mirror of https://github.com/acidanthera/audk.git
3319 lines
90 KiB
C
3319 lines
90 KiB
C
/** @file
|
|
Network library.
|
|
|
|
Copyright (c) 2005 - 2015, Intel Corporation. All rights reserved.<BR>
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
**/
|
|
|
|
#include <Uefi.h>
|
|
|
|
#include <IndustryStandard/SmBios.h>
|
|
|
|
#include <Protocol/DriverBinding.h>
|
|
#include <Protocol/ServiceBinding.h>
|
|
#include <Protocol/SimpleNetwork.h>
|
|
#include <Protocol/ManagedNetwork.h>
|
|
#include <Protocol/Ip4Config2.h>
|
|
#include <Protocol/ComponentName.h>
|
|
#include <Protocol/ComponentName2.h>
|
|
|
|
#include <Guid/SmBios.h>
|
|
|
|
#include <Library/NetLib.h>
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/UefiBootServicesTableLib.h>
|
|
#include <Library/UefiRuntimeServicesTableLib.h>
|
|
#include <Library/MemoryAllocationLib.h>
|
|
#include <Library/DevicePathLib.h>
|
|
#include <Library/PrintLib.h>
|
|
#include <Library/UefiLib.h>
|
|
|
|
#define NIC_ITEM_CONFIG_SIZE sizeof (NIC_IP4_CONFIG_INFO) + sizeof (EFI_IP4_ROUTE_TABLE) * MAX_IP4_CONFIG_IN_VARIABLE
|
|
#define DEFAULT_ZERO_START ((UINTN) ~0)
|
|
|
|
//
|
|
// All the supported IP4 maskes in host byte order.
|
|
//
|
|
GLOBAL_REMOVE_IF_UNREFERENCED IP4_ADDR gIp4AllMasks[IP4_MASK_NUM] = {
|
|
0x00000000,
|
|
0x80000000,
|
|
0xC0000000,
|
|
0xE0000000,
|
|
0xF0000000,
|
|
0xF8000000,
|
|
0xFC000000,
|
|
0xFE000000,
|
|
|
|
0xFF000000,
|
|
0xFF800000,
|
|
0xFFC00000,
|
|
0xFFE00000,
|
|
0xFFF00000,
|
|
0xFFF80000,
|
|
0xFFFC0000,
|
|
0xFFFE0000,
|
|
|
|
0xFFFF0000,
|
|
0xFFFF8000,
|
|
0xFFFFC000,
|
|
0xFFFFE000,
|
|
0xFFFFF000,
|
|
0xFFFFF800,
|
|
0xFFFFFC00,
|
|
0xFFFFFE00,
|
|
|
|
0xFFFFFF00,
|
|
0xFFFFFF80,
|
|
0xFFFFFFC0,
|
|
0xFFFFFFE0,
|
|
0xFFFFFFF0,
|
|
0xFFFFFFF8,
|
|
0xFFFFFFFC,
|
|
0xFFFFFFFE,
|
|
0xFFFFFFFF,
|
|
};
|
|
|
|
GLOBAL_REMOVE_IF_UNREFERENCED EFI_IPv4_ADDRESS mZeroIp4Addr = {{0, 0, 0, 0}};
|
|
|
|
//
|
|
// Any error level digitally larger than mNetDebugLevelMax
|
|
// will be silently discarded.
|
|
//
|
|
GLOBAL_REMOVE_IF_UNREFERENCED UINTN mNetDebugLevelMax = NETDEBUG_LEVEL_ERROR;
|
|
GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogPacketSeq = 0xDEADBEEF;
|
|
|
|
//
|
|
// You can change mSyslogDstMac mSyslogDstIp and mSyslogSrcIp
|
|
// here to direct the syslog packets to the syslog deamon. The
|
|
// default is broadcast to both the ethernet and IP.
|
|
//
|
|
GLOBAL_REMOVE_IF_UNREFERENCED UINT8 mSyslogDstMac[NET_ETHER_ADDR_LEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
|
|
GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogDstIp = 0xffffffff;
|
|
GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogSrcIp = 0;
|
|
|
|
GLOBAL_REMOVE_IF_UNREFERENCED CHAR8 *mMonthName[] = {
|
|
"Jan",
|
|
"Feb",
|
|
"Mar",
|
|
"Apr",
|
|
"May",
|
|
"Jun",
|
|
"Jul",
|
|
"Aug",
|
|
"Sep",
|
|
"Oct",
|
|
"Nov",
|
|
"Dec"
|
|
};
|
|
|
|
//
|
|
// VLAN device path node template
|
|
//
|
|
GLOBAL_REMOVE_IF_UNREFERENCED VLAN_DEVICE_PATH mNetVlanDevicePathTemplate = {
|
|
{
|
|
MESSAGING_DEVICE_PATH,
|
|
MSG_VLAN_DP,
|
|
{
|
|
(UINT8) (sizeof (VLAN_DEVICE_PATH)),
|
|
(UINT8) ((sizeof (VLAN_DEVICE_PATH)) >> 8)
|
|
}
|
|
},
|
|
0
|
|
};
|
|
|
|
/**
|
|
Locate the handles that support SNP, then open one of them
|
|
to send the syslog packets. The caller isn't required to close
|
|
the SNP after use because the SNP is opened by HandleProtocol.
|
|
|
|
@return The point to SNP if one is properly openned. Otherwise NULL
|
|
|
|
**/
|
|
EFI_SIMPLE_NETWORK_PROTOCOL *
|
|
SyslogLocateSnp (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
|
|
EFI_STATUS Status;
|
|
EFI_HANDLE *Handles;
|
|
UINTN HandleCount;
|
|
UINTN Index;
|
|
|
|
//
|
|
// Locate the handles which has SNP installed.
|
|
//
|
|
Handles = NULL;
|
|
Status = gBS->LocateHandleBuffer (
|
|
ByProtocol,
|
|
&gEfiSimpleNetworkProtocolGuid,
|
|
NULL,
|
|
&HandleCount,
|
|
&Handles
|
|
);
|
|
|
|
if (EFI_ERROR (Status) || (HandleCount == 0)) {
|
|
return NULL;
|
|
}
|
|
|
|
//
|
|
// Try to open one of the ethernet SNP protocol to send packet
|
|
//
|
|
Snp = NULL;
|
|
|
|
for (Index = 0; Index < HandleCount; Index++) {
|
|
Status = gBS->HandleProtocol (
|
|
Handles[Index],
|
|
&gEfiSimpleNetworkProtocolGuid,
|
|
(VOID **) &Snp
|
|
);
|
|
|
|
if ((Status == EFI_SUCCESS) && (Snp != NULL) &&
|
|
(Snp->Mode->IfType == NET_IFTYPE_ETHERNET) &&
|
|
(Snp->Mode->MaxPacketSize >= NET_SYSLOG_PACKET_LEN)) {
|
|
|
|
break;
|
|
}
|
|
|
|
Snp = NULL;
|
|
}
|
|
|
|
FreePool (Handles);
|
|
return Snp;
|
|
}
|
|
|
|
/**
|
|
Transmit a syslog packet synchronously through SNP. The Packet
|
|
already has the ethernet header prepended. This function should
|
|
fill in the source MAC because it will try to locate a SNP each
|
|
time it is called to avoid the problem if SNP is unloaded.
|
|
This code snip is copied from MNP.
|
|
|
|
@param[in] Packet The Syslog packet
|
|
@param[in] Length The length of the packet
|
|
|
|
@retval EFI_DEVICE_ERROR Failed to locate a usable SNP protocol
|
|
@retval EFI_TIMEOUT Timeout happened to send the packet.
|
|
@retval EFI_SUCCESS Packet is sent.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
SyslogSendPacket (
|
|
IN CHAR8 *Packet,
|
|
IN UINT32 Length
|
|
)
|
|
{
|
|
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
|
|
ETHER_HEAD *Ether;
|
|
EFI_STATUS Status;
|
|
EFI_EVENT TimeoutEvent;
|
|
UINT8 *TxBuf;
|
|
|
|
Snp = SyslogLocateSnp ();
|
|
|
|
if (Snp == NULL) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
Ether = (ETHER_HEAD *) Packet;
|
|
CopyMem (Ether->SrcMac, Snp->Mode->CurrentAddress.Addr, NET_ETHER_ADDR_LEN);
|
|
|
|
//
|
|
// Start the timeout event.
|
|
//
|
|
Status = gBS->CreateEvent (
|
|
EVT_TIMER,
|
|
TPL_NOTIFY,
|
|
NULL,
|
|
NULL,
|
|
&TimeoutEvent
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
Status = gBS->SetTimer (TimeoutEvent, TimerRelative, NET_SYSLOG_TX_TIMEOUT);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
for (;;) {
|
|
//
|
|
// Transmit the packet through SNP.
|
|
//
|
|
Status = Snp->Transmit (Snp, 0, Length, Packet, NULL, NULL, NULL);
|
|
|
|
if ((Status != EFI_SUCCESS) && (Status != EFI_NOT_READY)) {
|
|
Status = EFI_DEVICE_ERROR;
|
|
break;
|
|
}
|
|
|
|
//
|
|
// If Status is EFI_SUCCESS, the packet is put in the transmit queue.
|
|
// if Status is EFI_NOT_READY, the transmit engine of the network
|
|
// interface is busy. Both need to sync SNP.
|
|
//
|
|
TxBuf = NULL;
|
|
|
|
do {
|
|
//
|
|
// Get the recycled transmit buffer status.
|
|
//
|
|
Snp->GetStatus (Snp, NULL, (VOID **) &TxBuf);
|
|
|
|
if (!EFI_ERROR (gBS->CheckEvent (TimeoutEvent))) {
|
|
Status = EFI_TIMEOUT;
|
|
break;
|
|
}
|
|
|
|
} while (TxBuf == NULL);
|
|
|
|
if ((Status == EFI_SUCCESS) || (Status == EFI_TIMEOUT)) {
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Status is EFI_NOT_READY. Restart the timer event and
|
|
// call Snp->Transmit again.
|
|
//
|
|
gBS->SetTimer (TimeoutEvent, TimerRelative, NET_SYSLOG_TX_TIMEOUT);
|
|
}
|
|
|
|
gBS->SetTimer (TimeoutEvent, TimerCancel, 0);
|
|
|
|
ON_EXIT:
|
|
gBS->CloseEvent (TimeoutEvent);
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Build a syslog packet, including the Ethernet/Ip/Udp headers
|
|
and user's message.
|
|
|
|
@param[in] Level Syslog servity level
|
|
@param[in] Module The module that generates the log
|
|
@param[in] File The file that contains the current log
|
|
@param[in] Line The line of code in the File that contains the current log
|
|
@param[in] Message The log message
|
|
@param[in] BufLen The lenght of the Buf
|
|
@param[out] Buf The buffer to put the packet data
|
|
|
|
@return The length of the syslog packet built.
|
|
|
|
**/
|
|
UINT32
|
|
SyslogBuildPacket (
|
|
IN UINT32 Level,
|
|
IN UINT8 *Module,
|
|
IN UINT8 *File,
|
|
IN UINT32 Line,
|
|
IN UINT8 *Message,
|
|
IN UINT32 BufLen,
|
|
OUT CHAR8 *Buf
|
|
)
|
|
{
|
|
ETHER_HEAD *Ether;
|
|
IP4_HEAD *Ip4;
|
|
EFI_UDP_HEADER *Udp4;
|
|
EFI_TIME Time;
|
|
UINT32 Pri;
|
|
UINT32 Len;
|
|
|
|
//
|
|
// Fill in the Ethernet header. Leave alone the source MAC.
|
|
// SyslogSendPacket will fill in the address for us.
|
|
//
|
|
Ether = (ETHER_HEAD *) Buf;
|
|
CopyMem (Ether->DstMac, mSyslogDstMac, NET_ETHER_ADDR_LEN);
|
|
ZeroMem (Ether->SrcMac, NET_ETHER_ADDR_LEN);
|
|
|
|
Ether->EtherType = HTONS (0x0800); // IPv4 protocol
|
|
|
|
Buf += sizeof (ETHER_HEAD);
|
|
BufLen -= sizeof (ETHER_HEAD);
|
|
|
|
//
|
|
// Fill in the IP header
|
|
//
|
|
Ip4 = (IP4_HEAD *) Buf;
|
|
Ip4->HeadLen = 5;
|
|
Ip4->Ver = 4;
|
|
Ip4->Tos = 0;
|
|
Ip4->TotalLen = 0;
|
|
Ip4->Id = (UINT16) mSyslogPacketSeq;
|
|
Ip4->Fragment = 0;
|
|
Ip4->Ttl = 16;
|
|
Ip4->Protocol = 0x11;
|
|
Ip4->Checksum = 0;
|
|
Ip4->Src = mSyslogSrcIp;
|
|
Ip4->Dst = mSyslogDstIp;
|
|
|
|
Buf += sizeof (IP4_HEAD);
|
|
BufLen -= sizeof (IP4_HEAD);
|
|
|
|
//
|
|
// Fill in the UDP header, Udp checksum is optional. Leave it zero.
|
|
//
|
|
Udp4 = (EFI_UDP_HEADER *) Buf;
|
|
Udp4->SrcPort = HTONS (514);
|
|
Udp4->DstPort = HTONS (514);
|
|
Udp4->Length = 0;
|
|
Udp4->Checksum = 0;
|
|
|
|
Buf += sizeof (EFI_UDP_HEADER);
|
|
BufLen -= sizeof (EFI_UDP_HEADER);
|
|
|
|
//
|
|
// Build the syslog message body with <PRI> Timestamp machine module Message
|
|
//
|
|
Pri = ((NET_SYSLOG_FACILITY & 31) << 3) | (Level & 7);
|
|
gRT->GetTime (&Time, NULL);
|
|
ASSERT ((Time.Month <= 12) && (Time.Month >= 1));
|
|
|
|
//
|
|
// Use %a to format the ASCII strings, %s to format UNICODE strings
|
|
//
|
|
Len = 0;
|
|
Len += (UINT32) AsciiSPrint (
|
|
Buf,
|
|
BufLen,
|
|
"<%d> %a %d %d:%d:%d ",
|
|
Pri,
|
|
mMonthName [Time.Month-1],
|
|
Time.Day,
|
|
Time.Hour,
|
|
Time.Minute,
|
|
Time.Second
|
|
);
|
|
Len--;
|
|
|
|
Len += (UINT32) AsciiSPrint (
|
|
Buf + Len,
|
|
BufLen - Len,
|
|
"Tiano %a: %a (Line: %d File: %a)",
|
|
Module,
|
|
Message,
|
|
Line,
|
|
File
|
|
);
|
|
Len--;
|
|
|
|
//
|
|
// OK, patch the IP length/checksum and UDP length fields.
|
|
//
|
|
Len += sizeof (EFI_UDP_HEADER);
|
|
Udp4->Length = HTONS ((UINT16) Len);
|
|
|
|
Len += sizeof (IP4_HEAD);
|
|
Ip4->TotalLen = HTONS ((UINT16) Len);
|
|
Ip4->Checksum = (UINT16) (~NetblockChecksum ((UINT8 *) Ip4, sizeof (IP4_HEAD)));
|
|
|
|
return Len + sizeof (ETHER_HEAD);
|
|
}
|
|
|
|
/**
|
|
Allocate a buffer, then format the message to it. This is a
|
|
help function for the NET_DEBUG_XXX macros. The PrintArg of
|
|
these macros treats the variable length print parameters as a
|
|
single parameter, and pass it to the NetDebugASPrint. For
|
|
example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
|
|
if extracted to:
|
|
|
|
NetDebugOutput (
|
|
NETDEBUG_LEVEL_TRACE,
|
|
"Tcp",
|
|
__FILE__,
|
|
__LINE__,
|
|
NetDebugASPrint ("State transit to %a\n", Name)
|
|
)
|
|
|
|
@param Format The ASCII format string.
|
|
@param ... The variable length parameter whose format is determined
|
|
by the Format string.
|
|
|
|
@return The buffer containing the formatted message,
|
|
or NULL if failed to allocate memory.
|
|
|
|
**/
|
|
CHAR8 *
|
|
EFIAPI
|
|
NetDebugASPrint (
|
|
IN CHAR8 *Format,
|
|
...
|
|
)
|
|
{
|
|
VA_LIST Marker;
|
|
CHAR8 *Buf;
|
|
|
|
Buf = (CHAR8 *) AllocatePool (NET_DEBUG_MSG_LEN);
|
|
|
|
if (Buf == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
VA_START (Marker, Format);
|
|
AsciiVSPrint (Buf, NET_DEBUG_MSG_LEN, Format, Marker);
|
|
VA_END (Marker);
|
|
|
|
return Buf;
|
|
}
|
|
|
|
/**
|
|
Builds an UDP4 syslog packet and send it using SNP.
|
|
|
|
This function will locate a instance of SNP then send the message through it.
|
|
Because it isn't open the SNP BY_DRIVER, apply caution when using it.
|
|
|
|
@param Level The servity level of the message.
|
|
@param Module The Moudle that generates the log.
|
|
@param File The file that contains the log.
|
|
@param Line The exact line that contains the log.
|
|
@param Message The user message to log.
|
|
|
|
@retval EFI_INVALID_PARAMETER Any input parameter is invalid.
|
|
@retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
|
|
@retval EFI_SUCCESS The log is discard because that it is more verbose
|
|
than the mNetDebugLevelMax. Or, it has been sent out.
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetDebugOutput (
|
|
IN UINT32 Level,
|
|
IN UINT8 *Module,
|
|
IN UINT8 *File,
|
|
IN UINT32 Line,
|
|
IN UINT8 *Message
|
|
)
|
|
{
|
|
CHAR8 *Packet;
|
|
UINT32 Len;
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// Check whether the message should be sent out
|
|
//
|
|
if (Message == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
if (Level > mNetDebugLevelMax) {
|
|
Status = EFI_SUCCESS;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Allocate a maxium of 1024 bytes, the caller should ensure
|
|
// that the message plus the ethernet/ip/udp header is shorter
|
|
// than this
|
|
//
|
|
Packet = (CHAR8 *) AllocatePool (NET_SYSLOG_PACKET_LEN);
|
|
|
|
if (Packet == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Build the message: Ethernet header + IP header + Udp Header + user data
|
|
//
|
|
Len = SyslogBuildPacket (
|
|
Level,
|
|
Module,
|
|
File,
|
|
Line,
|
|
Message,
|
|
NET_SYSLOG_PACKET_LEN,
|
|
Packet
|
|
);
|
|
|
|
mSyslogPacketSeq++;
|
|
Status = SyslogSendPacket (Packet, Len);
|
|
FreePool (Packet);
|
|
|
|
ON_EXIT:
|
|
FreePool (Message);
|
|
return Status;
|
|
}
|
|
/**
|
|
Return the length of the mask.
|
|
|
|
Return the length of the mask, the correct value is from 0 to 32.
|
|
If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
|
|
NetMask is in the host byte order.
|
|
|
|
@param[in] NetMask The netmask to get the length from.
|
|
|
|
@return The length of the netmask, IP4_MASK_NUM if the mask is invalid.
|
|
|
|
**/
|
|
INTN
|
|
EFIAPI
|
|
NetGetMaskLength (
|
|
IN IP4_ADDR NetMask
|
|
)
|
|
{
|
|
INTN Index;
|
|
|
|
for (Index = 0; Index < IP4_MASK_NUM; Index++) {
|
|
if (NetMask == gIp4AllMasks[Index]) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Index;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
Return the class of the IP address, such as class A, B, C.
|
|
Addr is in host byte order.
|
|
|
|
The address of class A starts with 0.
|
|
If the address belong to class A, return IP4_ADDR_CLASSA.
|
|
The address of class B starts with 10.
|
|
If the address belong to class B, return IP4_ADDR_CLASSB.
|
|
The address of class C starts with 110.
|
|
If the address belong to class C, return IP4_ADDR_CLASSC.
|
|
The address of class D starts with 1110.
|
|
If the address belong to class D, return IP4_ADDR_CLASSD.
|
|
The address of class E starts with 1111.
|
|
If the address belong to class E, return IP4_ADDR_CLASSE.
|
|
|
|
|
|
@param[in] Addr The address to get the class from.
|
|
|
|
@return IP address class, such as IP4_ADDR_CLASSA.
|
|
|
|
**/
|
|
INTN
|
|
EFIAPI
|
|
NetGetIpClass (
|
|
IN IP4_ADDR Addr
|
|
)
|
|
{
|
|
UINT8 ByteOne;
|
|
|
|
ByteOne = (UINT8) (Addr >> 24);
|
|
|
|
if ((ByteOne & 0x80) == 0) {
|
|
return IP4_ADDR_CLASSA;
|
|
|
|
} else if ((ByteOne & 0xC0) == 0x80) {
|
|
return IP4_ADDR_CLASSB;
|
|
|
|
} else if ((ByteOne & 0xE0) == 0xC0) {
|
|
return IP4_ADDR_CLASSC;
|
|
|
|
} else if ((ByteOne & 0xF0) == 0xE0) {
|
|
return IP4_ADDR_CLASSD;
|
|
|
|
} else {
|
|
return IP4_ADDR_CLASSE;
|
|
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Check whether the IP is a valid unicast address according to
|
|
the netmask. If NetMask is zero, use the IP address's class to get the default mask.
|
|
|
|
If Ip is 0, IP is not a valid unicast address.
|
|
Class D address is used for multicasting and class E address is reserved for future. If Ip
|
|
belongs to class D or class E, IP is not a valid unicast address.
|
|
If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address.
|
|
|
|
@param[in] Ip The IP to check against.
|
|
@param[in] NetMask The mask of the IP.
|
|
|
|
@return TRUE if IP is a valid unicast address on the network, otherwise FALSE.
|
|
|
|
**/
|
|
BOOLEAN
|
|
EFIAPI
|
|
NetIp4IsUnicast (
|
|
IN IP4_ADDR Ip,
|
|
IN IP4_ADDR NetMask
|
|
)
|
|
{
|
|
INTN Class;
|
|
|
|
Class = NetGetIpClass (Ip);
|
|
|
|
if ((Ip == 0) || (Class >= IP4_ADDR_CLASSD)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (NetMask == 0) {
|
|
NetMask = gIp4AllMasks[Class << 3];
|
|
}
|
|
|
|
if (((Ip &~NetMask) == ~NetMask) || ((Ip &~NetMask) == 0)) {
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
Check whether the incoming IPv6 address is a valid unicast address.
|
|
|
|
If the address is a multicast address has binary 0xFF at the start, it is not
|
|
a valid unicast address. If the address is unspecified ::, it is not a valid
|
|
unicast address to be assigned to any node. If the address is loopback address
|
|
::1, it is also not a valid unicast address to be assigned to any physical
|
|
interface.
|
|
|
|
@param[in] Ip6 The IPv6 address to check against.
|
|
|
|
@return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
|
|
|
|
**/
|
|
BOOLEAN
|
|
EFIAPI
|
|
NetIp6IsValidUnicast (
|
|
IN EFI_IPv6_ADDRESS *Ip6
|
|
)
|
|
{
|
|
UINT8 Byte;
|
|
UINT8 Index;
|
|
|
|
if (Ip6->Addr[0] == 0xFF) {
|
|
return FALSE;
|
|
}
|
|
|
|
for (Index = 0; Index < 15; Index++) {
|
|
if (Ip6->Addr[Index] != 0) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
Byte = Ip6->Addr[Index];
|
|
|
|
if (Byte == 0x0 || Byte == 0x1) {
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
Check whether the incoming Ipv6 address is the unspecified address or not.
|
|
|
|
@param[in] Ip6 - Ip6 address, in network order.
|
|
|
|
@retval TRUE - Yes, unspecified
|
|
@retval FALSE - No
|
|
|
|
**/
|
|
BOOLEAN
|
|
EFIAPI
|
|
NetIp6IsUnspecifiedAddr (
|
|
IN EFI_IPv6_ADDRESS *Ip6
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
|
|
for (Index = 0; Index < 16; Index++) {
|
|
if (Ip6->Addr[Index] != 0) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
Check whether the incoming Ipv6 address is a link-local address.
|
|
|
|
@param[in] Ip6 - Ip6 address, in network order.
|
|
|
|
@retval TRUE - Yes, link-local address
|
|
@retval FALSE - No
|
|
|
|
**/
|
|
BOOLEAN
|
|
EFIAPI
|
|
NetIp6IsLinkLocalAddr (
|
|
IN EFI_IPv6_ADDRESS *Ip6
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
|
|
ASSERT (Ip6 != NULL);
|
|
|
|
if (Ip6->Addr[0] != 0xFE) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (Ip6->Addr[1] != 0x80) {
|
|
return FALSE;
|
|
}
|
|
|
|
for (Index = 2; Index < 8; Index++) {
|
|
if (Ip6->Addr[Index] != 0) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
Check whether the Ipv6 address1 and address2 are on the connected network.
|
|
|
|
@param[in] Ip1 - Ip6 address1, in network order.
|
|
@param[in] Ip2 - Ip6 address2, in network order.
|
|
@param[in] PrefixLength - The prefix length of the checking net.
|
|
|
|
@retval TRUE - Yes, connected.
|
|
@retval FALSE - No.
|
|
|
|
**/
|
|
BOOLEAN
|
|
EFIAPI
|
|
NetIp6IsNetEqual (
|
|
EFI_IPv6_ADDRESS *Ip1,
|
|
EFI_IPv6_ADDRESS *Ip2,
|
|
UINT8 PrefixLength
|
|
)
|
|
{
|
|
UINT8 Byte;
|
|
UINT8 Bit;
|
|
UINT8 Mask;
|
|
|
|
ASSERT ((Ip1 != NULL) && (Ip2 != NULL) && (PrefixLength < IP6_PREFIX_NUM));
|
|
|
|
if (PrefixLength == 0) {
|
|
return TRUE;
|
|
}
|
|
|
|
Byte = (UINT8) (PrefixLength / 8);
|
|
Bit = (UINT8) (PrefixLength % 8);
|
|
|
|
if (CompareMem (Ip1, Ip2, Byte) != 0) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (Bit > 0) {
|
|
Mask = (UINT8) (0xFF << (8 - Bit));
|
|
|
|
ASSERT (Byte < 16);
|
|
if ((Ip1->Addr[Byte] & Mask) != (Ip2->Addr[Byte] & Mask)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/**
|
|
Switches the endianess of an IPv6 address
|
|
|
|
This function swaps the bytes in a 128-bit IPv6 address to switch the value
|
|
from little endian to big endian or vice versa. The byte swapped value is
|
|
returned.
|
|
|
|
@param Ip6 Points to an IPv6 address
|
|
|
|
@return The byte swapped IPv6 address.
|
|
|
|
**/
|
|
EFI_IPv6_ADDRESS *
|
|
EFIAPI
|
|
Ip6Swap128 (
|
|
EFI_IPv6_ADDRESS *Ip6
|
|
)
|
|
{
|
|
UINT64 High;
|
|
UINT64 Low;
|
|
|
|
CopyMem (&High, Ip6, sizeof (UINT64));
|
|
CopyMem (&Low, &Ip6->Addr[8], sizeof (UINT64));
|
|
|
|
High = SwapBytes64 (High);
|
|
Low = SwapBytes64 (Low);
|
|
|
|
CopyMem (Ip6, &Low, sizeof (UINT64));
|
|
CopyMem (&Ip6->Addr[8], &High, sizeof (UINT64));
|
|
|
|
return Ip6;
|
|
}
|
|
|
|
/**
|
|
Initialize a random seed using current time.
|
|
|
|
Get current time first. Then initialize a random seed based on some basic
|
|
mathematics operation on the hour, day, minute, second, nanosecond and year
|
|
of the current time.
|
|
|
|
@return The random seed initialized with current time.
|
|
|
|
**/
|
|
UINT32
|
|
EFIAPI
|
|
NetRandomInitSeed (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_TIME Time;
|
|
UINT32 Seed;
|
|
|
|
gRT->GetTime (&Time, NULL);
|
|
Seed = (~Time.Hour << 24 | Time.Day << 16 | Time.Minute << 8 | Time.Second);
|
|
Seed ^= Time.Nanosecond;
|
|
Seed ^= Time.Year << 7;
|
|
|
|
return Seed;
|
|
}
|
|
|
|
|
|
/**
|
|
Extract a UINT32 from a byte stream.
|
|
|
|
Copy a UINT32 from a byte stream, then converts it from Network
|
|
byte order to host byte order. Use this function to avoid alignment error.
|
|
|
|
@param[in] Buf The buffer to extract the UINT32.
|
|
|
|
@return The UINT32 extracted.
|
|
|
|
**/
|
|
UINT32
|
|
EFIAPI
|
|
NetGetUint32 (
|
|
IN UINT8 *Buf
|
|
)
|
|
{
|
|
UINT32 Value;
|
|
|
|
CopyMem (&Value, Buf, sizeof (UINT32));
|
|
return NTOHL (Value);
|
|
}
|
|
|
|
|
|
/**
|
|
Put a UINT32 to the byte stream in network byte order.
|
|
|
|
Converts a UINT32 from host byte order to network byte order. Then copy it to the
|
|
byte stream.
|
|
|
|
@param[in, out] Buf The buffer to put the UINT32.
|
|
@param[in] Data The data to be converted and put into the byte stream.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
NetPutUint32 (
|
|
IN OUT UINT8 *Buf,
|
|
IN UINT32 Data
|
|
)
|
|
{
|
|
Data = HTONL (Data);
|
|
CopyMem (Buf, &Data, sizeof (UINT32));
|
|
}
|
|
|
|
|
|
/**
|
|
Remove the first node entry on the list, and return the removed node entry.
|
|
|
|
Removes the first node Entry from a doubly linked list. It is up to the caller of
|
|
this function to release the memory used by the first node if that is required. On
|
|
exit, the removed node is returned.
|
|
|
|
If Head is NULL, then ASSERT().
|
|
If Head was not initialized, then ASSERT().
|
|
If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
|
|
linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
|
|
then ASSERT().
|
|
|
|
@param[in, out] Head The list header.
|
|
|
|
@return The first node entry that is removed from the list, NULL if the list is empty.
|
|
|
|
**/
|
|
LIST_ENTRY *
|
|
EFIAPI
|
|
NetListRemoveHead (
|
|
IN OUT LIST_ENTRY *Head
|
|
)
|
|
{
|
|
LIST_ENTRY *First;
|
|
|
|
ASSERT (Head != NULL);
|
|
|
|
if (IsListEmpty (Head)) {
|
|
return NULL;
|
|
}
|
|
|
|
First = Head->ForwardLink;
|
|
Head->ForwardLink = First->ForwardLink;
|
|
First->ForwardLink->BackLink = Head;
|
|
|
|
DEBUG_CODE (
|
|
First->ForwardLink = (LIST_ENTRY *) NULL;
|
|
First->BackLink = (LIST_ENTRY *) NULL;
|
|
);
|
|
|
|
return First;
|
|
}
|
|
|
|
|
|
/**
|
|
Remove the last node entry on the list and and return the removed node entry.
|
|
|
|
Removes the last node entry from a doubly linked list. It is up to the caller of
|
|
this function to release the memory used by the first node if that is required. On
|
|
exit, the removed node is returned.
|
|
|
|
If Head is NULL, then ASSERT().
|
|
If Head was not initialized, then ASSERT().
|
|
If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
|
|
linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
|
|
then ASSERT().
|
|
|
|
@param[in, out] Head The list head.
|
|
|
|
@return The last node entry that is removed from the list, NULL if the list is empty.
|
|
|
|
**/
|
|
LIST_ENTRY *
|
|
EFIAPI
|
|
NetListRemoveTail (
|
|
IN OUT LIST_ENTRY *Head
|
|
)
|
|
{
|
|
LIST_ENTRY *Last;
|
|
|
|
ASSERT (Head != NULL);
|
|
|
|
if (IsListEmpty (Head)) {
|
|
return NULL;
|
|
}
|
|
|
|
Last = Head->BackLink;
|
|
Head->BackLink = Last->BackLink;
|
|
Last->BackLink->ForwardLink = Head;
|
|
|
|
DEBUG_CODE (
|
|
Last->ForwardLink = (LIST_ENTRY *) NULL;
|
|
Last->BackLink = (LIST_ENTRY *) NULL;
|
|
);
|
|
|
|
return Last;
|
|
}
|
|
|
|
|
|
/**
|
|
Insert a new node entry after a designated node entry of a doubly linked list.
|
|
|
|
Inserts a new node entry donated by NewEntry after the node entry donated by PrevEntry
|
|
of the doubly linked list.
|
|
|
|
@param[in, out] PrevEntry The previous entry to insert after.
|
|
@param[in, out] NewEntry The new entry to insert.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
NetListInsertAfter (
|
|
IN OUT LIST_ENTRY *PrevEntry,
|
|
IN OUT LIST_ENTRY *NewEntry
|
|
)
|
|
{
|
|
NewEntry->BackLink = PrevEntry;
|
|
NewEntry->ForwardLink = PrevEntry->ForwardLink;
|
|
PrevEntry->ForwardLink->BackLink = NewEntry;
|
|
PrevEntry->ForwardLink = NewEntry;
|
|
}
|
|
|
|
|
|
/**
|
|
Insert a new node entry before a designated node entry of a doubly linked list.
|
|
|
|
Inserts a new node entry donated by NewEntry after the node entry donated by PostEntry
|
|
of the doubly linked list.
|
|
|
|
@param[in, out] PostEntry The entry to insert before.
|
|
@param[in, out] NewEntry The new entry to insert.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
NetListInsertBefore (
|
|
IN OUT LIST_ENTRY *PostEntry,
|
|
IN OUT LIST_ENTRY *NewEntry
|
|
)
|
|
{
|
|
NewEntry->ForwardLink = PostEntry;
|
|
NewEntry->BackLink = PostEntry->BackLink;
|
|
PostEntry->BackLink->ForwardLink = NewEntry;
|
|
PostEntry->BackLink = NewEntry;
|
|
}
|
|
|
|
/**
|
|
Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
|
|
|
|
Destroy network child instance list by list traversals is not safe due to graph dependencies between nodes.
|
|
This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
|
|
has been removed from the list or not.
|
|
If it has been removed, then restart the traversal from the head.
|
|
If it hasn't been removed, then continue with the next node directly.
|
|
This function will end the iterate and return the CallBack's last return value if error happens,
|
|
or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
|
|
|
|
@param[in] List The head of the list.
|
|
@param[in] CallBack Pointer to the callback function to destroy one node in the list.
|
|
@param[in] Context Pointer to the callback function's context: corresponds to the
|
|
parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
|
|
@param[out] ListLength The length of the link list if the function returns successfully.
|
|
|
|
@retval EFI_SUCCESS Two complete passes are made with no changes in the number of children.
|
|
@retval EFI_INVALID_PARAMETER The input parameter is invalid.
|
|
@retval Others Return the CallBack's last return value.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetDestroyLinkList (
|
|
IN LIST_ENTRY *List,
|
|
IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,
|
|
IN VOID *Context, OPTIONAL
|
|
OUT UINTN *ListLength OPTIONAL
|
|
)
|
|
{
|
|
UINTN PreviousLength;
|
|
LIST_ENTRY *Entry;
|
|
LIST_ENTRY *Ptr;
|
|
UINTN Length;
|
|
EFI_STATUS Status;
|
|
|
|
if (List == NULL || CallBack == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
Length = 0;
|
|
do {
|
|
PreviousLength = Length;
|
|
Entry = GetFirstNode (List);
|
|
while (!IsNull (List, Entry)) {
|
|
Status = CallBack (Entry, Context);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// Walk through the list to see whether the Entry has been removed or not.
|
|
// If the Entry still exists, just try to destroy the next one.
|
|
// If not, go back to the start point to iterate the list again.
|
|
//
|
|
for (Ptr = List->ForwardLink; Ptr != List; Ptr = Ptr->ForwardLink) {
|
|
if (Ptr == Entry) {
|
|
break;
|
|
}
|
|
}
|
|
if (Ptr == Entry) {
|
|
Entry = GetNextNode (List, Entry);
|
|
} else {
|
|
Entry = GetFirstNode (List);
|
|
}
|
|
}
|
|
for (Length = 0, Ptr = List->ForwardLink; Ptr != List; Length++, Ptr = Ptr->ForwardLink);
|
|
} while (Length != PreviousLength);
|
|
|
|
if (ListLength != NULL) {
|
|
*ListLength = Length;
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
|
|
|
|
@param[in] Handle Handle to be checked.
|
|
@param[in] NumberOfChildren Number of Handles in ChildHandleBuffer.
|
|
@param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
|
|
if NumberOfChildren is 0.
|
|
|
|
@retval TURE Found the input Handle in ChildHandleBuffer.
|
|
@retval FALSE Can't find the input Handle in ChildHandleBuffer.
|
|
|
|
**/
|
|
BOOLEAN
|
|
EFIAPI
|
|
NetIsInHandleBuffer (
|
|
IN EFI_HANDLE Handle,
|
|
IN UINTN NumberOfChildren,
|
|
IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
|
|
)
|
|
{
|
|
UINTN Index;
|
|
|
|
if (NumberOfChildren == 0 || ChildHandleBuffer == NULL) {
|
|
return FALSE;
|
|
}
|
|
|
|
for (Index = 0; Index < NumberOfChildren; Index++) {
|
|
if (Handle == ChildHandleBuffer[Index]) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
|
|
|
|
Initialize the forward and backward links of two head nodes donated by Map->Used
|
|
and Map->Recycled of two doubly linked lists.
|
|
Initializes the count of the <Key, Value> pairs in the netmap to zero.
|
|
|
|
If Map is NULL, then ASSERT().
|
|
If the address of Map->Used is NULL, then ASSERT().
|
|
If the address of Map->Recycled is NULl, then ASSERT().
|
|
|
|
@param[in, out] Map The netmap to initialize.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
NetMapInit (
|
|
IN OUT NET_MAP *Map
|
|
)
|
|
{
|
|
ASSERT (Map != NULL);
|
|
|
|
InitializeListHead (&Map->Used);
|
|
InitializeListHead (&Map->Recycled);
|
|
Map->Count = 0;
|
|
}
|
|
|
|
|
|
/**
|
|
To clean up the netmap, that is, release allocated memories.
|
|
|
|
Removes all nodes of the Used doubly linked list and free memory of all related netmap items.
|
|
Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
|
|
The number of the <Key, Value> pairs in the netmap is set to be zero.
|
|
|
|
If Map is NULL, then ASSERT().
|
|
|
|
@param[in, out] Map The netmap to clean up.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
NetMapClean (
|
|
IN OUT NET_MAP *Map
|
|
)
|
|
{
|
|
NET_MAP_ITEM *Item;
|
|
LIST_ENTRY *Entry;
|
|
LIST_ENTRY *Next;
|
|
|
|
ASSERT (Map != NULL);
|
|
|
|
NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Used) {
|
|
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
|
|
|
|
RemoveEntryList (&Item->Link);
|
|
Map->Count--;
|
|
|
|
gBS->FreePool (Item);
|
|
}
|
|
|
|
ASSERT ((Map->Count == 0) && IsListEmpty (&Map->Used));
|
|
|
|
NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Recycled) {
|
|
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
|
|
|
|
RemoveEntryList (&Item->Link);
|
|
gBS->FreePool (Item);
|
|
}
|
|
|
|
ASSERT (IsListEmpty (&Map->Recycled));
|
|
}
|
|
|
|
|
|
/**
|
|
Test whether the netmap is empty and return true if it is.
|
|
|
|
If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
|
|
|
|
If Map is NULL, then ASSERT().
|
|
|
|
|
|
@param[in] Map The net map to test.
|
|
|
|
@return TRUE if the netmap is empty, otherwise FALSE.
|
|
|
|
**/
|
|
BOOLEAN
|
|
EFIAPI
|
|
NetMapIsEmpty (
|
|
IN NET_MAP *Map
|
|
)
|
|
{
|
|
ASSERT (Map != NULL);
|
|
return (BOOLEAN) (Map->Count == 0);
|
|
}
|
|
|
|
|
|
/**
|
|
Return the number of the <Key, Value> pairs in the netmap.
|
|
|
|
@param[in] Map The netmap to get the entry number.
|
|
|
|
@return The entry number in the netmap.
|
|
|
|
**/
|
|
UINTN
|
|
EFIAPI
|
|
NetMapGetCount (
|
|
IN NET_MAP *Map
|
|
)
|
|
{
|
|
return Map->Count;
|
|
}
|
|
|
|
|
|
/**
|
|
Return one allocated item.
|
|
|
|
If the Recycled doubly linked list of the netmap is empty, it will try to allocate
|
|
a batch of items if there are enough resources and add corresponding nodes to the begining
|
|
of the Recycled doubly linked list of the netmap. Otherwise, it will directly remove
|
|
the fist node entry of the Recycled doubly linked list and return the corresponding item.
|
|
|
|
If Map is NULL, then ASSERT().
|
|
|
|
@param[in, out] Map The netmap to allocate item for.
|
|
|
|
@return The allocated item. If NULL, the
|
|
allocation failed due to resource limit.
|
|
|
|
**/
|
|
NET_MAP_ITEM *
|
|
NetMapAllocItem (
|
|
IN OUT NET_MAP *Map
|
|
)
|
|
{
|
|
NET_MAP_ITEM *Item;
|
|
LIST_ENTRY *Head;
|
|
UINTN Index;
|
|
|
|
ASSERT (Map != NULL);
|
|
|
|
Head = &Map->Recycled;
|
|
|
|
if (IsListEmpty (Head)) {
|
|
for (Index = 0; Index < NET_MAP_INCREAMENT; Index++) {
|
|
Item = AllocatePool (sizeof (NET_MAP_ITEM));
|
|
|
|
if (Item == NULL) {
|
|
if (Index == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
InsertHeadList (Head, &Item->Link);
|
|
}
|
|
}
|
|
|
|
Item = NET_LIST_HEAD (Head, NET_MAP_ITEM, Link);
|
|
NetListRemoveHead (Head);
|
|
|
|
return Item;
|
|
}
|
|
|
|
|
|
/**
|
|
Allocate an item to save the <Key, Value> pair to the head of the netmap.
|
|
|
|
Allocate an item to save the <Key, Value> pair and add corresponding node entry
|
|
to the beginning of the Used doubly linked list. The number of the <Key, Value>
|
|
pairs in the netmap increase by 1.
|
|
|
|
If Map is NULL, then ASSERT().
|
|
|
|
@param[in, out] Map The netmap to insert into.
|
|
@param[in] Key The user's key.
|
|
@param[in] Value The user's value for the key.
|
|
|
|
@retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
|
|
@retval EFI_SUCCESS The item is inserted to the head.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetMapInsertHead (
|
|
IN OUT NET_MAP *Map,
|
|
IN VOID *Key,
|
|
IN VOID *Value OPTIONAL
|
|
)
|
|
{
|
|
NET_MAP_ITEM *Item;
|
|
|
|
ASSERT (Map != NULL);
|
|
|
|
Item = NetMapAllocItem (Map);
|
|
|
|
if (Item == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
Item->Key = Key;
|
|
Item->Value = Value;
|
|
InsertHeadList (&Map->Used, &Item->Link);
|
|
|
|
Map->Count++;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Allocate an item to save the <Key, Value> pair to the tail of the netmap.
|
|
|
|
Allocate an item to save the <Key, Value> pair and add corresponding node entry
|
|
to the tail of the Used doubly linked list. The number of the <Key, Value>
|
|
pairs in the netmap increase by 1.
|
|
|
|
If Map is NULL, then ASSERT().
|
|
|
|
@param[in, out] Map The netmap to insert into.
|
|
@param[in] Key The user's key.
|
|
@param[in] Value The user's value for the key.
|
|
|
|
@retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
|
|
@retval EFI_SUCCESS The item is inserted to the tail.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetMapInsertTail (
|
|
IN OUT NET_MAP *Map,
|
|
IN VOID *Key,
|
|
IN VOID *Value OPTIONAL
|
|
)
|
|
{
|
|
NET_MAP_ITEM *Item;
|
|
|
|
ASSERT (Map != NULL);
|
|
|
|
Item = NetMapAllocItem (Map);
|
|
|
|
if (Item == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
Item->Key = Key;
|
|
Item->Value = Value;
|
|
InsertTailList (&Map->Used, &Item->Link);
|
|
|
|
Map->Count++;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Check whether the item is in the Map and return TRUE if it is.
|
|
|
|
@param[in] Map The netmap to search within.
|
|
@param[in] Item The item to search.
|
|
|
|
@return TRUE if the item is in the netmap, otherwise FALSE.
|
|
|
|
**/
|
|
BOOLEAN
|
|
NetItemInMap (
|
|
IN NET_MAP *Map,
|
|
IN NET_MAP_ITEM *Item
|
|
)
|
|
{
|
|
LIST_ENTRY *ListEntry;
|
|
|
|
NET_LIST_FOR_EACH (ListEntry, &Map->Used) {
|
|
if (ListEntry == &Item->Link) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Find the key in the netmap and returns the point to the item contains the Key.
|
|
|
|
Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
|
|
item with the key to search. It returns the point to the item contains the Key if found.
|
|
|
|
If Map is NULL, then ASSERT().
|
|
|
|
@param[in] Map The netmap to search within.
|
|
@param[in] Key The key to search.
|
|
|
|
@return The point to the item contains the Key, or NULL if Key isn't in the map.
|
|
|
|
**/
|
|
NET_MAP_ITEM *
|
|
EFIAPI
|
|
NetMapFindKey (
|
|
IN NET_MAP *Map,
|
|
IN VOID *Key
|
|
)
|
|
{
|
|
LIST_ENTRY *Entry;
|
|
NET_MAP_ITEM *Item;
|
|
|
|
ASSERT (Map != NULL);
|
|
|
|
NET_LIST_FOR_EACH (Entry, &Map->Used) {
|
|
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
|
|
|
|
if (Item->Key == Key) {
|
|
return Item;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
Remove the node entry of the item from the netmap and return the key of the removed item.
|
|
|
|
Remove the node entry of the item from the Used doubly linked list of the netmap.
|
|
The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
|
|
entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
|
|
Value will point to the value of the item. It returns the key of the removed item.
|
|
|
|
If Map is NULL, then ASSERT().
|
|
If Item is NULL, then ASSERT().
|
|
if item in not in the netmap, then ASSERT().
|
|
|
|
@param[in, out] Map The netmap to remove the item from.
|
|
@param[in, out] Item The item to remove.
|
|
@param[out] Value The variable to receive the value if not NULL.
|
|
|
|
@return The key of the removed item.
|
|
|
|
**/
|
|
VOID *
|
|
EFIAPI
|
|
NetMapRemoveItem (
|
|
IN OUT NET_MAP *Map,
|
|
IN OUT NET_MAP_ITEM *Item,
|
|
OUT VOID **Value OPTIONAL
|
|
)
|
|
{
|
|
ASSERT ((Map != NULL) && (Item != NULL));
|
|
ASSERT (NetItemInMap (Map, Item));
|
|
|
|
RemoveEntryList (&Item->Link);
|
|
Map->Count--;
|
|
InsertHeadList (&Map->Recycled, &Item->Link);
|
|
|
|
if (Value != NULL) {
|
|
*Value = Item->Value;
|
|
}
|
|
|
|
return Item->Key;
|
|
}
|
|
|
|
|
|
/**
|
|
Remove the first node entry on the netmap and return the key of the removed item.
|
|
|
|
Remove the first node entry from the Used doubly linked list of the netmap.
|
|
The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
|
|
entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
|
|
parameter Value will point to the value of the item. It returns the key of the removed item.
|
|
|
|
If Map is NULL, then ASSERT().
|
|
If the Used doubly linked list is empty, then ASSERT().
|
|
|
|
@param[in, out] Map The netmap to remove the head from.
|
|
@param[out] Value The variable to receive the value if not NULL.
|
|
|
|
@return The key of the item removed.
|
|
|
|
**/
|
|
VOID *
|
|
EFIAPI
|
|
NetMapRemoveHead (
|
|
IN OUT NET_MAP *Map,
|
|
OUT VOID **Value OPTIONAL
|
|
)
|
|
{
|
|
NET_MAP_ITEM *Item;
|
|
|
|
//
|
|
// Often, it indicates a programming error to remove
|
|
// the first entry in an empty list
|
|
//
|
|
ASSERT (Map && !IsListEmpty (&Map->Used));
|
|
|
|
Item = NET_LIST_HEAD (&Map->Used, NET_MAP_ITEM, Link);
|
|
RemoveEntryList (&Item->Link);
|
|
Map->Count--;
|
|
InsertHeadList (&Map->Recycled, &Item->Link);
|
|
|
|
if (Value != NULL) {
|
|
*Value = Item->Value;
|
|
}
|
|
|
|
return Item->Key;
|
|
}
|
|
|
|
|
|
/**
|
|
Remove the last node entry on the netmap and return the key of the removed item.
|
|
|
|
Remove the last node entry from the Used doubly linked list of the netmap.
|
|
The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
|
|
entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
|
|
parameter Value will point to the value of the item. It returns the key of the removed item.
|
|
|
|
If Map is NULL, then ASSERT().
|
|
If the Used doubly linked list is empty, then ASSERT().
|
|
|
|
@param[in, out] Map The netmap to remove the tail from.
|
|
@param[out] Value The variable to receive the value if not NULL.
|
|
|
|
@return The key of the item removed.
|
|
|
|
**/
|
|
VOID *
|
|
EFIAPI
|
|
NetMapRemoveTail (
|
|
IN OUT NET_MAP *Map,
|
|
OUT VOID **Value OPTIONAL
|
|
)
|
|
{
|
|
NET_MAP_ITEM *Item;
|
|
|
|
//
|
|
// Often, it indicates a programming error to remove
|
|
// the last entry in an empty list
|
|
//
|
|
ASSERT (Map && !IsListEmpty (&Map->Used));
|
|
|
|
Item = NET_LIST_TAIL (&Map->Used, NET_MAP_ITEM, Link);
|
|
RemoveEntryList (&Item->Link);
|
|
Map->Count--;
|
|
InsertHeadList (&Map->Recycled, &Item->Link);
|
|
|
|
if (Value != NULL) {
|
|
*Value = Item->Value;
|
|
}
|
|
|
|
return Item->Key;
|
|
}
|
|
|
|
|
|
/**
|
|
Iterate through the netmap and call CallBack for each item.
|
|
|
|
It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
|
|
from the loop. It returns the CallBack's last return value. This function is
|
|
delete safe for the current item.
|
|
|
|
If Map is NULL, then ASSERT().
|
|
If CallBack is NULL, then ASSERT().
|
|
|
|
@param[in] Map The Map to iterate through.
|
|
@param[in] CallBack The callback function to call for each item.
|
|
@param[in] Arg The opaque parameter to the callback.
|
|
|
|
@retval EFI_SUCCESS There is no item in the netmap or CallBack for each item
|
|
return EFI_SUCCESS.
|
|
@retval Others It returns the CallBack's last return value.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetMapIterate (
|
|
IN NET_MAP *Map,
|
|
IN NET_MAP_CALLBACK CallBack,
|
|
IN VOID *Arg OPTIONAL
|
|
)
|
|
{
|
|
|
|
LIST_ENTRY *Entry;
|
|
LIST_ENTRY *Next;
|
|
LIST_ENTRY *Head;
|
|
NET_MAP_ITEM *Item;
|
|
EFI_STATUS Result;
|
|
|
|
ASSERT ((Map != NULL) && (CallBack != NULL));
|
|
|
|
Head = &Map->Used;
|
|
|
|
if (IsListEmpty (Head)) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
NET_LIST_FOR_EACH_SAFE (Entry, Next, Head) {
|
|
Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
|
|
Result = CallBack (Map, Item, Arg);
|
|
|
|
if (EFI_ERROR (Result)) {
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
This is the default unload handle for all the network drivers.
|
|
|
|
Disconnect the driver specified by ImageHandle from all the devices in the handle database.
|
|
Uninstall all the protocols installed in the driver entry point.
|
|
|
|
@param[in] ImageHandle The drivers' driver image.
|
|
|
|
@retval EFI_SUCCESS The image is unloaded.
|
|
@retval Others Failed to unload the image.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibDefaultUnload (
|
|
IN EFI_HANDLE ImageHandle
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_HANDLE *DeviceHandleBuffer;
|
|
UINTN DeviceHandleCount;
|
|
UINTN Index;
|
|
UINTN Index2;
|
|
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
|
|
EFI_COMPONENT_NAME_PROTOCOL *ComponentName;
|
|
EFI_COMPONENT_NAME2_PROTOCOL *ComponentName2;
|
|
|
|
//
|
|
// Get the list of all the handles in the handle database.
|
|
// If there is an error getting the list, then the unload
|
|
// operation fails.
|
|
//
|
|
Status = gBS->LocateHandleBuffer (
|
|
AllHandles,
|
|
NULL,
|
|
NULL,
|
|
&DeviceHandleCount,
|
|
&DeviceHandleBuffer
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
for (Index = 0; Index < DeviceHandleCount; Index++) {
|
|
Status = gBS->HandleProtocol (
|
|
DeviceHandleBuffer[Index],
|
|
&gEfiDriverBindingProtocolGuid,
|
|
(VOID **) &DriverBinding
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
continue;
|
|
}
|
|
|
|
if (DriverBinding->ImageHandle != ImageHandle) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Disconnect the driver specified by ImageHandle from all
|
|
// the devices in the handle database.
|
|
//
|
|
for (Index2 = 0; Index2 < DeviceHandleCount; Index2++) {
|
|
Status = gBS->DisconnectController (
|
|
DeviceHandleBuffer[Index2],
|
|
DriverBinding->DriverBindingHandle,
|
|
NULL
|
|
);
|
|
}
|
|
|
|
//
|
|
// Uninstall all the protocols installed in the driver entry point
|
|
//
|
|
gBS->UninstallProtocolInterface (
|
|
DriverBinding->DriverBindingHandle,
|
|
&gEfiDriverBindingProtocolGuid,
|
|
DriverBinding
|
|
);
|
|
|
|
Status = gBS->HandleProtocol (
|
|
DeviceHandleBuffer[Index],
|
|
&gEfiComponentNameProtocolGuid,
|
|
(VOID **) &ComponentName
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
gBS->UninstallProtocolInterface (
|
|
DriverBinding->DriverBindingHandle,
|
|
&gEfiComponentNameProtocolGuid,
|
|
ComponentName
|
|
);
|
|
}
|
|
|
|
Status = gBS->HandleProtocol (
|
|
DeviceHandleBuffer[Index],
|
|
&gEfiComponentName2ProtocolGuid,
|
|
(VOID **) &ComponentName2
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
gBS->UninstallProtocolInterface (
|
|
DriverBinding->DriverBindingHandle,
|
|
&gEfiComponentName2ProtocolGuid,
|
|
ComponentName2
|
|
);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Free the buffer containing the list of handles from the handle database
|
|
//
|
|
if (DeviceHandleBuffer != NULL) {
|
|
gBS->FreePool (DeviceHandleBuffer);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
Create a child of the service that is identified by ServiceBindingGuid.
|
|
|
|
Get the ServiceBinding Protocol first, then use it to create a child.
|
|
|
|
If ServiceBindingGuid is NULL, then ASSERT().
|
|
If ChildHandle is NULL, then ASSERT().
|
|
|
|
@param[in] Controller The controller which has the service installed.
|
|
@param[in] Image The image handle used to open service.
|
|
@param[in] ServiceBindingGuid The service's Guid.
|
|
@param[in, out] ChildHandle The handle to receive the create child.
|
|
|
|
@retval EFI_SUCCESS The child is successfully created.
|
|
@retval Others Failed to create the child.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibCreateServiceChild (
|
|
IN EFI_HANDLE Controller,
|
|
IN EFI_HANDLE Image,
|
|
IN EFI_GUID *ServiceBindingGuid,
|
|
IN OUT EFI_HANDLE *ChildHandle
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_SERVICE_BINDING_PROTOCOL *Service;
|
|
|
|
|
|
ASSERT ((ServiceBindingGuid != NULL) && (ChildHandle != NULL));
|
|
|
|
//
|
|
// Get the ServiceBinding Protocol
|
|
//
|
|
Status = gBS->OpenProtocol (
|
|
Controller,
|
|
ServiceBindingGuid,
|
|
(VOID **) &Service,
|
|
Image,
|
|
Controller,
|
|
EFI_OPEN_PROTOCOL_GET_PROTOCOL
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// Create a child
|
|
//
|
|
Status = Service->CreateChild (Service, ChildHandle);
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Destroy a child of the service that is identified by ServiceBindingGuid.
|
|
|
|
Get the ServiceBinding Protocol first, then use it to destroy a child.
|
|
|
|
If ServiceBindingGuid is NULL, then ASSERT().
|
|
|
|
@param[in] Controller The controller which has the service installed.
|
|
@param[in] Image The image handle used to open service.
|
|
@param[in] ServiceBindingGuid The service's Guid.
|
|
@param[in] ChildHandle The child to destroy.
|
|
|
|
@retval EFI_SUCCESS The child is successfully destroyed.
|
|
@retval Others Failed to destroy the child.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibDestroyServiceChild (
|
|
IN EFI_HANDLE Controller,
|
|
IN EFI_HANDLE Image,
|
|
IN EFI_GUID *ServiceBindingGuid,
|
|
IN EFI_HANDLE ChildHandle
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_SERVICE_BINDING_PROTOCOL *Service;
|
|
|
|
ASSERT (ServiceBindingGuid != NULL);
|
|
|
|
//
|
|
// Get the ServiceBinding Protocol
|
|
//
|
|
Status = gBS->OpenProtocol (
|
|
Controller,
|
|
ServiceBindingGuid,
|
|
(VOID **) &Service,
|
|
Image,
|
|
Controller,
|
|
EFI_OPEN_PROTOCOL_GET_PROTOCOL
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// destroy the child
|
|
//
|
|
Status = Service->DestroyChild (Service, ChildHandle);
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Get handle with Simple Network Protocol installed on it.
|
|
|
|
There should be MNP Service Binding Protocol installed on the input ServiceHandle.
|
|
If Simple Network Protocol is already installed on the ServiceHandle, the
|
|
ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
|
|
try to find its parent handle with SNP installed.
|
|
|
|
@param[in] ServiceHandle The handle where network service binding protocols are
|
|
installed on.
|
|
@param[out] Snp The pointer to store the address of the SNP instance.
|
|
This is an optional parameter that may be NULL.
|
|
|
|
@return The SNP handle, or NULL if not found.
|
|
|
|
**/
|
|
EFI_HANDLE
|
|
EFIAPI
|
|
NetLibGetSnpHandle (
|
|
IN EFI_HANDLE ServiceHandle,
|
|
OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_SIMPLE_NETWORK_PROTOCOL *SnpInstance;
|
|
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
|
|
EFI_HANDLE SnpHandle;
|
|
|
|
//
|
|
// Try to open SNP from ServiceHandle
|
|
//
|
|
SnpInstance = NULL;
|
|
Status = gBS->HandleProtocol (ServiceHandle, &gEfiSimpleNetworkProtocolGuid, (VOID **) &SnpInstance);
|
|
if (!EFI_ERROR (Status)) {
|
|
if (Snp != NULL) {
|
|
*Snp = SnpInstance;
|
|
}
|
|
return ServiceHandle;
|
|
}
|
|
|
|
//
|
|
// Failed to open SNP, try to get SNP handle by LocateDevicePath()
|
|
//
|
|
DevicePath = DevicePathFromHandle (ServiceHandle);
|
|
if (DevicePath == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
SnpHandle = NULL;
|
|
Status = gBS->LocateDevicePath (&gEfiSimpleNetworkProtocolGuid, &DevicePath, &SnpHandle);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// Failed to find SNP handle
|
|
//
|
|
return NULL;
|
|
}
|
|
|
|
Status = gBS->HandleProtocol (SnpHandle, &gEfiSimpleNetworkProtocolGuid, (VOID **) &SnpInstance);
|
|
if (!EFI_ERROR (Status)) {
|
|
if (Snp != NULL) {
|
|
*Snp = SnpInstance;
|
|
}
|
|
return SnpHandle;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
Retrieve VLAN ID of a VLAN device handle.
|
|
|
|
Search VLAN device path node in Device Path of specified ServiceHandle and
|
|
return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
|
|
is not a VLAN device handle, and 0 will be returned.
|
|
|
|
@param[in] ServiceHandle The handle where network service binding protocols are
|
|
installed on.
|
|
|
|
@return VLAN ID of the device handle, or 0 if not a VLAN device.
|
|
|
|
**/
|
|
UINT16
|
|
EFIAPI
|
|
NetLibGetVlanId (
|
|
IN EFI_HANDLE ServiceHandle
|
|
)
|
|
{
|
|
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
|
|
EFI_DEVICE_PATH_PROTOCOL *Node;
|
|
|
|
DevicePath = DevicePathFromHandle (ServiceHandle);
|
|
if (DevicePath == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
Node = DevicePath;
|
|
while (!IsDevicePathEnd (Node)) {
|
|
if (Node->Type == MESSAGING_DEVICE_PATH && Node->SubType == MSG_VLAN_DP) {
|
|
return ((VLAN_DEVICE_PATH *) Node)->VlanId;
|
|
}
|
|
Node = NextDevicePathNode (Node);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
Find VLAN device handle with specified VLAN ID.
|
|
|
|
The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
|
|
This function will append VLAN device path node to the parent device path,
|
|
and then use LocateDevicePath() to find the correct VLAN device handle.
|
|
|
|
@param[in] ControllerHandle The handle where network service binding protocols are
|
|
installed on.
|
|
@param[in] VlanId The configured VLAN ID for the VLAN device.
|
|
|
|
@return The VLAN device handle, or NULL if not found.
|
|
|
|
**/
|
|
EFI_HANDLE
|
|
EFIAPI
|
|
NetLibGetVlanHandle (
|
|
IN EFI_HANDLE ControllerHandle,
|
|
IN UINT16 VlanId
|
|
)
|
|
{
|
|
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
|
|
EFI_DEVICE_PATH_PROTOCOL *VlanDevicePath;
|
|
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
|
|
VLAN_DEVICE_PATH VlanNode;
|
|
EFI_HANDLE Handle;
|
|
|
|
ParentDevicePath = DevicePathFromHandle (ControllerHandle);
|
|
if (ParentDevicePath == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
//
|
|
// Construct VLAN device path
|
|
//
|
|
CopyMem (&VlanNode, &mNetVlanDevicePathTemplate, sizeof (VLAN_DEVICE_PATH));
|
|
VlanNode.VlanId = VlanId;
|
|
VlanDevicePath = AppendDevicePathNode (
|
|
ParentDevicePath,
|
|
(EFI_DEVICE_PATH_PROTOCOL *) &VlanNode
|
|
);
|
|
if (VlanDevicePath == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
//
|
|
// Find VLAN device handle
|
|
//
|
|
Handle = NULL;
|
|
DevicePath = VlanDevicePath;
|
|
gBS->LocateDevicePath (
|
|
&gEfiDevicePathProtocolGuid,
|
|
&DevicePath,
|
|
&Handle
|
|
);
|
|
if (!IsDevicePathEnd (DevicePath)) {
|
|
//
|
|
// Device path is not exactly match
|
|
//
|
|
Handle = NULL;
|
|
}
|
|
|
|
FreePool (VlanDevicePath);
|
|
return Handle;
|
|
}
|
|
|
|
/**
|
|
Get MAC address associated with the network service handle.
|
|
|
|
There should be MNP Service Binding Protocol installed on the input ServiceHandle.
|
|
If SNP is installed on the ServiceHandle or its parent handle, MAC address will
|
|
be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
|
|
|
|
@param[in] ServiceHandle The handle where network service binding protocols are
|
|
installed on.
|
|
@param[out] MacAddress The pointer to store the returned MAC address.
|
|
@param[out] AddressSize The length of returned MAC address.
|
|
|
|
@retval EFI_SUCCESS MAC address is returned successfully.
|
|
@retval Others Failed to get SNP mode data.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibGetMacAddress (
|
|
IN EFI_HANDLE ServiceHandle,
|
|
OUT EFI_MAC_ADDRESS *MacAddress,
|
|
OUT UINTN *AddressSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
|
|
EFI_SIMPLE_NETWORK_MODE *SnpMode;
|
|
EFI_SIMPLE_NETWORK_MODE SnpModeData;
|
|
EFI_MANAGED_NETWORK_PROTOCOL *Mnp;
|
|
EFI_SERVICE_BINDING_PROTOCOL *MnpSb;
|
|
EFI_HANDLE *SnpHandle;
|
|
EFI_HANDLE MnpChildHandle;
|
|
|
|
ASSERT (MacAddress != NULL);
|
|
ASSERT (AddressSize != NULL);
|
|
|
|
//
|
|
// Try to get SNP handle
|
|
//
|
|
Snp = NULL;
|
|
SnpHandle = NetLibGetSnpHandle (ServiceHandle, &Snp);
|
|
if (SnpHandle != NULL) {
|
|
//
|
|
// SNP found, use it directly
|
|
//
|
|
SnpMode = Snp->Mode;
|
|
} else {
|
|
//
|
|
// Failed to get SNP handle, try to get MAC address from MNP
|
|
//
|
|
MnpChildHandle = NULL;
|
|
Status = gBS->HandleProtocol (
|
|
ServiceHandle,
|
|
&gEfiManagedNetworkServiceBindingProtocolGuid,
|
|
(VOID **) &MnpSb
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// Create a MNP child
|
|
//
|
|
Status = MnpSb->CreateChild (MnpSb, &MnpChildHandle);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// Open MNP protocol
|
|
//
|
|
Status = gBS->HandleProtocol (
|
|
MnpChildHandle,
|
|
&gEfiManagedNetworkProtocolGuid,
|
|
(VOID **) &Mnp
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
MnpSb->DestroyChild (MnpSb, MnpChildHandle);
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// Try to get SNP mode from MNP
|
|
//
|
|
Status = Mnp->GetModeData (Mnp, NULL, &SnpModeData);
|
|
if (EFI_ERROR (Status) && (Status != EFI_NOT_STARTED)) {
|
|
MnpSb->DestroyChild (MnpSb, MnpChildHandle);
|
|
return Status;
|
|
}
|
|
SnpMode = &SnpModeData;
|
|
|
|
//
|
|
// Destroy the MNP child
|
|
//
|
|
MnpSb->DestroyChild (MnpSb, MnpChildHandle);
|
|
}
|
|
|
|
*AddressSize = SnpMode->HwAddressSize;
|
|
CopyMem (MacAddress->Addr, SnpMode->CurrentAddress.Addr, SnpMode->HwAddressSize);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Convert MAC address of the NIC associated with specified Service Binding Handle
|
|
to a unicode string. Callers are responsible for freeing the string storage.
|
|
|
|
Locate simple network protocol associated with the Service Binding Handle and
|
|
get the mac address from SNP. Then convert the mac address into a unicode
|
|
string. It takes 2 unicode characters to represent a 1 byte binary buffer.
|
|
Plus one unicode character for the null-terminator.
|
|
|
|
@param[in] ServiceHandle The handle where network service binding protocol is
|
|
installed on.
|
|
@param[in] ImageHandle The image handle used to act as the agent handle to
|
|
get the simple network protocol. This parameter is
|
|
optional and may be NULL.
|
|
@param[out] MacString The pointer to store the address of the string
|
|
representation of the mac address.
|
|
|
|
@retval EFI_SUCCESS Convert the mac address a unicode string successfully.
|
|
@retval EFI_OUT_OF_RESOURCES There are not enough memory resource.
|
|
@retval Others Failed to open the simple network protocol.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibGetMacString (
|
|
IN EFI_HANDLE ServiceHandle,
|
|
IN EFI_HANDLE ImageHandle, OPTIONAL
|
|
OUT CHAR16 **MacString
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_MAC_ADDRESS MacAddress;
|
|
UINT8 *HwAddress;
|
|
UINTN HwAddressSize;
|
|
UINT16 VlanId;
|
|
CHAR16 *String;
|
|
UINTN Index;
|
|
|
|
ASSERT (MacString != NULL);
|
|
|
|
//
|
|
// Get MAC address of the network device
|
|
//
|
|
Status = NetLibGetMacAddress (ServiceHandle, &MacAddress, &HwAddressSize);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// It takes 2 unicode characters to represent a 1 byte binary buffer.
|
|
// If VLAN is configured, it will need extra 5 characters like "\0005".
|
|
// Plus one unicode character for the null-terminator.
|
|
//
|
|
String = AllocateZeroPool ((2 * HwAddressSize + 5 + 1) * sizeof (CHAR16));
|
|
if (String == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
*MacString = String;
|
|
|
|
//
|
|
// Convert the MAC address into a unicode string.
|
|
//
|
|
HwAddress = &MacAddress.Addr[0];
|
|
for (Index = 0; Index < HwAddressSize; Index++) {
|
|
String += UnicodeValueToString (String, PREFIX_ZERO | RADIX_HEX, *(HwAddress++), 2);
|
|
}
|
|
|
|
//
|
|
// Append VLAN ID if any
|
|
//
|
|
VlanId = NetLibGetVlanId (ServiceHandle);
|
|
if (VlanId != 0) {
|
|
*String++ = L'\\';
|
|
String += UnicodeValueToString (String, PREFIX_ZERO | RADIX_HEX, VlanId, 4);
|
|
}
|
|
|
|
//
|
|
// Null terminate the Unicode string
|
|
//
|
|
*String = L'\0';
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Detect media status for specified network device.
|
|
|
|
The underlying UNDI driver may or may not support reporting media status from
|
|
GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
|
|
will try to invoke Snp->GetStatus() to get the media status: if media already
|
|
present, it return directly; if media not present, it will stop SNP and then
|
|
restart SNP to get the latest media status, this give chance to get the correct
|
|
media status for old UNDI driver which doesn't support reporting media status
|
|
from GET_STATUS command.
|
|
Note: there will be two limitations for current algorithm:
|
|
1) for UNDI with this capability, in case of cable is not attached, there will
|
|
be an redundant Stop/Start() process;
|
|
2) for UNDI without this capability, in case that network cable is attached when
|
|
Snp->Initialize() is invoked while network cable is unattached later,
|
|
NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
|
|
apps to wait for timeout time.
|
|
|
|
@param[in] ServiceHandle The handle where network service binding protocols are
|
|
installed on.
|
|
@param[out] MediaPresent The pointer to store the media status.
|
|
|
|
@retval EFI_SUCCESS Media detection success.
|
|
@retval EFI_INVALID_PARAMETER ServiceHandle is not valid network device handle.
|
|
@retval EFI_UNSUPPORTED Network device does not support media detection.
|
|
@retval EFI_DEVICE_ERROR SNP is in unknown state.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibDetectMedia (
|
|
IN EFI_HANDLE ServiceHandle,
|
|
OUT BOOLEAN *MediaPresent
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_HANDLE SnpHandle;
|
|
EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
|
|
UINT32 InterruptStatus;
|
|
UINT32 OldState;
|
|
EFI_MAC_ADDRESS *MCastFilter;
|
|
UINT32 MCastFilterCount;
|
|
UINT32 EnableFilterBits;
|
|
UINT32 DisableFilterBits;
|
|
BOOLEAN ResetMCastFilters;
|
|
|
|
ASSERT (MediaPresent != NULL);
|
|
|
|
//
|
|
// Get SNP handle
|
|
//
|
|
Snp = NULL;
|
|
SnpHandle = NetLibGetSnpHandle (ServiceHandle, &Snp);
|
|
if (SnpHandle == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Check whether SNP support media detection
|
|
//
|
|
if (!Snp->Mode->MediaPresentSupported) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
//
|
|
// Invoke Snp->GetStatus() to refresh MediaPresent field in SNP mode data
|
|
//
|
|
Status = Snp->GetStatus (Snp, &InterruptStatus, NULL);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
if (Snp->Mode->MediaPresent) {
|
|
//
|
|
// Media is present, return directly
|
|
//
|
|
*MediaPresent = TRUE;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// Till now, GetStatus() report no media; while, in case UNDI not support
|
|
// reporting media status from GetStatus(), this media status may be incorrect.
|
|
// So, we will stop SNP and then restart it to get the correct media status.
|
|
//
|
|
OldState = Snp->Mode->State;
|
|
if (OldState >= EfiSimpleNetworkMaxState) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
|
|
MCastFilter = NULL;
|
|
|
|
if (OldState == EfiSimpleNetworkInitialized) {
|
|
//
|
|
// SNP is already in use, need Shutdown/Stop and then Start/Initialize
|
|
//
|
|
|
|
//
|
|
// Backup current SNP receive filter settings
|
|
//
|
|
EnableFilterBits = Snp->Mode->ReceiveFilterSetting;
|
|
DisableFilterBits = Snp->Mode->ReceiveFilterMask ^ EnableFilterBits;
|
|
|
|
ResetMCastFilters = TRUE;
|
|
MCastFilterCount = Snp->Mode->MCastFilterCount;
|
|
if (MCastFilterCount != 0) {
|
|
MCastFilter = AllocateCopyPool (
|
|
MCastFilterCount * sizeof (EFI_MAC_ADDRESS),
|
|
Snp->Mode->MCastFilter
|
|
);
|
|
ASSERT (MCastFilter != NULL);
|
|
|
|
ResetMCastFilters = FALSE;
|
|
}
|
|
|
|
//
|
|
// Shutdown/Stop the simple network
|
|
//
|
|
Status = Snp->Shutdown (Snp);
|
|
if (!EFI_ERROR (Status)) {
|
|
Status = Snp->Stop (Snp);
|
|
}
|
|
if (EFI_ERROR (Status)) {
|
|
goto Exit;
|
|
}
|
|
|
|
//
|
|
// Start/Initialize the simple network
|
|
//
|
|
Status = Snp->Start (Snp);
|
|
if (!EFI_ERROR (Status)) {
|
|
Status = Snp->Initialize (Snp, 0, 0);
|
|
}
|
|
if (EFI_ERROR (Status)) {
|
|
goto Exit;
|
|
}
|
|
|
|
//
|
|
// Here we get the correct media status
|
|
//
|
|
*MediaPresent = Snp->Mode->MediaPresent;
|
|
|
|
//
|
|
// Restore SNP receive filter settings
|
|
//
|
|
Status = Snp->ReceiveFilters (
|
|
Snp,
|
|
EnableFilterBits,
|
|
DisableFilterBits,
|
|
ResetMCastFilters,
|
|
MCastFilterCount,
|
|
MCastFilter
|
|
);
|
|
|
|
if (MCastFilter != NULL) {
|
|
FreePool (MCastFilter);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// SNP is not in use, it's in state of EfiSimpleNetworkStopped or EfiSimpleNetworkStarted
|
|
//
|
|
if (OldState == EfiSimpleNetworkStopped) {
|
|
//
|
|
// SNP not start yet, start it
|
|
//
|
|
Status = Snp->Start (Snp);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Exit;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Initialize the simple network
|
|
//
|
|
Status = Snp->Initialize (Snp, 0, 0);
|
|
if (EFI_ERROR (Status)) {
|
|
Status = EFI_DEVICE_ERROR;
|
|
goto Exit;
|
|
}
|
|
|
|
//
|
|
// Here we get the correct media status
|
|
//
|
|
*MediaPresent = Snp->Mode->MediaPresent;
|
|
|
|
//
|
|
// Shut down the simple network
|
|
//
|
|
Snp->Shutdown (Snp);
|
|
|
|
Exit:
|
|
if (OldState == EfiSimpleNetworkStopped) {
|
|
//
|
|
// Original SNP sate is Stopped, restore to original state
|
|
//
|
|
Snp->Stop (Snp);
|
|
}
|
|
|
|
if (MCastFilter != NULL) {
|
|
FreePool (MCastFilter);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Check the default address used by the IPv4 driver is static or dynamic (acquired
|
|
from DHCP).
|
|
|
|
If the controller handle does not have the EFI_IP4_CONFIG2_PROTOCOL installed, the
|
|
default address is static. If failed to get the policy from Ip4 Config2 Protocol,
|
|
the default address is static. Otherwise, get the result from Ip4 Config2 Protocol.
|
|
|
|
@param[in] Controller The controller handle which has the EFI_IP4_CONFIG2_PROTOCOL
|
|
relative with the default address to judge.
|
|
|
|
@retval TRUE If the default address is static.
|
|
@retval FALSE If the default address is acquired from DHCP.
|
|
|
|
**/
|
|
BOOLEAN
|
|
NetLibDefaultAddressIsStatic (
|
|
IN EFI_HANDLE Controller
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_IP4_CONFIG2_PROTOCOL *Ip4Config2;
|
|
UINTN DataSize;
|
|
EFI_IP4_CONFIG2_POLICY Policy;
|
|
BOOLEAN IsStatic;
|
|
|
|
Ip4Config2 = NULL;
|
|
|
|
DataSize = sizeof (EFI_IP4_CONFIG2_POLICY);
|
|
|
|
IsStatic = TRUE;
|
|
|
|
//
|
|
// Get Ip4Config2 policy.
|
|
//
|
|
Status = gBS->HandleProtocol (Controller, &gEfiIp4Config2ProtocolGuid, (VOID **) &Ip4Config2);
|
|
if (EFI_ERROR (Status)) {
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
Status = Ip4Config2->GetData (Ip4Config2, Ip4Config2DataTypePolicy, &DataSize, &Policy);
|
|
if (EFI_ERROR (Status)) {
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
IsStatic = (BOOLEAN) (Policy == Ip4Config2PolicyStatic);
|
|
|
|
ON_EXIT:
|
|
|
|
return IsStatic;
|
|
}
|
|
|
|
/**
|
|
Create an IPv4 device path node.
|
|
|
|
The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
|
|
The header subtype of IPv4 device path node is MSG_IPv4_DP.
|
|
Get other info from parameters to make up the whole IPv4 device path node.
|
|
|
|
@param[in, out] Node Pointer to the IPv4 device path node.
|
|
@param[in] Controller The controller handle.
|
|
@param[in] LocalIp The local IPv4 address.
|
|
@param[in] LocalPort The local port.
|
|
@param[in] RemoteIp The remote IPv4 address.
|
|
@param[in] RemotePort The remote port.
|
|
@param[in] Protocol The protocol type in the IP header.
|
|
@param[in] UseDefaultAddress Whether this instance is using default address or not.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
NetLibCreateIPv4DPathNode (
|
|
IN OUT IPv4_DEVICE_PATH *Node,
|
|
IN EFI_HANDLE Controller,
|
|
IN IP4_ADDR LocalIp,
|
|
IN UINT16 LocalPort,
|
|
IN IP4_ADDR RemoteIp,
|
|
IN UINT16 RemotePort,
|
|
IN UINT16 Protocol,
|
|
IN BOOLEAN UseDefaultAddress
|
|
)
|
|
{
|
|
Node->Header.Type = MESSAGING_DEVICE_PATH;
|
|
Node->Header.SubType = MSG_IPv4_DP;
|
|
SetDevicePathNodeLength (&Node->Header, sizeof (IPv4_DEVICE_PATH));
|
|
|
|
CopyMem (&Node->LocalIpAddress, &LocalIp, sizeof (EFI_IPv4_ADDRESS));
|
|
CopyMem (&Node->RemoteIpAddress, &RemoteIp, sizeof (EFI_IPv4_ADDRESS));
|
|
|
|
Node->LocalPort = LocalPort;
|
|
Node->RemotePort = RemotePort;
|
|
|
|
Node->Protocol = Protocol;
|
|
|
|
if (!UseDefaultAddress) {
|
|
Node->StaticIpAddress = TRUE;
|
|
} else {
|
|
Node->StaticIpAddress = NetLibDefaultAddressIsStatic (Controller);
|
|
}
|
|
|
|
//
|
|
// Set the Gateway IP address to default value 0:0:0:0.
|
|
// Set the Subnet mask to default value 255:255:255:0.
|
|
//
|
|
ZeroMem (&Node->GatewayIpAddress, sizeof (EFI_IPv4_ADDRESS));
|
|
SetMem (&Node->SubnetMask, sizeof (EFI_IPv4_ADDRESS), 0xff);
|
|
Node->SubnetMask.Addr[3] = 0;
|
|
}
|
|
|
|
/**
|
|
Create an IPv6 device path node.
|
|
|
|
The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
|
|
The header subtype of IPv6 device path node is MSG_IPv6_DP.
|
|
Get other info from parameters to make up the whole IPv6 device path node.
|
|
|
|
@param[in, out] Node Pointer to the IPv6 device path node.
|
|
@param[in] Controller The controller handle.
|
|
@param[in] LocalIp The local IPv6 address.
|
|
@param[in] LocalPort The local port.
|
|
@param[in] RemoteIp The remote IPv6 address.
|
|
@param[in] RemotePort The remote port.
|
|
@param[in] Protocol The protocol type in the IP header.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
NetLibCreateIPv6DPathNode (
|
|
IN OUT IPv6_DEVICE_PATH *Node,
|
|
IN EFI_HANDLE Controller,
|
|
IN EFI_IPv6_ADDRESS *LocalIp,
|
|
IN UINT16 LocalPort,
|
|
IN EFI_IPv6_ADDRESS *RemoteIp,
|
|
IN UINT16 RemotePort,
|
|
IN UINT16 Protocol
|
|
)
|
|
{
|
|
Node->Header.Type = MESSAGING_DEVICE_PATH;
|
|
Node->Header.SubType = MSG_IPv6_DP;
|
|
SetDevicePathNodeLength (&Node->Header, sizeof (IPv6_DEVICE_PATH));
|
|
|
|
CopyMem (&Node->LocalIpAddress, LocalIp, sizeof (EFI_IPv6_ADDRESS));
|
|
CopyMem (&Node->RemoteIpAddress, RemoteIp, sizeof (EFI_IPv6_ADDRESS));
|
|
|
|
Node->LocalPort = LocalPort;
|
|
Node->RemotePort = RemotePort;
|
|
|
|
Node->Protocol = Protocol;
|
|
|
|
//
|
|
// Set default value to IPAddressOrigin, PrefixLength.
|
|
// Set the Gateway IP address to unspecified address.
|
|
//
|
|
Node->IpAddressOrigin = 0;
|
|
Node->PrefixLength = IP6_PREFIX_LENGTH;
|
|
ZeroMem (&Node->GatewayIpAddress, sizeof (EFI_IPv6_ADDRESS));
|
|
}
|
|
|
|
/**
|
|
Find the UNDI/SNP handle from controller and protocol GUID.
|
|
|
|
For example, IP will open a MNP child to transmit/receive
|
|
packets, when MNP is stopped, IP should also be stopped. IP
|
|
needs to find its own private data which is related the IP's
|
|
service binding instance that is install on UNDI/SNP handle.
|
|
Now, the controller is either a MNP or ARP child handle. But
|
|
IP opens these handle BY_DRIVER, use that info, we can get the
|
|
UNDI/SNP handle.
|
|
|
|
@param[in] Controller Then protocol handle to check.
|
|
@param[in] ProtocolGuid The protocol that is related with the handle.
|
|
|
|
@return The UNDI/SNP handle or NULL for errors.
|
|
|
|
**/
|
|
EFI_HANDLE
|
|
EFIAPI
|
|
NetLibGetNicHandle (
|
|
IN EFI_HANDLE Controller,
|
|
IN EFI_GUID *ProtocolGuid
|
|
)
|
|
{
|
|
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenBuffer;
|
|
EFI_HANDLE Handle;
|
|
EFI_STATUS Status;
|
|
UINTN OpenCount;
|
|
UINTN Index;
|
|
|
|
Status = gBS->OpenProtocolInformation (
|
|
Controller,
|
|
ProtocolGuid,
|
|
&OpenBuffer,
|
|
&OpenCount
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return NULL;
|
|
}
|
|
|
|
Handle = NULL;
|
|
|
|
for (Index = 0; Index < OpenCount; Index++) {
|
|
if ((OpenBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_DRIVER) != 0) {
|
|
Handle = OpenBuffer[Index].ControllerHandle;
|
|
break;
|
|
}
|
|
}
|
|
|
|
gBS->FreePool (OpenBuffer);
|
|
return Handle;
|
|
}
|
|
|
|
/**
|
|
Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
|
|
|
|
@param[in] String The pointer to the Ascii string.
|
|
@param[out] Ip4Address The pointer to the converted IPv4 address.
|
|
|
|
@retval EFI_SUCCESS Convert to IPv4 address successfully.
|
|
@retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibAsciiStrToIp4 (
|
|
IN CONST CHAR8 *String,
|
|
OUT EFI_IPv4_ADDRESS *Ip4Address
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
CHAR8 *Ip4Str;
|
|
CHAR8 *TempStr;
|
|
UINTN NodeVal;
|
|
|
|
if ((String == NULL) || (Ip4Address == NULL)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
Ip4Str = (CHAR8 *) String;
|
|
|
|
for (Index = 0; Index < 4; Index++) {
|
|
TempStr = Ip4Str;
|
|
|
|
while ((*Ip4Str != '\0') && (*Ip4Str != '.')) {
|
|
Ip4Str++;
|
|
}
|
|
|
|
//
|
|
// The IPv4 address is X.X.X.X
|
|
//
|
|
if (*Ip4Str == '.') {
|
|
if (Index == 3) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
} else {
|
|
if (Index != 3) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Convert the string to IPv4 address. AsciiStrDecimalToUintn stops at the
|
|
// first character that is not a valid decimal character, '.' or '\0' here.
|
|
//
|
|
NodeVal = AsciiStrDecimalToUintn (TempStr);
|
|
if (NodeVal > 0xFF) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
Ip4Address->Addr[Index] = (UINT8) NodeVal;
|
|
|
|
Ip4Str++;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
|
|
string is defined in RFC 4291 - Text Pepresentation of Addresses.
|
|
|
|
@param[in] String The pointer to the Ascii string.
|
|
@param[out] Ip6Address The pointer to the converted IPv6 address.
|
|
|
|
@retval EFI_SUCCESS Convert to IPv6 address successfully.
|
|
@retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibAsciiStrToIp6 (
|
|
IN CONST CHAR8 *String,
|
|
OUT EFI_IPv6_ADDRESS *Ip6Address
|
|
)
|
|
{
|
|
UINT8 Index;
|
|
CHAR8 *Ip6Str;
|
|
CHAR8 *TempStr;
|
|
CHAR8 *TempStr2;
|
|
UINT8 NodeCnt;
|
|
UINT8 TailNodeCnt;
|
|
UINT8 AllowedCnt;
|
|
UINTN NodeVal;
|
|
BOOLEAN Short;
|
|
BOOLEAN Update;
|
|
BOOLEAN LeadZero;
|
|
UINT8 LeadZeroCnt;
|
|
UINT8 Cnt;
|
|
|
|
if ((String == NULL) || (Ip6Address == NULL)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
Ip6Str = (CHAR8 *) String;
|
|
AllowedCnt = 6;
|
|
LeadZeroCnt = 0;
|
|
|
|
//
|
|
// An IPv6 address leading with : looks strange.
|
|
//
|
|
if (*Ip6Str == ':') {
|
|
if (*(Ip6Str + 1) != ':') {
|
|
return EFI_INVALID_PARAMETER;
|
|
} else {
|
|
AllowedCnt = 7;
|
|
}
|
|
}
|
|
|
|
ZeroMem (Ip6Address, sizeof (EFI_IPv6_ADDRESS));
|
|
|
|
NodeCnt = 0;
|
|
TailNodeCnt = 0;
|
|
Short = FALSE;
|
|
Update = FALSE;
|
|
LeadZero = FALSE;
|
|
|
|
for (Index = 0; Index < 15; Index = (UINT8) (Index + 2)) {
|
|
TempStr = Ip6Str;
|
|
|
|
while ((*Ip6Str != '\0') && (*Ip6Str != ':')) {
|
|
Ip6Str++;
|
|
}
|
|
|
|
if ((*Ip6Str == '\0') && (Index != 14)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
if (*Ip6Str == ':') {
|
|
if (*(Ip6Str + 1) == ':') {
|
|
if ((NodeCnt > 6) ||
|
|
((*(Ip6Str + 2) != '\0') && (AsciiStrHexToUintn (Ip6Str + 2) == 0))) {
|
|
//
|
|
// ::0 looks strange. report error to user.
|
|
//
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
if ((NodeCnt == 6) && (*(Ip6Str + 2) != '\0') &&
|
|
(AsciiStrHexToUintn (Ip6Str + 2) != 0)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Skip the abbreviation part of IPv6 address.
|
|
//
|
|
TempStr2 = Ip6Str + 2;
|
|
while ((*TempStr2 != '\0')) {
|
|
if (*TempStr2 == ':') {
|
|
if (*(TempStr2 + 1) == ':') {
|
|
//
|
|
// :: can only appear once in IPv6 address.
|
|
//
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
TailNodeCnt++;
|
|
if (TailNodeCnt >= (AllowedCnt - NodeCnt)) {
|
|
//
|
|
// :: indicates one or more groups of 16 bits of zeros.
|
|
//
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
}
|
|
|
|
TempStr2++;
|
|
}
|
|
|
|
Short = TRUE;
|
|
Update = TRUE;
|
|
|
|
Ip6Str = Ip6Str + 2;
|
|
} else {
|
|
if (*(Ip6Str + 1) == '\0') {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
Ip6Str++;
|
|
NodeCnt++;
|
|
if ((Short && (NodeCnt > 6)) || (!Short && (NodeCnt > 7))) {
|
|
//
|
|
// There are more than 8 groups of 16 bits of zeros.
|
|
//
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Convert the string to IPv6 address. AsciiStrHexToUintn stops at the first
|
|
// character that is not a valid hexadecimal character, ':' or '\0' here.
|
|
//
|
|
NodeVal = AsciiStrHexToUintn (TempStr);
|
|
if ((NodeVal > 0xFFFF) || (Index > 14)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
if (NodeVal != 0) {
|
|
if ((*TempStr == '0') &&
|
|
((*(TempStr + 2) == ':') || (*(TempStr + 3) == ':') ||
|
|
(*(TempStr + 2) == '\0') || (*(TempStr + 3) == '\0'))) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
if ((*TempStr == '0') && (*(TempStr + 4) != '\0') &&
|
|
(*(TempStr + 4) != ':')) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
} else {
|
|
if (((*TempStr == '0') && (*(TempStr + 1) == '0') &&
|
|
((*(TempStr + 2) == ':') || (*(TempStr + 2) == '\0'))) ||
|
|
((*TempStr == '0') && (*(TempStr + 1) == '0') && (*(TempStr + 2) == '0') &&
|
|
((*(TempStr + 3) == ':') || (*(TempStr + 3) == '\0')))) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
}
|
|
|
|
Cnt = 0;
|
|
while ((TempStr[Cnt] != ':') && (TempStr[Cnt] != '\0')) {
|
|
Cnt++;
|
|
}
|
|
if (LeadZeroCnt == 0) {
|
|
if ((Cnt == 4) && (*TempStr == '0')) {
|
|
LeadZero = TRUE;
|
|
LeadZeroCnt++;
|
|
}
|
|
if ((Cnt != 0) && (Cnt < 4)) {
|
|
LeadZero = FALSE;
|
|
LeadZeroCnt++;
|
|
}
|
|
} else {
|
|
if ((Cnt == 4) && (*TempStr == '0') && !LeadZero) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
if ((Cnt != 0) && (Cnt < 4) && LeadZero) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
}
|
|
|
|
Ip6Address->Addr[Index] = (UINT8) (NodeVal >> 8);
|
|
Ip6Address->Addr[Index + 1] = (UINT8) (NodeVal & 0xFF);
|
|
|
|
//
|
|
// Skip the groups of zeros by ::
|
|
//
|
|
if (Short && Update) {
|
|
Index = (UINT8) (16 - (TailNodeCnt + 2) * 2);
|
|
Update = FALSE;
|
|
}
|
|
}
|
|
|
|
if ((!Short && Index != 16) || (*Ip6Str != '\0')) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
|
|
|
|
@param[in] String The pointer to the Ascii string.
|
|
@param[out] Ip4Address The pointer to the converted IPv4 address.
|
|
|
|
@retval EFI_SUCCESS Convert to IPv4 address successfully.
|
|
@retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.
|
|
@retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibStrToIp4 (
|
|
IN CONST CHAR16 *String,
|
|
OUT EFI_IPv4_ADDRESS *Ip4Address
|
|
)
|
|
{
|
|
CHAR8 *Ip4Str;
|
|
EFI_STATUS Status;
|
|
|
|
if ((String == NULL) || (Ip4Address == NULL)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
Ip4Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8));
|
|
if (Ip4Str == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
UnicodeStrToAsciiStr (String, Ip4Str);
|
|
|
|
Status = NetLibAsciiStrToIp4 (Ip4Str, Ip4Address);
|
|
|
|
FreePool (Ip4Str);
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
|
|
the string is defined in RFC 4291 - Text Pepresentation of Addresses.
|
|
|
|
@param[in] String The pointer to the Ascii string.
|
|
@param[out] Ip6Address The pointer to the converted IPv6 address.
|
|
|
|
@retval EFI_SUCCESS Convert to IPv6 address successfully.
|
|
@retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL.
|
|
@retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibStrToIp6 (
|
|
IN CONST CHAR16 *String,
|
|
OUT EFI_IPv6_ADDRESS *Ip6Address
|
|
)
|
|
{
|
|
CHAR8 *Ip6Str;
|
|
EFI_STATUS Status;
|
|
|
|
if ((String == NULL) || (Ip6Address == NULL)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
Ip6Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8));
|
|
if (Ip6Str == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
UnicodeStrToAsciiStr (String, Ip6Str);
|
|
|
|
Status = NetLibAsciiStrToIp6 (Ip6Str, Ip6Address);
|
|
|
|
FreePool (Ip6Str);
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
|
|
The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
|
|
Prefixes: ipv6-address/prefix-length.
|
|
|
|
@param[in] String The pointer to the Ascii string.
|
|
@param[out] Ip6Address The pointer to the converted IPv6 address.
|
|
@param[out] PrefixLength The pointer to the converted prefix length.
|
|
|
|
@retval EFI_SUCCESS Convert to IPv6 address successfully.
|
|
@retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL.
|
|
@retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibStrToIp6andPrefix (
|
|
IN CONST CHAR16 *String,
|
|
OUT EFI_IPv6_ADDRESS *Ip6Address,
|
|
OUT UINT8 *PrefixLength
|
|
)
|
|
{
|
|
CHAR8 *Ip6Str;
|
|
CHAR8 *PrefixStr;
|
|
CHAR8 *TempStr;
|
|
EFI_STATUS Status;
|
|
UINT8 Length;
|
|
|
|
if ((String == NULL) || (Ip6Address == NULL) || (PrefixLength == NULL)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
Ip6Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8));
|
|
if (Ip6Str == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
UnicodeStrToAsciiStr (String, Ip6Str);
|
|
|
|
//
|
|
// Get the sub string describing prefix length.
|
|
//
|
|
TempStr = Ip6Str;
|
|
while (*TempStr != '\0' && (*TempStr != '/')) {
|
|
TempStr++;
|
|
}
|
|
|
|
if (*TempStr == '/') {
|
|
PrefixStr = TempStr + 1;
|
|
} else {
|
|
PrefixStr = NULL;
|
|
}
|
|
|
|
//
|
|
// Get the sub string describing IPv6 address and convert it.
|
|
//
|
|
*TempStr = '\0';
|
|
|
|
Status = NetLibAsciiStrToIp6 (Ip6Str, Ip6Address);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Exit;
|
|
}
|
|
|
|
//
|
|
// If input string doesn't indicate the prefix length, return 0xff.
|
|
//
|
|
Length = 0xFF;
|
|
|
|
//
|
|
// Convert the string to prefix length
|
|
//
|
|
if (PrefixStr != NULL) {
|
|
|
|
Status = EFI_INVALID_PARAMETER;
|
|
Length = 0;
|
|
while (*PrefixStr != '\0') {
|
|
if (NET_IS_DIGIT (*PrefixStr)) {
|
|
Length = (UINT8) (Length * 10 + (*PrefixStr - '0'));
|
|
if (Length >= IP6_PREFIX_NUM) {
|
|
goto Exit;
|
|
}
|
|
} else {
|
|
goto Exit;
|
|
}
|
|
|
|
PrefixStr++;
|
|
}
|
|
}
|
|
|
|
*PrefixLength = Length;
|
|
Status = EFI_SUCCESS;
|
|
|
|
Exit:
|
|
|
|
FreePool (Ip6Str);
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
|
|
Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
|
|
The text representation of address is defined in RFC 4291.
|
|
|
|
@param[in] Ip6Address The pointer to the IPv6 address.
|
|
@param[out] String The buffer to return the converted string.
|
|
@param[in] StringSize The length in bytes of the input String.
|
|
|
|
@retval EFI_SUCCESS Convert to string successfully.
|
|
@retval EFI_INVALID_PARAMETER The input parameter is invalid.
|
|
@retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been
|
|
updated with the size needed to complete the request.
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibIp6ToStr (
|
|
IN EFI_IPv6_ADDRESS *Ip6Address,
|
|
OUT CHAR16 *String,
|
|
IN UINTN StringSize
|
|
)
|
|
{
|
|
UINT16 Ip6Addr[8];
|
|
UINTN Index;
|
|
UINTN LongestZerosStart;
|
|
UINTN LongestZerosLength;
|
|
UINTN CurrentZerosStart;
|
|
UINTN CurrentZerosLength;
|
|
CHAR16 Buffer[sizeof"ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff"];
|
|
CHAR16 *Ptr;
|
|
|
|
if (Ip6Address == NULL || String == NULL || StringSize == 0) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Convert the UINT8 array to an UINT16 array for easy handling.
|
|
//
|
|
ZeroMem (Ip6Addr, sizeof (Ip6Addr));
|
|
for (Index = 0; Index < 16; Index++) {
|
|
Ip6Addr[Index / 2] |= (Ip6Address->Addr[Index] << ((1 - (Index % 2)) << 3));
|
|
}
|
|
|
|
//
|
|
// Find the longest zeros and mark it.
|
|
//
|
|
CurrentZerosStart = DEFAULT_ZERO_START;
|
|
CurrentZerosLength = 0;
|
|
LongestZerosStart = DEFAULT_ZERO_START;
|
|
LongestZerosLength = 0;
|
|
for (Index = 0; Index < 8; Index++) {
|
|
if (Ip6Addr[Index] == 0) {
|
|
if (CurrentZerosStart == DEFAULT_ZERO_START) {
|
|
CurrentZerosStart = Index;
|
|
CurrentZerosLength = 1;
|
|
} else {
|
|
CurrentZerosLength++;
|
|
}
|
|
} else {
|
|
if (CurrentZerosStart != DEFAULT_ZERO_START) {
|
|
if (CurrentZerosLength > 2 && (LongestZerosStart == (DEFAULT_ZERO_START) || CurrentZerosLength > LongestZerosLength)) {
|
|
LongestZerosStart = CurrentZerosStart;
|
|
LongestZerosLength = CurrentZerosLength;
|
|
}
|
|
CurrentZerosStart = DEFAULT_ZERO_START;
|
|
CurrentZerosLength = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CurrentZerosStart != DEFAULT_ZERO_START && CurrentZerosLength > 2) {
|
|
if (LongestZerosStart == DEFAULT_ZERO_START || LongestZerosLength < CurrentZerosLength) {
|
|
LongestZerosStart = CurrentZerosStart;
|
|
LongestZerosLength = CurrentZerosLength;
|
|
}
|
|
}
|
|
|
|
Ptr = Buffer;
|
|
for (Index = 0; Index < 8; Index++) {
|
|
if (LongestZerosStart != DEFAULT_ZERO_START && Index >= LongestZerosStart && Index < LongestZerosStart + LongestZerosLength) {
|
|
if (Index == LongestZerosStart) {
|
|
*Ptr++ = L':';
|
|
}
|
|
continue;
|
|
}
|
|
if (Index != 0) {
|
|
*Ptr++ = L':';
|
|
}
|
|
Ptr += UnicodeSPrint(Ptr, 10, L"%x", Ip6Addr[Index]);
|
|
}
|
|
|
|
if (LongestZerosStart != DEFAULT_ZERO_START && LongestZerosStart + LongestZerosLength == 8) {
|
|
*Ptr++ = L':';
|
|
}
|
|
*Ptr = L'\0';
|
|
|
|
if ((UINTN)Ptr - (UINTN)Buffer > StringSize) {
|
|
return EFI_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
StrCpyS (String, StringSize / sizeof (CHAR16), Buffer);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
This function obtains the system guid from the smbios table.
|
|
|
|
@param[out] SystemGuid The pointer of the returned system guid.
|
|
|
|
@retval EFI_SUCCESS Successfully obtained the system guid.
|
|
@retval EFI_NOT_FOUND Did not find the SMBIOS table.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NetLibGetSystemGuid (
|
|
OUT EFI_GUID *SystemGuid
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
SMBIOS_TABLE_ENTRY_POINT *SmbiosTable;
|
|
SMBIOS_STRUCTURE_POINTER Smbios;
|
|
SMBIOS_STRUCTURE_POINTER SmbiosEnd;
|
|
CHAR8 *String;
|
|
|
|
SmbiosTable = NULL;
|
|
Status = EfiGetSystemConfigurationTable (&gEfiSmbiosTableGuid, (VOID **) &SmbiosTable);
|
|
|
|
if (EFI_ERROR (Status) || SmbiosTable == NULL) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
Smbios.Hdr = (SMBIOS_STRUCTURE *) (UINTN) SmbiosTable->TableAddress;
|
|
SmbiosEnd.Raw = (UINT8 *) (UINTN) (SmbiosTable->TableAddress + SmbiosTable->TableLength);
|
|
|
|
do {
|
|
if (Smbios.Hdr->Type == 1) {
|
|
if (Smbios.Hdr->Length < 0x19) {
|
|
//
|
|
// Older version did not support UUID.
|
|
//
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
//
|
|
// SMBIOS tables are byte packed so we need to do a byte copy to
|
|
// prevend alignment faults on Itanium-based platform.
|
|
//
|
|
CopyMem (SystemGuid, &Smbios.Type1->Uuid, sizeof (EFI_GUID));
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// Go to the next SMBIOS structure. Each SMBIOS structure may include 2 parts:
|
|
// 1. Formatted section; 2. Unformatted string section. So, 2 steps are needed
|
|
// to skip one SMBIOS structure.
|
|
//
|
|
|
|
//
|
|
// Step 1: Skip over formatted section.
|
|
//
|
|
String = (CHAR8 *) (Smbios.Raw + Smbios.Hdr->Length);
|
|
|
|
//
|
|
// Step 2: Skip over unformated string section.
|
|
//
|
|
do {
|
|
//
|
|
// Each string is terminated with a NULL(00h) BYTE and the sets of strings
|
|
// is terminated with an additional NULL(00h) BYTE.
|
|
//
|
|
for ( ; *String != 0; String++) {
|
|
}
|
|
|
|
if (*(UINT8*)++String == 0) {
|
|
//
|
|
// Pointer to the next SMBIOS structure.
|
|
//
|
|
Smbios.Raw = (UINT8 *)++String;
|
|
break;
|
|
}
|
|
} while (TRUE);
|
|
} while (Smbios.Raw < SmbiosEnd.Raw);
|
|
return EFI_NOT_FOUND;
|
|
}
|