audk/MdeModulePkg/Bus/Pci/NvmExpressDxe/NvmExpressHci.c

1129 lines
36 KiB
C

/** @file
NvmExpressDxe driver is used to manage non-volatile memory subsystem which follows
NVM Express specification.
Copyright (c) 2013 - 2019, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "NvmExpress.h"
#define NVME_SHUTDOWN_PROCESS_TIMEOUT 45
//
// The number of NVME controllers managed by this driver, used by
// NvmeRegisterShutdownNotification() and NvmeUnregisterShutdownNotification().
//
UINTN mNvmeControllerNumber = 0;
/**
Read Nvm Express controller capability register.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@param Cap The buffer used to store capability register content.
@return EFI_SUCCESS Successfully read the controller capability register content.
@return EFI_DEVICE_ERROR Fail to read the controller capability register.
**/
EFI_STATUS
ReadNvmeControllerCapabilities (
IN NVME_CONTROLLER_PRIVATE_DATA *Private,
IN NVME_CAP *Cap
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
EFI_STATUS Status;
UINT64 Data;
PciIo = Private->PciIo;
Status = PciIo->Mem.Read (
PciIo,
EfiPciIoWidthUint32,
NVME_BAR,
NVME_CAP_OFFSET,
2,
&Data
);
if (EFI_ERROR(Status)) {
return Status;
}
WriteUnaligned64 ((UINT64*)Cap, Data);
return EFI_SUCCESS;
}
/**
Read Nvm Express controller configuration register.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@param Cc The buffer used to store configuration register content.
@return EFI_SUCCESS Successfully read the controller configuration register content.
@return EFI_DEVICE_ERROR Fail to read the controller configuration register.
**/
EFI_STATUS
ReadNvmeControllerConfiguration (
IN NVME_CONTROLLER_PRIVATE_DATA *Private,
IN NVME_CC *Cc
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
EFI_STATUS Status;
UINT32 Data;
PciIo = Private->PciIo;
Status = PciIo->Mem.Read (
PciIo,
EfiPciIoWidthUint32,
NVME_BAR,
NVME_CC_OFFSET,
1,
&Data
);
if (EFI_ERROR(Status)) {
return Status;
}
WriteUnaligned32 ((UINT32*)Cc, Data);
return EFI_SUCCESS;
}
/**
Write Nvm Express controller configuration register.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@param Cc The buffer used to store the content to be written into configuration register.
@return EFI_SUCCESS Successfully write data into the controller configuration register.
@return EFI_DEVICE_ERROR Fail to write data into the controller configuration register.
**/
EFI_STATUS
WriteNvmeControllerConfiguration (
IN NVME_CONTROLLER_PRIVATE_DATA *Private,
IN NVME_CC *Cc
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
EFI_STATUS Status;
UINT32 Data;
PciIo = Private->PciIo;
Data = ReadUnaligned32 ((UINT32*)Cc);
Status = PciIo->Mem.Write (
PciIo,
EfiPciIoWidthUint32,
NVME_BAR,
NVME_CC_OFFSET,
1,
&Data
);
if (EFI_ERROR(Status)) {
return Status;
}
DEBUG ((EFI_D_INFO, "Cc.En: %d\n", Cc->En));
DEBUG ((EFI_D_INFO, "Cc.Css: %d\n", Cc->Css));
DEBUG ((EFI_D_INFO, "Cc.Mps: %d\n", Cc->Mps));
DEBUG ((EFI_D_INFO, "Cc.Ams: %d\n", Cc->Ams));
DEBUG ((EFI_D_INFO, "Cc.Shn: %d\n", Cc->Shn));
DEBUG ((EFI_D_INFO, "Cc.Iosqes: %d\n", Cc->Iosqes));
DEBUG ((EFI_D_INFO, "Cc.Iocqes: %d\n", Cc->Iocqes));
return EFI_SUCCESS;
}
/**
Read Nvm Express controller status register.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@param Csts The buffer used to store status register content.
@return EFI_SUCCESS Successfully read the controller status register content.
@return EFI_DEVICE_ERROR Fail to read the controller status register.
**/
EFI_STATUS
ReadNvmeControllerStatus (
IN NVME_CONTROLLER_PRIVATE_DATA *Private,
IN NVME_CSTS *Csts
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
EFI_STATUS Status;
UINT32 Data;
PciIo = Private->PciIo;
Status = PciIo->Mem.Read (
PciIo,
EfiPciIoWidthUint32,
NVME_BAR,
NVME_CSTS_OFFSET,
1,
&Data
);
if (EFI_ERROR(Status)) {
return Status;
}
WriteUnaligned32 ((UINT32*)Csts, Data);
return EFI_SUCCESS;
}
/**
Write Nvm Express admin queue attributes register.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@param Aqa The buffer used to store the content to be written into admin queue attributes register.
@return EFI_SUCCESS Successfully write data into the admin queue attributes register.
@return EFI_DEVICE_ERROR Fail to write data into the admin queue attributes register.
**/
EFI_STATUS
WriteNvmeAdminQueueAttributes (
IN NVME_CONTROLLER_PRIVATE_DATA *Private,
IN NVME_AQA *Aqa
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
EFI_STATUS Status;
UINT32 Data;
PciIo = Private->PciIo;
Data = ReadUnaligned32 ((UINT32*)Aqa);
Status = PciIo->Mem.Write (
PciIo,
EfiPciIoWidthUint32,
NVME_BAR,
NVME_AQA_OFFSET,
1,
&Data
);
if (EFI_ERROR(Status)) {
return Status;
}
DEBUG ((EFI_D_INFO, "Aqa.Asqs: %d\n", Aqa->Asqs));
DEBUG ((EFI_D_INFO, "Aqa.Acqs: %d\n", Aqa->Acqs));
return EFI_SUCCESS;
}
/**
Write Nvm Express admin submission queue base address register.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@param Asq The buffer used to store the content to be written into admin submission queue base address register.
@return EFI_SUCCESS Successfully write data into the admin submission queue base address register.
@return EFI_DEVICE_ERROR Fail to write data into the admin submission queue base address register.
**/
EFI_STATUS
WriteNvmeAdminSubmissionQueueBaseAddress (
IN NVME_CONTROLLER_PRIVATE_DATA *Private,
IN NVME_ASQ *Asq
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
EFI_STATUS Status;
UINT64 Data;
PciIo = Private->PciIo;
Data = ReadUnaligned64 ((UINT64*)Asq);
Status = PciIo->Mem.Write (
PciIo,
EfiPciIoWidthUint32,
NVME_BAR,
NVME_ASQ_OFFSET,
2,
&Data
);
if (EFI_ERROR(Status)) {
return Status;
}
DEBUG ((EFI_D_INFO, "Asq: %lx\n", *Asq));
return EFI_SUCCESS;
}
/**
Write Nvm Express admin completion queue base address register.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@param Acq The buffer used to store the content to be written into admin completion queue base address register.
@return EFI_SUCCESS Successfully write data into the admin completion queue base address register.
@return EFI_DEVICE_ERROR Fail to write data into the admin completion queue base address register.
**/
EFI_STATUS
WriteNvmeAdminCompletionQueueBaseAddress (
IN NVME_CONTROLLER_PRIVATE_DATA *Private,
IN NVME_ACQ *Acq
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
EFI_STATUS Status;
UINT64 Data;
PciIo = Private->PciIo;
Data = ReadUnaligned64 ((UINT64*)Acq);
Status = PciIo->Mem.Write (
PciIo,
EfiPciIoWidthUint32,
NVME_BAR,
NVME_ACQ_OFFSET,
2,
&Data
);
if (EFI_ERROR(Status)) {
return Status;
}
DEBUG ((EFI_D_INFO, "Acq: %lxh\n", *Acq));
return EFI_SUCCESS;
}
/**
Disable the Nvm Express controller.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@return EFI_SUCCESS Successfully disable the controller.
@return EFI_DEVICE_ERROR Fail to disable the controller.
**/
EFI_STATUS
NvmeDisableController (
IN NVME_CONTROLLER_PRIVATE_DATA *Private
)
{
NVME_CC Cc;
NVME_CSTS Csts;
EFI_STATUS Status;
UINT32 Index;
UINT8 Timeout;
//
// Read Controller Configuration Register.
//
Status = ReadNvmeControllerConfiguration (Private, &Cc);
if (EFI_ERROR(Status)) {
return Status;
}
Cc.En = 0;
//
// Disable the controller.
//
Status = WriteNvmeControllerConfiguration (Private, &Cc);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Cap.To specifies max delay time in 500ms increments for Csts.Rdy to transition from 1 to 0 after
// Cc.Enable transition from 1 to 0. Loop produces a 1 millisecond delay per itteration, up to 500 * Cap.To.
//
if (Private->Cap.To == 0) {
Timeout = 1;
} else {
Timeout = Private->Cap.To;
}
for(Index = (Timeout * 500); Index != 0; --Index) {
gBS->Stall(1000);
//
// Check if the controller is initialized
//
Status = ReadNvmeControllerStatus (Private, &Csts);
if (EFI_ERROR(Status)) {
return Status;
}
if (Csts.Rdy == 0) {
break;
}
}
if (Index == 0) {
Status = EFI_DEVICE_ERROR;
REPORT_STATUS_CODE (
(EFI_ERROR_CODE | EFI_ERROR_MAJOR),
(EFI_IO_BUS_SCSI | EFI_IOB_EC_INTERFACE_ERROR)
);
}
DEBUG ((EFI_D_INFO, "NVMe controller is disabled with status [%r].\n", Status));
return Status;
}
/**
Enable the Nvm Express controller.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@return EFI_SUCCESS Successfully enable the controller.
@return EFI_DEVICE_ERROR Fail to enable the controller.
@return EFI_TIMEOUT Fail to enable the controller in given time slot.
**/
EFI_STATUS
NvmeEnableController (
IN NVME_CONTROLLER_PRIVATE_DATA *Private
)
{
NVME_CC Cc;
NVME_CSTS Csts;
EFI_STATUS Status;
UINT32 Index;
UINT8 Timeout;
//
// Enable the controller.
// CC.AMS, CC.MPS and CC.CSS are all set to 0.
//
ZeroMem (&Cc, sizeof (NVME_CC));
Cc.En = 1;
Cc.Iosqes = 6;
Cc.Iocqes = 4;
Status = WriteNvmeControllerConfiguration (Private, &Cc);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Cap.To specifies max delay time in 500ms increments for Csts.Rdy to set after
// Cc.Enable. Loop produces a 1 millisecond delay per itteration, up to 500 * Cap.To.
//
if (Private->Cap.To == 0) {
Timeout = 1;
} else {
Timeout = Private->Cap.To;
}
for(Index = (Timeout * 500); Index != 0; --Index) {
gBS->Stall(1000);
//
// Check if the controller is initialized
//
Status = ReadNvmeControllerStatus (Private, &Csts);
if (EFI_ERROR(Status)) {
return Status;
}
if (Csts.Rdy) {
break;
}
}
if (Index == 0) {
Status = EFI_TIMEOUT;
REPORT_STATUS_CODE (
(EFI_ERROR_CODE | EFI_ERROR_MAJOR),
(EFI_IO_BUS_SCSI | EFI_IOB_EC_INTERFACE_ERROR)
);
}
DEBUG ((EFI_D_INFO, "NVMe controller is enabled with status [%r].\n", Status));
return Status;
}
/**
Get identify controller data.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@param Buffer The buffer used to store the identify controller data.
@return EFI_SUCCESS Successfully get the identify controller data.
@return EFI_DEVICE_ERROR Fail to get the identify controller data.
**/
EFI_STATUS
NvmeIdentifyController (
IN NVME_CONTROLLER_PRIVATE_DATA *Private,
IN VOID *Buffer
)
{
EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket;
EFI_NVM_EXPRESS_COMMAND Command;
EFI_NVM_EXPRESS_COMPLETION Completion;
EFI_STATUS Status;
ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET));
ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND));
ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION));
Command.Cdw0.Opcode = NVME_ADMIN_IDENTIFY_CMD;
//
// According to Nvm Express 1.1 spec Figure 38, When not used, the field shall be cleared to 0h.
// For the Identify command, the Namespace Identifier is only used for the Namespace data structure.
//
Command.Nsid = 0;
CommandPacket.NvmeCmd = &Command;
CommandPacket.NvmeCompletion = &Completion;
CommandPacket.TransferBuffer = Buffer;
CommandPacket.TransferLength = sizeof (NVME_ADMIN_CONTROLLER_DATA);
CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT;
CommandPacket.QueueType = NVME_ADMIN_QUEUE;
//
// Set bit 0 (Cns bit) to 1 to identify a controller
//
Command.Cdw10 = 1;
Command.Flags = CDW10_VALID;
Status = Private->Passthru.PassThru (
&Private->Passthru,
NVME_CONTROLLER_ID,
&CommandPacket,
NULL
);
return Status;
}
/**
Get specified identify namespace data.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@param NamespaceId The specified namespace identifier.
@param Buffer The buffer used to store the identify namespace data.
@return EFI_SUCCESS Successfully get the identify namespace data.
@return EFI_DEVICE_ERROR Fail to get the identify namespace data.
**/
EFI_STATUS
NvmeIdentifyNamespace (
IN NVME_CONTROLLER_PRIVATE_DATA *Private,
IN UINT32 NamespaceId,
IN VOID *Buffer
)
{
EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket;
EFI_NVM_EXPRESS_COMMAND Command;
EFI_NVM_EXPRESS_COMPLETION Completion;
EFI_STATUS Status;
ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET));
ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND));
ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION));
CommandPacket.NvmeCmd = &Command;
CommandPacket.NvmeCompletion = &Completion;
Command.Cdw0.Opcode = NVME_ADMIN_IDENTIFY_CMD;
Command.Nsid = NamespaceId;
CommandPacket.TransferBuffer = Buffer;
CommandPacket.TransferLength = sizeof (NVME_ADMIN_NAMESPACE_DATA);
CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT;
CommandPacket.QueueType = NVME_ADMIN_QUEUE;
//
// Set bit 0 (Cns bit) to 1 to identify a namespace
//
CommandPacket.NvmeCmd->Cdw10 = 0;
CommandPacket.NvmeCmd->Flags = CDW10_VALID;
Status = Private->Passthru.PassThru (
&Private->Passthru,
NamespaceId,
&CommandPacket,
NULL
);
return Status;
}
/**
Create io completion queue.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@return EFI_SUCCESS Successfully create io completion queue.
@return EFI_DEVICE_ERROR Fail to create io completion queue.
**/
EFI_STATUS
NvmeCreateIoCompletionQueue (
IN NVME_CONTROLLER_PRIVATE_DATA *Private
)
{
EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket;
EFI_NVM_EXPRESS_COMMAND Command;
EFI_NVM_EXPRESS_COMPLETION Completion;
EFI_STATUS Status;
NVME_ADMIN_CRIOCQ CrIoCq;
UINT32 Index;
UINT16 QueueSize;
Status = EFI_SUCCESS;
Private->CreateIoQueue = TRUE;
for (Index = 1; Index < NVME_MAX_QUEUES; Index++) {
ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET));
ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND));
ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION));
ZeroMem (&CrIoCq, sizeof(NVME_ADMIN_CRIOCQ));
CommandPacket.NvmeCmd = &Command;
CommandPacket.NvmeCompletion = &Completion;
Command.Cdw0.Opcode = NVME_ADMIN_CRIOCQ_CMD;
CommandPacket.TransferBuffer = Private->CqBufferPciAddr[Index];
CommandPacket.TransferLength = EFI_PAGE_SIZE;
CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT;
CommandPacket.QueueType = NVME_ADMIN_QUEUE;
if (Index == 1) {
QueueSize = NVME_CCQ_SIZE;
} else {
if (Private->Cap.Mqes > NVME_ASYNC_CCQ_SIZE) {
QueueSize = NVME_ASYNC_CCQ_SIZE;
} else {
QueueSize = Private->Cap.Mqes;
}
}
CrIoCq.Qid = Index;
CrIoCq.Qsize = QueueSize;
CrIoCq.Pc = 1;
CopyMem (&CommandPacket.NvmeCmd->Cdw10, &CrIoCq, sizeof (NVME_ADMIN_CRIOCQ));
CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID;
Status = Private->Passthru.PassThru (
&Private->Passthru,
0,
&CommandPacket,
NULL
);
if (EFI_ERROR (Status)) {
break;
}
}
Private->CreateIoQueue = FALSE;
return Status;
}
/**
Create io submission queue.
@param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@return EFI_SUCCESS Successfully create io submission queue.
@return EFI_DEVICE_ERROR Fail to create io submission queue.
**/
EFI_STATUS
NvmeCreateIoSubmissionQueue (
IN NVME_CONTROLLER_PRIVATE_DATA *Private
)
{
EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket;
EFI_NVM_EXPRESS_COMMAND Command;
EFI_NVM_EXPRESS_COMPLETION Completion;
EFI_STATUS Status;
NVME_ADMIN_CRIOSQ CrIoSq;
UINT32 Index;
UINT16 QueueSize;
Status = EFI_SUCCESS;
Private->CreateIoQueue = TRUE;
for (Index = 1; Index < NVME_MAX_QUEUES; Index++) {
ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET));
ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND));
ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION));
ZeroMem (&CrIoSq, sizeof(NVME_ADMIN_CRIOSQ));
CommandPacket.NvmeCmd = &Command;
CommandPacket.NvmeCompletion = &Completion;
Command.Cdw0.Opcode = NVME_ADMIN_CRIOSQ_CMD;
CommandPacket.TransferBuffer = Private->SqBufferPciAddr[Index];
CommandPacket.TransferLength = EFI_PAGE_SIZE;
CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT;
CommandPacket.QueueType = NVME_ADMIN_QUEUE;
if (Index == 1) {
QueueSize = NVME_CSQ_SIZE;
} else {
if (Private->Cap.Mqes > NVME_ASYNC_CSQ_SIZE) {
QueueSize = NVME_ASYNC_CSQ_SIZE;
} else {
QueueSize = Private->Cap.Mqes;
}
}
CrIoSq.Qid = Index;
CrIoSq.Qsize = QueueSize;
CrIoSq.Pc = 1;
CrIoSq.Cqid = Index;
CrIoSq.Qprio = 0;
CopyMem (&CommandPacket.NvmeCmd->Cdw10, &CrIoSq, sizeof (NVME_ADMIN_CRIOSQ));
CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID;
Status = Private->Passthru.PassThru (
&Private->Passthru,
0,
&CommandPacket,
NULL
);
if (EFI_ERROR (Status)) {
break;
}
}
Private->CreateIoQueue = FALSE;
return Status;
}
/**
Initialize the Nvm Express controller.
@param[in] Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
@retval EFI_SUCCESS The NVM Express Controller is initialized successfully.
@retval Others A device error occurred while initializing the controller.
**/
EFI_STATUS
NvmeControllerInit (
IN NVME_CONTROLLER_PRIVATE_DATA *Private
)
{
EFI_STATUS Status;
EFI_PCI_IO_PROTOCOL *PciIo;
UINT64 Supports;
NVME_AQA Aqa;
NVME_ASQ Asq;
NVME_ACQ Acq;
UINT8 Sn[21];
UINT8 Mn[41];
//
// Save original PCI attributes and enable this controller.
//
PciIo = Private->PciIo;
Status = PciIo->Attributes (
PciIo,
EfiPciIoAttributeOperationGet,
0,
&Private->PciAttributes
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = PciIo->Attributes (
PciIo,
EfiPciIoAttributeOperationSupported,
0,
&Supports
);
if (!EFI_ERROR (Status)) {
Supports &= (UINT64)EFI_PCI_DEVICE_ENABLE;
Status = PciIo->Attributes (
PciIo,
EfiPciIoAttributeOperationEnable,
Supports,
NULL
);
}
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_INFO, "NvmeControllerInit: failed to enable controller\n"));
return Status;
}
//
// Enable 64-bit DMA support in the PCI layer.
//
Status = PciIo->Attributes (
PciIo,
EfiPciIoAttributeOperationEnable,
EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE,
NULL
);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_WARN, "NvmeControllerInit: failed to enable 64-bit DMA (%r)\n", Status));
}
//
// Read the Controller Capabilities register and verify that the NVM command set is supported
//
Status = ReadNvmeControllerCapabilities (Private, &Private->Cap);
if (EFI_ERROR (Status)) {
return Status;
}
if (Private->Cap.Css != 0x01) {
DEBUG ((EFI_D_INFO, "NvmeControllerInit: the controller doesn't support NVMe command set\n"));
return EFI_UNSUPPORTED;
}
//
// Currently the driver only supports 4k page size.
//
ASSERT ((Private->Cap.Mpsmin + 12) <= EFI_PAGE_SHIFT);
Private->Cid[0] = 0;
Private->Cid[1] = 0;
Private->Cid[2] = 0;
Private->Pt[0] = 0;
Private->Pt[1] = 0;
Private->Pt[2] = 0;
Private->SqTdbl[0].Sqt = 0;
Private->SqTdbl[1].Sqt = 0;
Private->SqTdbl[2].Sqt = 0;
Private->CqHdbl[0].Cqh = 0;
Private->CqHdbl[1].Cqh = 0;
Private->CqHdbl[2].Cqh = 0;
Private->AsyncSqHead = 0;
Status = NvmeDisableController (Private);
if (EFI_ERROR(Status)) {
return Status;
}
//
// set number of entries admin submission & completion queues.
//
Aqa.Asqs = NVME_ASQ_SIZE;
Aqa.Rsvd1 = 0;
Aqa.Acqs = NVME_ACQ_SIZE;
Aqa.Rsvd2 = 0;
//
// Address of admin submission queue.
//
Asq = (UINT64)(UINTN)(Private->BufferPciAddr) & ~0xFFF;
//
// Address of admin completion queue.
//
Acq = (UINT64)(UINTN)(Private->BufferPciAddr + EFI_PAGE_SIZE) & ~0xFFF;
//
// Address of I/O submission & completion queue.
//
ZeroMem (Private->Buffer, EFI_PAGES_TO_SIZE (6));
Private->SqBuffer[0] = (NVME_SQ *)(UINTN)(Private->Buffer);
Private->SqBufferPciAddr[0] = (NVME_SQ *)(UINTN)(Private->BufferPciAddr);
Private->CqBuffer[0] = (NVME_CQ *)(UINTN)(Private->Buffer + 1 * EFI_PAGE_SIZE);
Private->CqBufferPciAddr[0] = (NVME_CQ *)(UINTN)(Private->BufferPciAddr + 1 * EFI_PAGE_SIZE);
Private->SqBuffer[1] = (NVME_SQ *)(UINTN)(Private->Buffer + 2 * EFI_PAGE_SIZE);
Private->SqBufferPciAddr[1] = (NVME_SQ *)(UINTN)(Private->BufferPciAddr + 2 * EFI_PAGE_SIZE);
Private->CqBuffer[1] = (NVME_CQ *)(UINTN)(Private->Buffer + 3 * EFI_PAGE_SIZE);
Private->CqBufferPciAddr[1] = (NVME_CQ *)(UINTN)(Private->BufferPciAddr + 3 * EFI_PAGE_SIZE);
Private->SqBuffer[2] = (NVME_SQ *)(UINTN)(Private->Buffer + 4 * EFI_PAGE_SIZE);
Private->SqBufferPciAddr[2] = (NVME_SQ *)(UINTN)(Private->BufferPciAddr + 4 * EFI_PAGE_SIZE);
Private->CqBuffer[2] = (NVME_CQ *)(UINTN)(Private->Buffer + 5 * EFI_PAGE_SIZE);
Private->CqBufferPciAddr[2] = (NVME_CQ *)(UINTN)(Private->BufferPciAddr + 5 * EFI_PAGE_SIZE);
DEBUG ((EFI_D_INFO, "Private->Buffer = [%016X]\n", (UINT64)(UINTN)Private->Buffer));
DEBUG ((EFI_D_INFO, "Admin Submission Queue size (Aqa.Asqs) = [%08X]\n", Aqa.Asqs));
DEBUG ((EFI_D_INFO, "Admin Completion Queue size (Aqa.Acqs) = [%08X]\n", Aqa.Acqs));
DEBUG ((EFI_D_INFO, "Admin Submission Queue (SqBuffer[0]) = [%016X]\n", Private->SqBuffer[0]));
DEBUG ((EFI_D_INFO, "Admin Completion Queue (CqBuffer[0]) = [%016X]\n", Private->CqBuffer[0]));
DEBUG ((EFI_D_INFO, "Sync I/O Submission Queue (SqBuffer[1]) = [%016X]\n", Private->SqBuffer[1]));
DEBUG ((EFI_D_INFO, "Sync I/O Completion Queue (CqBuffer[1]) = [%016X]\n", Private->CqBuffer[1]));
DEBUG ((EFI_D_INFO, "Async I/O Submission Queue (SqBuffer[2]) = [%016X]\n", Private->SqBuffer[2]));
DEBUG ((EFI_D_INFO, "Async I/O Completion Queue (CqBuffer[2]) = [%016X]\n", Private->CqBuffer[2]));
//
// Program admin queue attributes.
//
Status = WriteNvmeAdminQueueAttributes (Private, &Aqa);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Program admin submission queue address.
//
Status = WriteNvmeAdminSubmissionQueueBaseAddress (Private, &Asq);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Program admin completion queue address.
//
Status = WriteNvmeAdminCompletionQueueBaseAddress (Private, &Acq);
if (EFI_ERROR(Status)) {
return Status;
}
Status = NvmeEnableController (Private);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Allocate buffer for Identify Controller data
//
if (Private->ControllerData == NULL) {
Private->ControllerData = (NVME_ADMIN_CONTROLLER_DATA *)AllocateZeroPool (sizeof(NVME_ADMIN_CONTROLLER_DATA));
if (Private->ControllerData == NULL) {
return EFI_OUT_OF_RESOURCES;
}
}
//
// Get current Identify Controller Data
//
Status = NvmeIdentifyController (Private, Private->ControllerData);
if (EFI_ERROR(Status)) {
FreePool(Private->ControllerData);
Private->ControllerData = NULL;
return EFI_NOT_FOUND;
}
//
// Dump NvmExpress Identify Controller Data
//
CopyMem (Sn, Private->ControllerData->Sn, sizeof (Private->ControllerData->Sn));
Sn[20] = 0;
CopyMem (Mn, Private->ControllerData->Mn, sizeof (Private->ControllerData->Mn));
Mn[40] = 0;
DEBUG ((EFI_D_INFO, " == NVME IDENTIFY CONTROLLER DATA ==\n"));
DEBUG ((EFI_D_INFO, " PCI VID : 0x%x\n", Private->ControllerData->Vid));
DEBUG ((EFI_D_INFO, " PCI SSVID : 0x%x\n", Private->ControllerData->Ssvid));
DEBUG ((EFI_D_INFO, " SN : %a\n", Sn));
DEBUG ((EFI_D_INFO, " MN : %a\n", Mn));
DEBUG ((EFI_D_INFO, " FR : 0x%x\n", *((UINT64*)Private->ControllerData->Fr)));
DEBUG ((DEBUG_INFO, " TNVMCAP (high 8-byte) : 0x%lx\n", *((UINT64*)(Private->ControllerData->Tnvmcap + 8))));
DEBUG ((DEBUG_INFO, " TNVMCAP (low 8-byte) : 0x%lx\n", *((UINT64*)Private->ControllerData->Tnvmcap)));
DEBUG ((EFI_D_INFO, " RAB : 0x%x\n", Private->ControllerData->Rab));
DEBUG ((EFI_D_INFO, " IEEE : 0x%x\n", *(UINT32*)Private->ControllerData->Ieee_oui));
DEBUG ((EFI_D_INFO, " AERL : 0x%x\n", Private->ControllerData->Aerl));
DEBUG ((EFI_D_INFO, " SQES : 0x%x\n", Private->ControllerData->Sqes));
DEBUG ((EFI_D_INFO, " CQES : 0x%x\n", Private->ControllerData->Cqes));
DEBUG ((EFI_D_INFO, " NN : 0x%x\n", Private->ControllerData->Nn));
//
// Create two I/O completion queues.
// One for blocking I/O, one for non-blocking I/O.
//
Status = NvmeCreateIoCompletionQueue (Private);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Create two I/O Submission queues.
// One for blocking I/O, one for non-blocking I/O.
//
Status = NvmeCreateIoSubmissionQueue (Private);
return Status;
}
/**
This routine is called to properly shutdown the Nvm Express controller per NVMe spec.
@param[in] ResetType The type of reset to perform.
@param[in] ResetStatus The status code for the reset.
@param[in] DataSize The size, in bytes, of ResetData.
@param[in] ResetData For a ResetType of EfiResetCold, EfiResetWarm, or
EfiResetShutdown the data buffer starts with a Null-terminated
string, optionally followed by additional binary data.
The string is a description that the caller may use to further
indicate the reason for the system reset.
For a ResetType of EfiResetPlatformSpecific the data buffer
also starts with a Null-terminated string that is followed
by an EFI_GUID that describes the specific type of reset to perform.
**/
VOID
EFIAPI
NvmeShutdownAllControllers (
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN VOID *ResetData OPTIONAL
)
{
EFI_STATUS Status;
EFI_HANDLE *Handles;
UINTN HandleCount;
UINTN HandleIndex;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfos;
UINTN OpenInfoCount;
UINTN OpenInfoIndex;
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *NvmePassThru;
NVME_CC Cc;
NVME_CSTS Csts;
UINTN Index;
NVME_CONTROLLER_PRIVATE_DATA *Private;
Status = gBS->LocateHandleBuffer (
ByProtocol,
&gEfiPciIoProtocolGuid,
NULL,
&HandleCount,
&Handles
);
if (EFI_ERROR (Status)) {
HandleCount = 0;
}
for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
Status = gBS->OpenProtocolInformation (
Handles[HandleIndex],
&gEfiPciIoProtocolGuid,
&OpenInfos,
&OpenInfoCount
);
if (EFI_ERROR (Status)) {
continue;
}
for (OpenInfoIndex = 0; OpenInfoIndex < OpenInfoCount; OpenInfoIndex++) {
//
// Find all the NVME controller managed by this driver.
// gImageHandle equals to DriverBinding handle for this driver.
//
if (((OpenInfos[OpenInfoIndex].Attributes & EFI_OPEN_PROTOCOL_BY_DRIVER) != 0) &&
(OpenInfos[OpenInfoIndex].AgentHandle == gImageHandle)) {
Status = gBS->OpenProtocol (
OpenInfos[OpenInfoIndex].ControllerHandle,
&gEfiNvmExpressPassThruProtocolGuid,
(VOID **) &NvmePassThru,
NULL,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
continue;
}
Private = NVME_CONTROLLER_PRIVATE_DATA_FROM_PASS_THRU (NvmePassThru);
//
// Read Controller Configuration Register.
//
Status = ReadNvmeControllerConfiguration (Private, &Cc);
if (EFI_ERROR(Status)) {
continue;
}
//
// The host should set the Shutdown Notification (CC.SHN) field to 01b
// to indicate a normal shutdown operation.
//
Cc.Shn = NVME_CC_SHN_NORMAL_SHUTDOWN;
Status = WriteNvmeControllerConfiguration (Private, &Cc);
if (EFI_ERROR(Status)) {
continue;
}
//
// The controller indicates when shutdown processing is completed by updating the
// Shutdown Status (CSTS.SHST) field to 10b.
// Wait up to 45 seconds (break down to 4500 x 10ms) for the shutdown to complete.
//
for (Index = 0; Index < NVME_SHUTDOWN_PROCESS_TIMEOUT * 100; Index++) {
Status = ReadNvmeControllerStatus (Private, &Csts);
if (!EFI_ERROR(Status) && (Csts.Shst == NVME_CSTS_SHST_SHUTDOWN_COMPLETED)) {
DEBUG((DEBUG_INFO, "NvmeShutdownController: shutdown processing is completed after %dms.\n", Index * 10));
break;
}
//
// Stall for 10ms
//
gBS->Stall (10 * 1000);
}
if (Index == NVME_SHUTDOWN_PROCESS_TIMEOUT * 100) {
DEBUG((DEBUG_ERROR, "NvmeShutdownController: shutdown processing is timed out\n"));
}
}
}
}
}
/**
Register the shutdown notification through the ResetNotification protocol.
Register the shutdown notification when mNvmeControllerNumber increased from 0 to 1.
**/
VOID
NvmeRegisterShutdownNotification (
VOID
)
{
EFI_STATUS Status;
EFI_RESET_NOTIFICATION_PROTOCOL *ResetNotify;
mNvmeControllerNumber++;
if (mNvmeControllerNumber == 1) {
Status = gBS->LocateProtocol (&gEfiResetNotificationProtocolGuid, NULL, (VOID **) &ResetNotify);
if (!EFI_ERROR (Status)) {
Status = ResetNotify->RegisterResetNotify (ResetNotify, NvmeShutdownAllControllers);
ASSERT_EFI_ERROR (Status);
} else {
DEBUG ((DEBUG_WARN, "NVME: ResetNotification absent! Shutdown notification cannot be performed!\n"));
}
}
}
/**
Unregister the shutdown notification through the ResetNotification protocol.
Unregister the shutdown notification when mNvmeControllerNumber decreased from 1 to 0.
**/
VOID
NvmeUnregisterShutdownNotification (
VOID
)
{
EFI_STATUS Status;
EFI_RESET_NOTIFICATION_PROTOCOL *ResetNotify;
mNvmeControllerNumber--;
if (mNvmeControllerNumber == 0) {
Status = gBS->LocateProtocol (&gEfiResetNotificationProtocolGuid, NULL, (VOID **) &ResetNotify);
if (!EFI_ERROR (Status)) {
Status = ResetNotify->UnregisterResetNotify (ResetNotify, NvmeShutdownAllControllers);
ASSERT_EFI_ERROR (Status);
}
}
}