address
|
|
//
|
|
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr;
|
|
|
|
//
|
|
// 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
|
|
// Context data structure described above.
|
|
//
|
|
ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64));
|
|
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
|
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
CmdTrbAddr.CycleBit = 1;
|
|
CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
|
|
CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbAddr,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
DeviceAddress = (UINT8) OutputContext->Slot.DeviceAddress;
|
|
DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot64: Address %d assigned successfully\n", DeviceAddress));
|
|
Xhc->UsbDevContext[SlotId].XhciDevAddr = DeviceAddress;
|
|
}
|
|
|
|
DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot64: Enable Slot, Status = %r\n", Status));
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Disable the specified device slot.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param SlotId The slot id to be disabled.
|
|
|
|
@retval EFI_SUCCESS Successfully disable the device slot.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiDisableSlotCmd (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINT8 SlotId
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
TRB_TEMPLATE *EvtTrb;
|
|
CMD_TRB_DISABLE_SLOT CmdTrbDisSlot;
|
|
UINT8 Index;
|
|
VOID *RingSeg;
|
|
|
|
//
|
|
// Disable the device slots occupied by these devices on its downstream ports.
|
|
// Entry 0 is reserved.
|
|
//
|
|
for (Index = 0; Index < 255; Index++) {
|
|
if (!Xhc->UsbDevContext[Index + 1].Enabled ||
|
|
(Xhc->UsbDevContext[Index + 1].SlotId == 0) ||
|
|
(Xhc->UsbDevContext[Index + 1].ParentRouteString.Dword != Xhc->UsbDevContext[SlotId].RouteString.Dword)) {
|
|
continue;
|
|
}
|
|
|
|
Status = XhcPeiDisableSlotCmd (Xhc, Xhc->UsbDevContext[Index + 1].SlotId);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiDisableSlotCmd: failed to disable child, ignore error\n"));
|
|
Xhc->UsbDevContext[Index + 1].SlotId = 0;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Construct the disable slot command
|
|
//
|
|
DEBUG ((EFI_D_INFO, "XhcPeiDisableSlotCmd: Disable device slot %d!\n", SlotId));
|
|
|
|
ZeroMem (&CmdTrbDisSlot, sizeof (CmdTrbDisSlot));
|
|
CmdTrbDisSlot.CycleBit = 1;
|
|
CmdTrbDisSlot.Type = TRB_TYPE_DIS_SLOT;
|
|
CmdTrbDisSlot.SlotId = SlotId;
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbDisSlot,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiDisableSlotCmd: Disable Slot Command Failed, Status = %r\n", Status));
|
|
return Status;
|
|
}
|
|
//
|
|
// Free the slot's device context entry
|
|
//
|
|
Xhc->DCBAA[SlotId] = 0;
|
|
|
|
//
|
|
// Free the slot related data structure
|
|
//
|
|
for (Index = 0; Index < 31; Index++) {
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
|
|
RingSeg = ((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
|
|
if (RingSeg != NULL) {
|
|
UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
|
|
}
|
|
FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL;
|
|
}
|
|
}
|
|
|
|
for (Index = 0; Index < Xhc->UsbDevContext[SlotId].DevDesc.NumConfigurations; Index++) {
|
|
if (Xhc->UsbDevContext[SlotId].ConfDesc[Index] != NULL) {
|
|
FreePool (Xhc->UsbDevContext[SlotId].ConfDesc[Index]);
|
|
}
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
|
|
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT));
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
|
|
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT));
|
|
}
|
|
//
|
|
// Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
|
|
// asynchronous interrupt pipe after the device is disabled. It needs the device address mapping info to
|
|
// remove urb from XHCI's asynchronous transfer list.
|
|
//
|
|
Xhc->UsbDevContext[SlotId].Enabled = FALSE;
|
|
Xhc->UsbDevContext[SlotId].SlotId = 0;
|
|
|
|
DEBUG ((EFI_D_INFO, "XhcPeiDisableSlotCmd: Disable Slot Command, Status = %r\n", Status));
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Disable the specified device slot.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param SlotId The slot id to be disabled.
|
|
|
|
@retval EFI_SUCCESS Successfully disable the device slot.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiDisableSlotCmd64 (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINT8 SlotId
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
TRB_TEMPLATE *EvtTrb;
|
|
CMD_TRB_DISABLE_SLOT CmdTrbDisSlot;
|
|
UINT8 Index;
|
|
VOID *RingSeg;
|
|
|
|
//
|
|
// Disable the device slots occupied by these devices on its downstream ports.
|
|
// Entry 0 is reserved.
|
|
//
|
|
for (Index = 0; Index < 255; Index++) {
|
|
if (!Xhc->UsbDevContext[Index + 1].Enabled ||
|
|
(Xhc->UsbDevContext[Index + 1].SlotId == 0) ||
|
|
(Xhc->UsbDevContext[Index + 1].ParentRouteString.Dword != Xhc->UsbDevContext[SlotId].RouteString.Dword)) {
|
|
continue;
|
|
}
|
|
|
|
Status = XhcPeiDisableSlotCmd64 (Xhc, Xhc->UsbDevContext[Index + 1].SlotId);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiDisableSlotCmd64: failed to disable child, ignore error\n"));
|
|
Xhc->UsbDevContext[Index + 1].SlotId = 0;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Construct the disable slot command
|
|
//
|
|
DEBUG ((EFI_D_INFO, "XhcPeiDisableSlotCmd64: Disable device slot %d!\n", SlotId));
|
|
|
|
ZeroMem (&CmdTrbDisSlot, sizeof (CmdTrbDisSlot));
|
|
CmdTrbDisSlot.CycleBit = 1;
|
|
CmdTrbDisSlot.Type = TRB_TYPE_DIS_SLOT;
|
|
CmdTrbDisSlot.SlotId = SlotId;
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbDisSlot,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcPeiDisableSlotCmd64: Disable Slot Command Failed, Status = %r\n", Status));
|
|
return Status;
|
|
}
|
|
//
|
|
// Free the slot's device context entry
|
|
//
|
|
Xhc->DCBAA[SlotId] = 0;
|
|
|
|
//
|
|
// Free the slot related data structure
|
|
//
|
|
for (Index = 0; Index < 31; Index++) {
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
|
|
RingSeg = ((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
|
|
if (RingSeg != NULL) {
|
|
UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
|
|
}
|
|
FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL;
|
|
}
|
|
}
|
|
|
|
for (Index = 0; Index < Xhc->UsbDevContext[SlotId].DevDesc.NumConfigurations; Index++) {
|
|
if (Xhc->UsbDevContext[SlotId].ConfDesc[Index] != NULL) {
|
|
FreePool (Xhc->UsbDevContext[SlotId].ConfDesc[Index]);
|
|
}
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
|
|
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64));
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
|
|
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT_64));
|
|
}
|
|
//
|
|
// Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
|
|
// asynchronous interrupt pipe after the device is disabled. It needs the device address mapping info to
|
|
// remove urb from XHCI's asynchronous transfer list.
|
|
//
|
|
Xhc->UsbDevContext[SlotId].Enabled = FALSE;
|
|
Xhc->UsbDevContext[SlotId].SlotId = 0;
|
|
|
|
DEBUG ((EFI_D_INFO, "XhcPeiDisableSlotCmd64: Disable Slot Command, Status = %r\n", Status));
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Configure all the device endpoints through XHCI's Configure_Endpoint cmd.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param SlotId The slot id to be configured.
|
|
@param DeviceSpeed The device's speed.
|
|
@param ConfigDesc The pointer to the usb device configuration descriptor.
|
|
|
|
@retval EFI_SUCCESS Successfully configure all the device endpoints.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiSetConfigCmd (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT8 DeviceSpeed,
|
|
IN USB_CONFIG_DESCRIPTOR *ConfigDesc
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
USB_INTERFACE_DESCRIPTOR *IfDesc;
|
|
USB_ENDPOINT_DESCRIPTOR *EpDesc;
|
|
UINT8 Index;
|
|
UINTN NumEp;
|
|
UINTN EpIndex;
|
|
UINT8 EpAddr;
|
|
EFI_USB_DATA_DIRECTION Direction;
|
|
UINT8 Dci;
|
|
UINT8 MaxDci;
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
UINT8 Interval;
|
|
|
|
TRANSFER_RING *EndpointTransferRing;
|
|
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
|
INPUT_CONTEXT *InputContext;
|
|
DEVICE_CONTEXT *OutputContext;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
//
|
|
// 4.6.6 Configure Endpoint
|
|
//
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
|
|
CopyMem (&InputContext->Slot, &OutputContext->Slot, sizeof (SLOT_CONTEXT));
|
|
|
|
ASSERT (ConfigDesc != NULL);
|
|
|
|
MaxDci = 0;
|
|
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *) (ConfigDesc + 1);
|
|
for (Index = 0; Index < ConfigDesc->NumInterfaces; Index++) {
|
|
while ((IfDesc->DescriptorType != USB_DESC_TYPE_INTERFACE) || (IfDesc->AlternateSetting != 0)) {
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *) ((UINTN) IfDesc + IfDesc->Length);
|
|
}
|
|
|
|
NumEp = IfDesc->NumEndpoints;
|
|
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *) (IfDesc + 1);
|
|
for (EpIndex = 0; EpIndex < NumEp; EpIndex++) {
|
|
while (EpDesc->DescriptorType != USB_DESC_TYPE_ENDPOINT) {
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *) ((UINTN) EpDesc + EpDesc->Length);
|
|
}
|
|
|
|
EpAddr = (UINT8) (EpDesc->EndpointAddress & 0x0F);
|
|
Direction = (UINT8) ((EpDesc->EndpointAddress & 0x80) ? EfiUsbDataIn : EfiUsbDataOut);
|
|
|
|
Dci = XhcPeiEndpointToDci (EpAddr, Direction);
|
|
if (Dci > MaxDci) {
|
|
MaxDci = Dci;
|
|
}
|
|
|
|
InputContext->InputControlContext.Dword2 |= (BIT0 << Dci);
|
|
InputContext->EP[Dci-1].MaxPacketSize = EpDesc->MaxPacketSize;
|
|
|
|
if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
|
|
//
|
|
// 6.2.3.4, shall be set to the value defined in the bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor.
|
|
//
|
|
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
|
|
} else {
|
|
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
|
|
}
|
|
|
|
switch (EpDesc->Attributes & USB_ENDPOINT_TYPE_MASK) {
|
|
case USB_ENDPOINT_BULK:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_BULK_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_BULK_OUT;
|
|
}
|
|
|
|
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
|
|
EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
|
|
XhcPeiCreateTransferRing (Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
|
|
}
|
|
|
|
break;
|
|
case USB_ENDPOINT_ISO:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 0;
|
|
InputContext->EP[Dci-1].EPType = ED_ISOCH_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 0;
|
|
InputContext->EP[Dci-1].EPType = ED_ISOCH_OUT;
|
|
}
|
|
break;
|
|
case USB_ENDPOINT_INTERRUPT:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_INTERRUPT_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_INTERRUPT_OUT;
|
|
}
|
|
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
|
|
InputContext->EP[Dci-1].MaxESITPayload = EpDesc->MaxPacketSize;
|
|
//
|
|
// Get the bInterval from descriptor and init the interval field of endpoint context
|
|
//
|
|
if ((DeviceSpeed == EFI_USB_SPEED_FULL) || (DeviceSpeed == EFI_USB_SPEED_LOW)) {
|
|
Interval = EpDesc->Interval;
|
|
//
|
|
// Calculate through the bInterval field of Endpoint descriptor.
|
|
//
|
|
ASSERT (Interval != 0);
|
|
InputContext->EP[Dci-1].Interval = (UINT32) HighBitSet32 ((UINT32) Interval) + 3;
|
|
} else if ((DeviceSpeed == EFI_USB_SPEED_HIGH) || (DeviceSpeed == EFI_USB_SPEED_SUPER)) {
|
|
Interval = EpDesc->Interval;
|
|
ASSERT (Interval >= 1 && Interval <= 16);
|
|
//
|
|
// Refer to XHCI 1.0 spec section 6.2.3.6, table 61
|
|
//
|
|
InputContext->EP[Dci-1].Interval = Interval - 1;
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
|
|
EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
|
|
XhcPeiCreateTransferRing (Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
|
|
}
|
|
break;
|
|
|
|
case USB_ENDPOINT_CONTROL:
|
|
default:
|
|
ASSERT (FALSE);
|
|
break;
|
|
}
|
|
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
|
Xhc->MemPool,
|
|
((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0,
|
|
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
|
);
|
|
PhyAddr &= ~((EFI_PHYSICAL_ADDRESS)0x0F);
|
|
PhyAddr |= (EFI_PHYSICAL_ADDRESS)((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
|
|
InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr);
|
|
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *) ((UINTN) EpDesc + EpDesc->Length);
|
|
}
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *) ((UINTN) IfDesc + IfDesc->Length);
|
|
}
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT0;
|
|
InputContext->Slot.ContextEntries = MaxDci;
|
|
//
|
|
// configure endpoint
|
|
//
|
|
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
|
|
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
|
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
CmdTrbCfgEP.CycleBit = 1;
|
|
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
|
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "XhcSetConfigCmd: Configure Endpoint\n"));
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcSetConfigCmd: Config Endpoint Failed, Status = %r\n", Status));
|
|
}
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Configure all the device endpoints through XHCI's Configure_Endpoint cmd.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param SlotId The slot id to be configured.
|
|
@param DeviceSpeed The device's speed.
|
|
@param ConfigDesc The pointer to the usb device configuration descriptor.
|
|
|
|
@retval EFI_SUCCESS Successfully configure all the device endpoints.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiSetConfigCmd64 (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT8 DeviceSpeed,
|
|
IN USB_CONFIG_DESCRIPTOR *ConfigDesc
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
USB_INTERFACE_DESCRIPTOR *IfDesc;
|
|
USB_ENDPOINT_DESCRIPTOR *EpDesc;
|
|
UINT8 Index;
|
|
UINTN NumEp;
|
|
UINTN EpIndex;
|
|
UINT8 EpAddr;
|
|
EFI_USB_DATA_DIRECTION Direction;
|
|
UINT8 Dci;
|
|
UINT8 MaxDci;
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
UINT8 Interval;
|
|
|
|
TRANSFER_RING *EndpointTransferRing;
|
|
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
|
INPUT_CONTEXT_64 *InputContext;
|
|
DEVICE_CONTEXT_64 *OutputContext;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
//
|
|
// 4.6.6 Configure Endpoint
|
|
//
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
|
|
CopyMem (&InputContext->Slot, &OutputContext->Slot, sizeof (SLOT_CONTEXT_64));
|
|
|
|
ASSERT (ConfigDesc != NULL);
|
|
|
|
MaxDci = 0;
|
|
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *) (ConfigDesc + 1);
|
|
for (Index = 0; Index < ConfigDesc->NumInterfaces; Index++) {
|
|
while ((IfDesc->DescriptorType != USB_DESC_TYPE_INTERFACE) || (IfDesc->AlternateSetting != 0)) {
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *) ((UINTN) IfDesc + IfDesc->Length);
|
|
}
|
|
|
|
NumEp = IfDesc->NumEndpoints;
|
|
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *) (IfDesc + 1);
|
|
for (EpIndex = 0; EpIndex < NumEp; EpIndex++) {
|
|
while (EpDesc->DescriptorType != USB_DESC_TYPE_ENDPOINT) {
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *) ((UINTN) EpDesc + EpDesc->Length);
|
|
}
|
|
|
|
EpAddr = (UINT8) (EpDesc->EndpointAddress & 0x0F);
|
|
Direction = (UINT8) ((EpDesc->EndpointAddress & 0x80) ? EfiUsbDataIn : EfiUsbDataOut);
|
|
|
|
Dci = XhcPeiEndpointToDci (EpAddr, Direction);
|
|
ASSERT (Dci < 32);
|
|
if (Dci > MaxDci) {
|
|
MaxDci = Dci;
|
|
}
|
|
|
|
InputContext->InputControlContext.Dword2 |= (BIT0 << Dci);
|
|
InputContext->EP[Dci-1].MaxPacketSize = EpDesc->MaxPacketSize;
|
|
|
|
if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
|
|
//
|
|
// 6.2.3.4, shall be set to the value defined in the bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor.
|
|
//
|
|
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
|
|
} else {
|
|
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
|
|
}
|
|
|
|
switch (EpDesc->Attributes & USB_ENDPOINT_TYPE_MASK) {
|
|
case USB_ENDPOINT_BULK:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_BULK_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_BULK_OUT;
|
|
}
|
|
|
|
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
|
|
EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
|
|
XhcPeiCreateTransferRing (Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
|
|
}
|
|
|
|
break;
|
|
case USB_ENDPOINT_ISO:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 0;
|
|
InputContext->EP[Dci-1].EPType = ED_ISOCH_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 0;
|
|
InputContext->EP[Dci-1].EPType = ED_ISOCH_OUT;
|
|
}
|
|
break;
|
|
case USB_ENDPOINT_INTERRUPT:
|
|
if (Direction == EfiUsbDataIn) {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_INTERRUPT_IN;
|
|
} else {
|
|
InputContext->EP[Dci-1].CErr = 3;
|
|
InputContext->EP[Dci-1].EPType = ED_INTERRUPT_OUT;
|
|
}
|
|
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
|
|
InputContext->EP[Dci-1].MaxESITPayload = EpDesc->MaxPacketSize;
|
|
//
|
|
// Get the bInterval from descriptor and init the the interval field of endpoint context
|
|
//
|
|
if ((DeviceSpeed == EFI_USB_SPEED_FULL) || (DeviceSpeed == EFI_USB_SPEED_LOW)) {
|
|
Interval = EpDesc->Interval;
|
|
//
|
|
// Calculate through the bInterval field of Endpoint descriptor.
|
|
//
|
|
ASSERT (Interval != 0);
|
|
InputContext->EP[Dci-1].Interval = (UINT32) HighBitSet32( (UINT32) Interval) + 3;
|
|
} else if ((DeviceSpeed == EFI_USB_SPEED_HIGH) || (DeviceSpeed == EFI_USB_SPEED_SUPER)) {
|
|
Interval = EpDesc->Interval;
|
|
ASSERT (Interval >= 1 && Interval <= 16);
|
|
//
|
|
// Refer to XHCI 1.0 spec section 6.2.3.6, table 61
|
|
//
|
|
InputContext->EP[Dci-1].Interval = Interval - 1;
|
|
}
|
|
|
|
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
|
|
EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING));
|
|
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
|
|
XhcPeiCreateTransferRing (Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
|
|
}
|
|
break;
|
|
|
|
case USB_ENDPOINT_CONTROL:
|
|
default:
|
|
ASSERT (0);
|
|
break;
|
|
}
|
|
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
|
Xhc->MemPool,
|
|
((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0,
|
|
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
|
);
|
|
|
|
PhyAddr &= ~((EFI_PHYSICAL_ADDRESS)0x0F);
|
|
PhyAddr |= (EFI_PHYSICAL_ADDRESS)((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
|
|
|
|
InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr);
|
|
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
|
|
EpDesc = (USB_ENDPOINT_DESCRIPTOR *) ((UINTN)EpDesc + EpDesc->Length);
|
|
}
|
|
IfDesc = (USB_INTERFACE_DESCRIPTOR *) ((UINTN)IfDesc + IfDesc->Length);
|
|
}
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT0;
|
|
InputContext->Slot.ContextEntries = MaxDci;
|
|
//
|
|
// configure endpoint
|
|
//
|
|
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
|
|
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
|
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
CmdTrbCfgEP.CycleBit = 1;
|
|
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
|
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "XhcSetConfigCmd64: Configure Endpoint\n"));
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcSetConfigCmd64: Config Endpoint Failed, Status = %r\n", Status));
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Evaluate the endpoint 0 context through XHCI's Evaluate_Context cmd.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param SlotId The slot id to be evaluated.
|
|
@param MaxPacketSize The max packet size supported by the device control transfer.
|
|
|
|
@retval EFI_SUCCESS Successfully evaluate the device endpoint 0.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiEvaluateContext (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT32 MaxPacketSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT *InputContext;
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
|
|
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
|
|
|
//
|
|
// 4.6.7 Evaluate Context
|
|
//
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT1;
|
|
InputContext->EP[0].MaxPacketSize = MaxPacketSize;
|
|
|
|
ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
|
|
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
|
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
CmdTrbEvalu.CycleBit = 1;
|
|
CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
|
|
CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "XhcEvaluateContext: Evaluate context\n"));
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbEvalu,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcEvaluateContext: Evaluate Context Failed, Status = %r\n", Status));
|
|
}
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Evaluate the endpoint 0 context through XHCI's Evaluate_Context cmd.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param SlotId The slot id to be evaluated.
|
|
@param MaxPacketSize The max packet size supported by the device control transfer.
|
|
|
|
@retval EFI_SUCCESS Successfully evaluate the device endpoint 0.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiEvaluateContext64 (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT32 MaxPacketSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT_64 *InputContext;
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
|
|
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
|
|
|
//
|
|
// 4.6.7 Evaluate Context
|
|
//
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT1;
|
|
InputContext->EP[0].MaxPacketSize = MaxPacketSize;
|
|
|
|
ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
|
|
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
|
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
CmdTrbEvalu.CycleBit = 1;
|
|
CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
|
|
CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "XhcEvaluateContext64: Evaluate context 64\n"));
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbEvalu,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcEvaluateContext64: Evaluate Context Failed, Status = %r\n", Status));
|
|
}
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Evaluate the slot context for hub device through XHCI's Configure_Endpoint cmd.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param SlotId The slot id to be configured.
|
|
@param PortNum The total number of downstream port supported by the hub.
|
|
@param TTT The TT think time of the hub device.
|
|
@param MTT The multi-TT of the hub device.
|
|
|
|
@retval EFI_SUCCESS Successfully configure the hub device's slot context.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiConfigHubContext (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT8 PortNum,
|
|
IN UINT8 TTT,
|
|
IN UINT8 MTT
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT *InputContext;
|
|
DEVICE_CONTEXT *OutputContext;
|
|
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
|
|
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
|
|
|
|
//
|
|
// 4.6.7 Evaluate Context
|
|
//
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT0;
|
|
|
|
//
|
|
// Copy the slot context from OutputContext to Input context
|
|
//
|
|
CopyMem(&(InputContext->Slot), &(OutputContext->Slot), sizeof (SLOT_CONTEXT));
|
|
InputContext->Slot.Hub = 1;
|
|
InputContext->Slot.PortNum = PortNum;
|
|
InputContext->Slot.TTT = TTT;
|
|
InputContext->Slot.MTT = MTT;
|
|
|
|
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
|
|
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
|
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
CmdTrbCfgEP.CycleBit = 1;
|
|
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
|
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "Configure Hub Slot Context\n"));
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcConfigHubContext: Config Endpoint Failed, Status = %r\n", Status));
|
|
}
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Evaluate the slot context for hub device through XHCI's Configure_Endpoint cmd.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param SlotId The slot id to be configured.
|
|
@param PortNum The total number of downstream port supported by the hub.
|
|
@param TTT The TT think time of the hub device.
|
|
@param MTT The multi-TT of the hub device.
|
|
|
|
@retval EFI_SUCCESS Successfully configure the hub device's slot context.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiConfigHubContext64 (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINT8 SlotId,
|
|
IN UINT8 PortNum,
|
|
IN UINT8 TTT,
|
|
IN UINT8 MTT
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
|
INPUT_CONTEXT_64 *InputContext;
|
|
DEVICE_CONTEXT_64 *OutputContext;
|
|
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
|
|
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
|
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
|
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
|
|
|
|
//
|
|
// 4.6.7 Evaluate Context
|
|
//
|
|
ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
|
|
|
|
InputContext->InputControlContext.Dword2 |= BIT0;
|
|
|
|
//
|
|
// Copy the slot context from OutputContext to Input context
|
|
//
|
|
CopyMem(&(InputContext->Slot), &(OutputContext->Slot), sizeof (SLOT_CONTEXT_64));
|
|
InputContext->Slot.Hub = 1;
|
|
InputContext->Slot.PortNum = PortNum;
|
|
InputContext->Slot.TTT = TTT;
|
|
InputContext->Slot.MTT = MTT;
|
|
|
|
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
|
|
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
|
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
CmdTrbCfgEP.CycleBit = 1;
|
|
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
|
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
|
DEBUG ((EFI_D_INFO, "Configure Hub Slot Context 64\n"));
|
|
Status = XhcPeiCmdTransfer (
|
|
Xhc,
|
|
(TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
|
|
XHC_GENERIC_TIMEOUT,
|
|
(TRB_TEMPLATE **) (UINTN) &EvtTrb
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_ERROR, "XhcConfigHubContext64: Config Endpoint Failed, Status = %r\n", Status));
|
|
}
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Check if there is a new generated event.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param EvtRing The event ring to check.
|
|
@param NewEvtTrb The new event TRB found.
|
|
|
|
@retval EFI_SUCCESS Found a new event TRB at the event ring.
|
|
@retval EFI_NOT_READY The event ring has no new event.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiCheckNewEvent (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN EVENT_RING *EvtRing,
|
|
OUT TRB_TEMPLATE **NewEvtTrb
|
|
)
|
|
{
|
|
ASSERT (EvtRing != NULL);
|
|
|
|
*NewEvtTrb = EvtRing->EventRingDequeue;
|
|
|
|
if (EvtRing->EventRingDequeue == EvtRing->EventRingEnqueue) {
|
|
return EFI_NOT_READY;
|
|
}
|
|
|
|
EvtRing->EventRingDequeue++;
|
|
//
|
|
// If the dequeue pointer is beyond the ring, then roll-back it to the begining of the ring.
|
|
//
|
|
if ((UINTN) EvtRing->EventRingDequeue >= ((UINTN) EvtRing->EventRingSeg0 + sizeof (TRB_TEMPLATE) * EvtRing->TrbNumber)) {
|
|
EvtRing->EventRingDequeue = EvtRing->EventRingSeg0;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Synchronize the specified event ring to update the enqueue and dequeue pointer.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param EvtRing The event ring to sync.
|
|
|
|
@retval EFI_SUCCESS The event ring is synchronized successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiSyncEventRing (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN EVENT_RING *EvtRing
|
|
)
|
|
{
|
|
UINTN Index;
|
|
TRB_TEMPLATE *EvtTrb;
|
|
|
|
ASSERT (EvtRing != NULL);
|
|
|
|
//
|
|
// Calculate the EventRingEnqueue and EventRingCCS.
|
|
// Note: only support single Segment
|
|
//
|
|
EvtTrb = EvtRing->EventRingDequeue;
|
|
|
|
for (Index = 0; Index < EvtRing->TrbNumber; Index++) {
|
|
if (EvtTrb->CycleBit != EvtRing->EventRingCCS) {
|
|
break;
|
|
}
|
|
|
|
EvtTrb++;
|
|
|
|
if ((UINTN) EvtTrb >= ((UINTN) EvtRing->EventRingSeg0 + sizeof (TRB_TEMPLATE) * EvtRing->TrbNumber)) {
|
|
EvtTrb = EvtRing->EventRingSeg0;
|
|
EvtRing->EventRingCCS = (EvtRing->EventRingCCS) ? 0 : 1;
|
|
}
|
|
}
|
|
|
|
if (Index < EvtRing->TrbNumber) {
|
|
EvtRing->EventRingEnqueue = EvtTrb;
|
|
} else {
|
|
ASSERT (FALSE);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Free XHCI event ring.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param EventRing The event ring to be freed.
|
|
|
|
**/
|
|
VOID
|
|
XhcPeiFreeEventRing (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN EVENT_RING *EventRing
|
|
)
|
|
{
|
|
if(EventRing->EventRingSeg0 == NULL) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Free EventRing Segment 0
|
|
//
|
|
UsbHcFreeMem (Xhc->MemPool, EventRing->EventRingSeg0, sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER);
|
|
|
|
//
|
|
// Free ERST table
|
|
//
|
|
UsbHcFreeMem (Xhc->MemPool, EventRing->ERSTBase, sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
|
|
}
|
|
|
|
/**
|
|
Create XHCI event ring.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param EventRing The created event ring.
|
|
|
|
**/
|
|
VOID
|
|
XhcPeiCreateEventRing (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
OUT EVENT_RING *EventRing
|
|
)
|
|
{
|
|
VOID *Buf;
|
|
EVENT_RING_SEG_TABLE_ENTRY *ERSTBase;
|
|
UINTN Size;
|
|
EFI_PHYSICAL_ADDRESS ERSTPhy;
|
|
EFI_PHYSICAL_ADDRESS DequeuePhy;
|
|
|
|
ASSERT (EventRing != NULL);
|
|
|
|
Size = sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER;
|
|
Buf = UsbHcAllocateMem (Xhc->MemPool, Size);
|
|
ASSERT (Buf != NULL);
|
|
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
|
ZeroMem (Buf, Size);
|
|
|
|
DequeuePhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, Size);
|
|
|
|
EventRing->EventRingSeg0 = Buf;
|
|
EventRing->TrbNumber = EVENT_RING_TRB_NUMBER;
|
|
EventRing->EventRingDequeue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
|
|
EventRing->EventRingEnqueue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
|
|
|
|
//
|
|
// Software maintains an Event Ring Consumer Cycle State (CCS) bit, initializing it to '1'
|
|
// and toggling it every time the Event Ring Dequeue Pointer wraps back to the beginning of the Event Ring.
|
|
//
|
|
EventRing->EventRingCCS = 1;
|
|
|
|
Size = sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER;
|
|
Buf = UsbHcAllocateMem (Xhc->MemPool, Size);
|
|
ASSERT (Buf != NULL);
|
|
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
|
ZeroMem (Buf, Size);
|
|
|
|
ERSTBase = (EVENT_RING_SEG_TABLE_ENTRY *) Buf;
|
|
EventRing->ERSTBase = ERSTBase;
|
|
ERSTBase->PtrLo = XHC_LOW_32BIT (DequeuePhy);
|
|
ERSTBase->PtrHi = XHC_HIGH_32BIT (DequeuePhy);
|
|
ERSTBase->RingTrbSize = EVENT_RING_TRB_NUMBER;
|
|
|
|
ERSTPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, Size);
|
|
|
|
//
|
|
// Program the Interrupter Event Ring Segment Table Size (ERSTSZ) register (5.5.2.3.1)
|
|
//
|
|
XhcPeiWriteRuntimeReg (
|
|
Xhc,
|
|
XHC_ERSTSZ_OFFSET,
|
|
ERST_NUMBER
|
|
);
|
|
//
|
|
// Program the Interrupter Event Ring Dequeue Pointer (ERDP) register (5.5.2.3.3)
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
XhcPeiWriteRuntimeReg (
|
|
Xhc,
|
|
XHC_ERDP_OFFSET,
|
|
XHC_LOW_32BIT ((UINT64) (UINTN) DequeuePhy)
|
|
);
|
|
XhcPeiWriteRuntimeReg (
|
|
Xhc,
|
|
XHC_ERDP_OFFSET + 4,
|
|
XHC_HIGH_32BIT ((UINT64) (UINTN) DequeuePhy)
|
|
);
|
|
//
|
|
// Program the Interrupter Event Ring Segment Table Base Address (ERSTBA) register (5.5.2.3.2)
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
XhcPeiWriteRuntimeReg (
|
|
Xhc,
|
|
XHC_ERSTBA_OFFSET,
|
|
XHC_LOW_32BIT ((UINT64) (UINTN) ERSTPhy)
|
|
);
|
|
XhcPeiWriteRuntimeReg (
|
|
Xhc,
|
|
XHC_ERSTBA_OFFSET + 4,
|
|
XHC_HIGH_32BIT ((UINT64) (UINTN) ERSTPhy)
|
|
);
|
|
//
|
|
// Need set IMAN IE bit to enable the ring interrupt
|
|
//
|
|
XhcPeiSetRuntimeRegBit (Xhc, XHC_IMAN_OFFSET, XHC_IMAN_IE);
|
|
}
|
|
|
|
/**
|
|
Synchronize the specified transfer ring to update the enqueue and dequeue pointer.
|
|
|
|
@param Xhc The XHCI device.
|
|
@param TrsRing The transfer ring to sync.
|
|
|
|
@retval EFI_SUCCESS The transfer ring is synchronized successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
XhcPeiSyncTrsRing (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN TRANSFER_RING *TrsRing
|
|
)
|
|
{
|
|
UINTN Index;
|
|
TRB_TEMPLATE *TrsTrb;
|
|
|
|
ASSERT (TrsRing != NULL);
|
|
//
|
|
// Calculate the latest RingEnqueue and RingPCS
|
|
//
|
|
TrsTrb = TrsRing->RingEnqueue;
|
|
ASSERT (TrsTrb != NULL);
|
|
|
|
for (Index = 0; Index < TrsRing->TrbNumber; Index++) {
|
|
if (TrsTrb->CycleBit != (TrsRing->RingPCS & BIT0)) {
|
|
break;
|
|
}
|
|
TrsTrb++;
|
|
if ((UINT8) TrsTrb->Type == TRB_TYPE_LINK) {
|
|
ASSERT (((LINK_TRB *) TrsTrb)->TC != 0);
|
|
//
|
|
// set cycle bit in Link TRB as normal
|
|
//
|
|
((LINK_TRB*)TrsTrb)->CycleBit = TrsRing->RingPCS & BIT0;
|
|
//
|
|
// Toggle PCS maintained by software
|
|
//
|
|
TrsRing->RingPCS = (TrsRing->RingPCS & BIT0) ? 0 : 1;
|
|
TrsTrb = (TRB_TEMPLATE *) TrsRing->RingSeg0; // Use host address
|
|
}
|
|
}
|
|
|
|
ASSERT (Index != TrsRing->TrbNumber);
|
|
|
|
if (TrsTrb != TrsRing->RingEnqueue) {
|
|
TrsRing->RingEnqueue = TrsTrb;
|
|
}
|
|
|
|
//
|
|
// Clear the Trb context for enqueue, but reserve the PCS bit
|
|
//
|
|
TrsTrb->Parameter1 = 0;
|
|
TrsTrb->Parameter2 = 0;
|
|
TrsTrb->Status = 0;
|
|
TrsTrb->RsvdZ1 = 0;
|
|
TrsTrb->Type = 0;
|
|
TrsTrb->Control = 0;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Create XHCI transfer ring.
|
|
|
|
@param Xhc The XHCI Device.
|
|
@param TrbNum The number of TRB in the ring.
|
|
@param TransferRing The created transfer ring.
|
|
|
|
**/
|
|
VOID
|
|
XhcPeiCreateTransferRing (
|
|
IN PEI_XHC_DEV *Xhc,
|
|
IN UINTN TrbNum,
|
|
OUT TRANSFER_RING *TransferRing
|
|
)
|
|
{
|
|
VOID *Buf;
|
|
LINK_TRB *EndTrb;
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
|
|
Buf = UsbHcAllocateMem (Xhc->MemPool, sizeof (TRB_TEMPLATE) * TrbNum);
|
|
ASSERT (Buf != NULL);
|
|
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
|
ZeroMem (Buf, sizeof (TRB_TEMPLATE) * TrbNum);
|
|
|
|
TransferRing->RingSeg0 = Buf;
|
|
TransferRing->TrbNumber = TrbNum;
|
|
TransferRing->RingEnqueue = (TRB_TEMPLATE *) TransferRing->RingSeg0;
|
|
TransferRing->RingDequeue = (TRB_TEMPLATE *) TransferRing->RingSeg0;
|
|
TransferRing->RingPCS = 1;
|
|
//
|
|
// 4.9.2 Transfer Ring Management
|
|
// To form a ring (or circular queue) a Link TRB may be inserted at the end of a ring to
|
|
// point to the first TRB in the ring.
|
|
//
|
|
EndTrb = (LINK_TRB *) ((UINTN) Buf + sizeof (TRB_TEMPLATE) * (TrbNum - 1));
|
|
EndTrb->Type = TRB_TYPE_LINK;
|
|
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, sizeof (TRB_TEMPLATE) * TrbNum);
|
|
EndTrb->PtrLo = XHC_LOW_32BIT (PhyAddr);
|
|
EndTrb->PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
|
//
|
|
// Toggle Cycle (TC). When set to '1', the xHC shall toggle its interpretation of the Cycle bit.
|
|
//
|
|
EndTrb->TC = 1;
|
|
//
|
|
// Set Cycle bit as other TRB PCS init value
|
|
//
|
|
EndTrb->CycleBit = 0;
|
|
}
|
|
|
|
/**
|
|
Initialize the XHCI host controller for schedule.
|
|
|
|
@param Xhc The XHCI device to be initialized.
|
|
|
|
**/
|
|
VOID
|
|
XhcPeiInitSched (
|
|
IN PEI_XHC_DEV *Xhc
|
|
)
|
|
{
|
|
VOID *Dcbaa;
|
|
EFI_PHYSICAL_ADDRESS DcbaaPhy;
|
|
UINTN Size;
|
|
EFI_PHYSICAL_ADDRESS CmdRingPhy;
|
|
UINT32 MaxScratchpadBufs;
|
|
UINT64 *ScratchBuf;
|
|
EFI_PHYSICAL_ADDRESS ScratchPhy;
|
|
UINT64 *ScratchEntry;
|
|
EFI_PHYSICAL_ADDRESS ScratchEntryPhy;
|
|
UINT32 Index;
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// Initialize memory management.
|
|
//
|
|
Xhc->MemPool = UsbHcInitMemPool ();
|
|
ASSERT (Xhc->MemPool != NULL);
|
|
|
|
//
|
|
// Program the Max Device Slots Enabled (MaxSlotsEn) field in the CONFIG register (5.4.7)
|
|
// to enable the device slots that system software is going to use.
|
|
//
|
|
Xhc->MaxSlotsEn = Xhc->HcSParams1.Data.MaxSlots;
|
|
ASSERT (Xhc->MaxSlotsEn >= 1 && Xhc->MaxSlotsEn <= 255);
|
|
XhcPeiWriteOpReg (Xhc, XHC_CONFIG_OFFSET, (XhcPeiReadOpReg (Xhc, XHC_CONFIG_OFFSET) & ~XHC_CONFIG_MASK) | Xhc->MaxSlotsEn);
|
|
|
|
//
|
|
// The Device Context Base Address Array entry associated with each allocated Device Slot
|
|
// shall contain a 64-bit pointer to the base of the associated Device Context.
|
|
// The Device Context Base Address Array shall contain MaxSlotsEn + 1 entries.
|
|
// Software shall set Device Context Base Address Array entries for unallocated Device Slots to '0'.
|
|
//
|
|
Size = (Xhc->MaxSlotsEn + 1) * sizeof (UINT64);
|
|
Dcbaa = UsbHcAllocateMem (Xhc->MemPool, Size);
|
|
ASSERT (Dcbaa != NULL);
|
|
|
|
//
|
|
// A Scratchpad Buffer is a PAGESIZE block of system memory located on a PAGESIZE boundary.
|
|
// System software shall allocate the Scratchpad Buffer(s) before placing the xHC in to Run
|
|
// mode (Run/Stop(R/S) ='1').
|
|
//
|
|
MaxScratchpadBufs = ((Xhc->HcSParams2.Data.ScratchBufHi) << 5) | (Xhc->HcSParams2.Data.ScratchBufLo);
|
|
Xhc->MaxScratchpadBufs = MaxScratchpadBufs;
|
|
ASSERT (MaxScratchpadBufs <= 1023);
|
|
if (MaxScratchpadBufs != 0) {
|
|
//
|
|
// Allocate the buffer to record the host address for each entry
|
|
//
|
|
ScratchEntry = AllocateZeroPool (sizeof (UINT64) * MaxScratchpadBufs);
|
|
ASSERT (ScratchEntry != NULL);
|
|
Xhc->ScratchEntry = ScratchEntry;
|
|
|
|
ScratchPhy = 0;
|
|
Status = UsbHcAllocateAlignedPages (
|
|
EFI_SIZE_TO_PAGES (MaxScratchpadBufs * sizeof (UINT64)),
|
|
Xhc->PageSize,
|
|
(VOID **) &ScratchBuf,
|
|
&ScratchPhy
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
ZeroMem (ScratchBuf, MaxScratchpadBufs * sizeof (UINT64));
|
|
Xhc->ScratchBuf = ScratchBuf;
|
|
|
|
//
|
|
// Allocate each scratch buffer
|
|
//
|
|
for (Index = 0; Index < MaxScratchpadBufs; Index++) {
|
|
ScratchEntryPhy = 0;
|
|
Status = UsbHcAllocateAlignedPages (
|
|
EFI_SIZE_TO_PAGES (Xhc->PageSize),
|
|
Xhc->PageSize,
|
|
(VOID **) &ScratchEntry[Index],
|
|
&ScratchEntryPhy
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
ZeroMem ((VOID *) (UINTN) ScratchEntry[Index], Xhc->PageSize);
|
|
//
|
|
// Fill with the PCI device address
|
|
//
|
|
*ScratchBuf++ = ScratchEntryPhy;
|
|
}
|
|
//
|
|
// The Scratchpad Buffer Array contains pointers to the Scratchpad Buffers. Entry 0 of the
|
|
// Device Context Base Address Array points to the Scratchpad Buffer Array.
|
|
//
|
|
*(UINT64 *) Dcbaa = (UINT64) (UINTN) ScratchPhy;
|
|
}
|
|
|
|
//
|
|
// Program the Device Context Base Address Array Pointer (DCBAAP) register (5.4.6) with
|
|
// a 64-bit address pointing to where the Device Context Base Address Array is located.
|
|
//
|
|
Xhc->DCBAA = (UINT64 *) (UINTN) Dcbaa;
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
DcbaaPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Dcbaa, Size);
|
|
XhcPeiWriteOpReg (Xhc, XHC_DCBAAP_OFFSET, XHC_LOW_32BIT (DcbaaPhy));
|
|
XhcPeiWriteOpReg (Xhc, XHC_DCBAAP_OFFSET + 4, XHC_HIGH_32BIT (DcbaaPhy));
|
|
|
|
DEBUG ((EFI_D_INFO, "XhcPeiInitSched:DCBAA=0x%x\n", Xhc->DCBAA));
|
|
|
|
//
|
|
// Define the Command Ring Dequeue Pointer by programming the Command Ring Control Register
|
|
// (5.4.5) with a 64-bit address pointing to the starting address of the first TRB of the Command Ring.
|
|
// Note: The Command Ring is 64 byte aligned, so the low order 6 bits of the Command Ring Pointer shall
|
|
// always be '0'.
|
|
//
|
|
XhcPeiCreateTransferRing (Xhc, CMD_RING_TRB_NUMBER, &Xhc->CmdRing);
|
|
//
|
|
// The xHC uses the Enqueue Pointer to determine when a Transfer Ring is empty. As it fetches TRBs from a
|
|
// Transfer Ring it checks for a Cycle bit transition. If a transition detected, the ring is empty.
|
|
// So we set RCS as inverted PCS init value to let Command Ring empty
|
|
//
|
|
CmdRingPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->CmdRing.RingSeg0, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER);
|
|
ASSERT ((CmdRingPhy & 0x3F) == 0);
|
|
CmdRingPhy |= XHC_CRCR_RCS;
|
|
//
|
|
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
|
// So divide it to two 32-bytes width register access.
|
|
//
|
|
XhcPeiWriteOpReg (Xhc, XHC_CRCR_OFFSET, XHC_LOW_32BIT (CmdRingPhy));
|
|
XhcPeiWriteOpReg (Xhc, XHC_CRCR_OFFSET + 4, XHC_HIGH_32BIT (CmdRingPhy));
|
|
|
|
DEBUG ((EFI_D_INFO, "XhcPeiInitSched:XHC_CRCR=0x%x\n", Xhc->CmdRing.RingSeg0));
|
|
|
|
//
|
|
// Disable the 'interrupter enable' bit in USB_CMD
|
|
// and clear IE & IP bit in all Interrupter X Management Registers.
|
|
//
|
|
XhcPeiClearOpRegBit (Xhc, XHC_USBCMD_OFFSET, XHC_USBCMD_INTE);
|
|
for (Index = 0; Index < (UINT16)(Xhc->HcSParams1.Data.MaxIntrs); Index++) {
|
|
XhcPeiClearRuntimeRegBit (Xhc, XHC_IMAN_OFFSET + (Index * 32), XHC_IMAN_IE);
|
|
XhcPeiSetRuntimeRegBit (Xhc, XHC_IMAN_OFFSET + (Index * 32), XHC_IMAN_IP);
|
|
}
|
|
|
|
//
|
|
// Allocate EventRing for Cmd, Ctrl, Bulk, Interrupt, AsynInterrupt transfer
|
|
//
|
|
XhcPeiCreateEventRing (Xhc, &Xhc->EventRing);
|
|
DEBUG ((EFI_D_INFO, "XhcPeiInitSched:XHC_EVENTRING=0x%x\n", Xhc->EventRing.EventRingSeg0));
|
|
}
|
|
|
|
/**
|
|
Free the resouce allocated at initializing schedule.
|
|
|
|
@param Xhc The XHCI device.
|
|
|
|
**/
|
|
VOID
|
|
XhcPeiFreeSched (
|
|
IN PEI_XHC_DEV *Xhc
|
|
)
|
|
{
|
|
UINT32 Index;
|
|
UINT64 *ScratchEntry;
|
|
|
|
if (Xhc->ScratchBuf != NULL) {
|
|
ScratchEntry = Xhc->ScratchEntry;
|
|
for (Index = 0; Index < Xhc->MaxScratchpadBufs; Index++) {
|
|
//
|
|
// Free Scratchpad Buffers
|
|
//
|
|
UsbHcFreeAlignedPages ((VOID*) (UINTN) ScratchEntry[Index], EFI_SIZE_TO_PAGES (Xhc->PageSize));
|
|
}
|
|
//
|
|
// Free Scratchpad Buffer Array
|
|
//
|
|
UsbHcFreeAlignedPages (Xhc->ScratchBuf, EFI_SIZE_TO_PAGES (Xhc->MaxScratchpadBufs * sizeof (UINT64)));
|
|
FreePool (Xhc->ScratchEntry);
|
|
}
|
|
|
|
if (Xhc->CmdRing.RingSeg0 != NULL) {
|
|
UsbHcFreeMem (Xhc->MemPool, Xhc->CmdRing.RingSeg0, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER);
|
|
Xhc->CmdRing.RingSeg0 = NULL;
|
|
}
|
|
|
|
XhcPeiFreeEventRing (Xhc,&Xhc->EventRing);
|
|
|
|
if (Xhc->DCBAA != NULL) {
|
|
UsbHcFreeMem (Xhc->MemPool, Xhc->DCBAA, (Xhc->MaxSlotsEn + 1) * sizeof (UINT64));
|
|
Xhc->DCBAA = NULL;
|
|
}
|
|
|
|
//
|
|
// Free memory pool at last
|
|
//
|
|
if (Xhc->MemPool != NULL) {
|
|
UsbHcFreeMemPool (Xhc->MemPool);
|
|
Xhc->MemPool = NULL;
|
|
}
|
|
}
|
|
|