audk/MdePkg/Library/BasePrintLib/PrintLibInternal.c

877 lines
28 KiB
C

/** @file
Print Library internal worker functions.
Copyright (c) 2006 - 2008, Intel Corporation<BR>
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "PrintLibInternal.h"
#define WARNING_STATUS_NUMBER 4
#define ERROR_STATUS_NUMBER 24
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 mHexStr[] = {'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'};
GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 *mStatusString[] = {
"Success", // RETURN_SUCCESS = 0
"Warning Unknown Glyph", // RETURN_WARN_UNKNOWN_GLYPH = 1
"Warning Delete Failure", // RETURN_WARN_DELETE_FAILURE = 2
"Warning Write Failure", // RETURN_WARN_WRITE_FAILURE = 3
"Warning Buffer Too Small", // RETURN_WARN_BUFFER_TOO_SMALL = 4
"Load Error", // RETURN_LOAD_ERROR = 1 | MAX_BIT
"Invalid Parameter", // RETURN_INVALID_PARAMETER = 2 | MAX_BIT
"Unsupported", // RETURN_UNSUPPORTED = 3 | MAX_BIT
"Bad Buffer Size", // RETURN_BAD_BUFFER_SIZE = 4 | MAX_BIT
"Buffer Too Small", // RETURN_BUFFER_TOO_SMALL, = 5 | MAX_BIT
"Not Ready", // RETURN_NOT_READY = 6 | MAX_BIT
"Device Error", // RETURN_DEVICE_ERROR = 7 | MAX_BIT
"Write Protected", // RETURN_WRITE_PROTECTED = 8 | MAX_BIT
"Out of Resources", // RETURN_OUT_OF_RESOURCES = 9 | MAX_BIT
"Volume Corrupt", // RETURN_VOLUME_CORRUPTED = 10 | MAX_BIT
"Volume Full", // RETURN_VOLUME_FULL = 11 | MAX_BIT
"No Media", // RETURN_NO_MEDIA = 12 | MAX_BIT
"Media changed", // RETURN_MEDIA_CHANGED = 13 | MAX_BIT
"Not Found", // RETURN_NOT_FOUND = 14 | MAX_BIT
"Access Denied", // RETURN_ACCESS_DENIED = 15 | MAX_BIT
"No Response", // RETURN_NO_RESPONSE = 16 | MAX_BIT
"No mapping", // RETURN_NO_MAPPING = 17 | MAX_BIT
"Time out", // RETURN_TIMEOUT = 18 | MAX_BIT
"Not started", // RETURN_NOT_STARTED = 19 | MAX_BIT
"Already started", // RETURN_ALREADY_STARTED = 20 | MAX_BIT
"Aborted", // RETURN_ABORTED = 21 | MAX_BIT
"ICMP Error", // RETURN_ICMP_ERROR = 22 | MAX_BIT
"TFTP Error", // RETURN_TFTP_ERROR = 23 | MAX_BIT
"Protocol Error" // RETURN_PROTOCOL_ERROR = 24 | MAX_BIT
};
/**
Internal function that places the character into the Buffer.
Internal function that places ASCII or Unicode character into the Buffer.
@param Buffer Buffer to place the Unicode or ASCII string.
@param EndBuffer The end of the input Buffer. No characters will be
placed after that.
@param Length Count of character to be placed into Buffer.
(Negative value indicates no buffer fill.)
@param Character Character to be placed into Buffer.
@param Increment Character increment in Buffer.
@return Buffer Buffer filled with the input Character.
**/
CHAR8 *
BasePrintLibFillBuffer (
OUT CHAR8 *Buffer,
IN CHAR8 *EndBuffer,
IN INTN Length,
IN UINTN Character,
IN INTN Increment
)
{
INTN Index;
for (Index = 0; Index < Length && Buffer < EndBuffer; Index++) {
*Buffer = (CHAR8) Character;
if (Increment != 1) {
*(Buffer + 1) = (CHAR8)(Character >> 8);
}
Buffer += Increment;
}
return Buffer;
}
/**
Internal function that convert a number to a string in Buffer.
Print worker function that converts a decimal or hexadecimal number to an ASCII string in Buffer.
@param Buffer Location to place the ASCII string of Value.
@param Value Value to convert to a Decimal or Hexadecimal string in Buffer.
@param Radix Radix of the value
@return A pointer to the end of buffer filled with ASCII string.
**/
CHAR8 *
BasePrintLibValueToString (
IN OUT CHAR8 *Buffer,
IN INT64 Value,
IN UINTN Radix
)
{
UINT32 Remainder;
//
// Loop to convert one digit at a time in reverse order
//
*Buffer = 0;
do {
Value = (INT64)DivU64x32Remainder ((UINT64)Value, (UINT32)Radix, &Remainder);
*(++Buffer) = mHexStr[Remainder];
} while (Value != 0);
//
// Return pointer of the end of filled buffer.
//
return Buffer;
}
/**
Internal function that converts a decimal value to a Null-terminated string.
Converts the decimal number specified by Value to a Null-terminated
string specified by Buffer containing at most Width characters.
If Width is 0 then a width of MAXIMUM_VALUE_CHARACTERS is assumed.
The total number of characters placed in Buffer is returned.
If the conversion contains more than Width characters, then only the first
Width characters are returned, and the total number of characters
required to perform the conversion is returned.
Additional conversion parameters are specified in Flags.
The Flags bit LEFT_JUSTIFY is always ignored.
All conversions are left justified in Buffer.
If Width is 0, PREFIX_ZERO is ignored in Flags.
If COMMA_TYPE is set in Flags, then PREFIX_ZERO is ignored in Flags, and commas
are inserted every 3rd digit starting from the right.
If Value is < 0, then the fist character in Buffer is a '-'.
If PREFIX_ZERO is set in Flags and PREFIX_ZERO is not being ignored,
then Buffer is padded with '0' characters so the combination of the optional '-'
sign character, '0' characters, digit characters for Value, and the Null-terminator
add up to Width characters.
If Buffer is NULL, then ASSERT().
If unsupported bits are set in Flags, then ASSERT().
If Width >= MAXIMUM_VALUE_CHARACTERS, then ASSERT()
@param Buffer Pointer to the output buffer for the produced Null-terminated
string.
@param Flags The bitmask of flags that specify left justification, zero pad,
and commas.
@param Value The 64-bit signed value to convert to a string.
@param Width The maximum number of characters to place in Buffer, not including
the Null-terminator.
@param Increment Character increment in Buffer.
@return Total number of characters required to perform the conversion.
**/
UINTN
BasePrintLibConvertValueToString (
IN OUT CHAR8 *Buffer,
IN UINTN Flags,
IN INT64 Value,
IN UINTN Width,
IN UINTN Increment
)
{
CHAR8 *OriginalBuffer;
CHAR8 *EndBuffer;
CHAR8 ValueBuffer[MAXIMUM_VALUE_CHARACTERS];
CHAR8 *ValueBufferPtr;
UINTN Count;
UINTN Digits;
UINTN Index;
UINTN Radix;
//
// Make sure Buffer is not NULL and Width < MAXIMUM
//
ASSERT (Buffer != NULL);
ASSERT (Width < MAXIMUM_VALUE_CHARACTERS);
//
// Make sure Flags can only contain supported bits.
//
ASSERT ((Flags & ~(LEFT_JUSTIFY | COMMA_TYPE | PREFIX_ZERO | RADIX_HEX)) == 0);
//
// If both COMMA_TYPE and HEX_RADIX are set, then ASSERT ()
//
ASSERT (((Flags & COMMA_TYPE) == 0) || ((Flags & RADIX_HEX) == 0));
OriginalBuffer = Buffer;
//
// Width is 0 or COMMA_TYPE is set, PREFIX_ZERO is ignored.
//
if (Width == 0 || (Flags & COMMA_TYPE) != 0) {
Flags &= (~PREFIX_ZERO);
}
//
// If Width is 0 then a width of MAXIMUM_VALUE_CHARACTERS is assumed.
//
if (Width == 0) {
Width = MAXIMUM_VALUE_CHARACTERS - 1;
}
//
// Set the tag for the end of the input Buffer.
//
EndBuffer = Buffer + Width * Increment;
//
// Convert decimal negative
//
if ((Value < 0) && ((Flags & RADIX_HEX) == 0)) {
Value = -Value;
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, 1, '-', Increment);
Width--;
}
//
// Count the length of the value string.
//
Radix = ((Flags & RADIX_HEX) == 0)? 10 : 16;
ValueBufferPtr = BasePrintLibValueToString (ValueBuffer, Value, Radix);
Count = ValueBufferPtr - ValueBuffer;
//
// Append Zero
//
if ((Flags & PREFIX_ZERO) != 0) {
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, Width - Count, '0', Increment);
}
//
// Print Comma type for every 3 characters
//
Digits = Count % 3;
if (Digits != 0) {
Digits = 3 - Digits;
}
for (Index = 0; Index < Count; Index++) {
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, 1, *ValueBufferPtr--, Increment);
if ((Flags & COMMA_TYPE) != 0) {
Digits++;
if (Digits == 3) {
Digits = 0;
if ((Index + 1) < Count) {
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, 1, ',', Increment);
}
}
}
}
//
// Print Null-terminator
//
BasePrintLibFillBuffer (Buffer, EndBuffer + Increment, 1, 0, Increment);
return ((Buffer - OriginalBuffer) / Increment);
}
/**
Worker function that produces a Null-terminated string in an output buffer
based on a Null-terminated format string and a VA_LIST argument list.
VSPrint function to process format and place the results in Buffer. Since a
VA_LIST is used this routine allows the nesting of Vararg routines. Thus
this is the main print working routine.
@param Buffer Character buffer to print the results of the parsing
of Format into.
@param BufferSize Maximum number of characters to put into buffer.
@param Flags Initial flags value.
Can only have FORMAT_UNICODE and OUTPUT_UNICODE set.
@param Format Null-terminated format string.
@param VaListMarker VA_LIST style variable argument list consumed by processing Format.
@param BaseListMarker BASE_LIST style variable argument list consumed by processing Format.
@return Number of characters printed not including the Null-terminator.
**/
UINTN
BasePrintLibSPrintMarker (
OUT CHAR8 *Buffer,
IN UINTN BufferSize,
IN UINTN Flags,
IN CONST CHAR8 *Format,
IN VA_LIST VaListMarker, OPTIONAL
IN BASE_LIST BaseListMarker OPTIONAL
)
{
CHAR8 *OriginalBuffer;
CHAR8 *EndBuffer;
CHAR8 ValueBuffer[MAXIMUM_VALUE_CHARACTERS];
UINTN BytesPerOutputCharacter;
UINTN BytesPerFormatCharacter;
UINTN FormatMask;
UINTN FormatCharacter;
UINTN Width;
UINTN Precision;
INT64 Value;
CONST CHAR8 *ArgumentString;
UINTN Character;
GUID *TmpGuid;
TIME *TmpTime;
UINTN Count;
UINTN ArgumentMask;
INTN BytesPerArgumentCharacter;
UINTN ArgumentCharacter;
BOOLEAN Done;
UINTN Index;
CHAR8 Prefix;
BOOLEAN ZeroPad;
BOOLEAN Comma;
UINTN Digits;
UINTN Radix;
RETURN_STATUS Status;
if (BufferSize == 0) {
return 0;
}
ASSERT (Buffer != NULL);
if ((Flags & OUTPUT_UNICODE) != 0) {
BytesPerOutputCharacter = 2;
} else {
BytesPerOutputCharacter = 1;
}
//
// Reserve space for the Null terminator.
//
BufferSize--;
OriginalBuffer = Buffer;
//
// Set the tag for the end of the input Buffer.
//
EndBuffer = Buffer + BufferSize * BytesPerOutputCharacter;
if ((Flags & FORMAT_UNICODE) != 0) {
//
// Make sure format string cannot contain more than PcdMaximumUnicodeStringLength
// Unicode characters if PcdMaximumUnicodeStringLength is not zero.
//
ASSERT (StrSize ((CHAR16 *) Format) != 0);
BytesPerFormatCharacter = 2;
FormatMask = 0xffff;
} else {
//
// Make sure format string cannot contain more than PcdMaximumAsciiStringLength
// Ascii characters if PcdMaximumAsciiStringLength is not zero.
//
ASSERT (AsciiStrSize (Format) != 0);
BytesPerFormatCharacter = 1;
FormatMask = 0xff;
}
//
// Get the first character from the format string
//
FormatCharacter = ((*Format & 0xff) | (*(Format + 1) << 8)) & FormatMask;
//
// Loop until the end of the format string is reached or the output buffer is full
//
while (FormatCharacter != 0 && Buffer < EndBuffer) {
//
// Clear all the flag bits except those that may have been passed in
//
Flags &= (OUTPUT_UNICODE | FORMAT_UNICODE);
//
// Set the default width to zero, and the default precision to 1
//
Width = 0;
Precision = 1;
Prefix = 0;
Comma = FALSE;
ZeroPad = FALSE;
Count = 0;
Digits = 0;
switch (FormatCharacter) {
case '%':
//
// Parse Flags and Width
//
for (Done = FALSE; !Done; ) {
Format += BytesPerFormatCharacter;
FormatCharacter = ((*Format & 0xff) | (*(Format + 1) << 8)) & FormatMask;
switch (FormatCharacter) {
case '.':
Flags |= PRECISION;
break;
case '-':
Flags |= LEFT_JUSTIFY;
break;
case '+':
Flags |= PREFIX_SIGN;
break;
case ' ':
Flags |= PREFIX_BLANK;
break;
case ',':
Flags |= COMMA_TYPE;
break;
case 'L':
case 'l':
Flags |= LONG_TYPE;
break;
case '*':
if ((Flags & PRECISION) == 0) {
Flags |= PAD_TO_WIDTH;
if (BaseListMarker == NULL) {
Width = VA_ARG (VaListMarker, UINTN);
} else {
Width = BASE_ARG (BaseListMarker, UINTN);
}
} else {
if (BaseListMarker == NULL) {
Precision = VA_ARG (VaListMarker, UINTN);
} else {
Precision = BASE_ARG (BaseListMarker, UINTN);
}
}
break;
case '0':
if ((Flags & PRECISION) == 0) {
Flags |= PREFIX_ZERO;
}
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
for (Count = 0; ((FormatCharacter >= '0') && (FormatCharacter <= '9')); ){
Count = (Count * 10) + FormatCharacter - '0';
Format += BytesPerFormatCharacter;
FormatCharacter = ((*Format & 0xff) | (*(Format + 1) << 8)) & FormatMask;
}
Format -= BytesPerFormatCharacter;
if ((Flags & PRECISION) == 0) {
Flags |= PAD_TO_WIDTH;
Width = Count;
} else {
Precision = Count;
}
break;
case '\0':
//
// Make no output if Format string terminates unexpectedly when
// looking up for flag, width, precision and type.
//
Format -= BytesPerFormatCharacter;
Precision = 0;
//
// break skipped on purpose.
//
default:
Done = TRUE;
break;
}
}
//
// Handle each argument type
//
switch (FormatCharacter) {
case 'p':
//
// Flag space, +, 0, L & l are invalid for type p.
//
Flags &= ~(PREFIX_BLANK | PREFIX_SIGN | PREFIX_ZERO | LONG_TYPE);
if (sizeof (VOID *) > 4) {
Flags |= LONG_TYPE;
}
case 'X':
Flags |= PREFIX_ZERO;
//
// break skipped on purpose
//
case 'x':
Flags |= RADIX_HEX;
//
// break skipped on purpose
//
case 'd':
if ((Flags & LONG_TYPE) == 0) {
//
// 'd','x', and 'X' that are not preceded by 'l' or 'L' are assumed to be type "int".
// This assumption is made so the format string definition is compatible with the ANSI C
// Specification for formatted strings. It is recommended that the Base Types be used
// everywhere, but in this one case, compliance with ANSI C is more important, and
// provides an implementation that is compatible with that largest possible set of CPU
// architectures. This is why the type "int" is used in this one case.
//
if (BaseListMarker == NULL) {
Value = VA_ARG (VaListMarker, int);
} else {
Value = BASE_ARG (BaseListMarker, int);
}
} else {
if (BaseListMarker == NULL) {
Value = VA_ARG (VaListMarker, INT64);
} else {
Value = BASE_ARG (BaseListMarker, INT64);
}
}
if ((Flags & PREFIX_BLANK) != 0) {
Prefix = ' ';
}
if ((Flags & PREFIX_SIGN) != 0) {
Prefix = '+';
}
if ((Flags & COMMA_TYPE) != 0) {
Comma = TRUE;
}
if ((Flags & RADIX_HEX) == 0) {
Radix = 10;
if (Comma) {
Flags &= (~PREFIX_ZERO);
Precision = 1;
}
if (Value < 0) {
Flags |= PREFIX_SIGN;
Prefix = '-';
Value = -Value;
}
} else {
Radix = 16;
Comma = FALSE;
if ((Flags & LONG_TYPE) == 0 && Value < 0) {
//
// 'd','x', and 'X' that are not preceded by 'l' or 'L' are assumed to be type "int".
// This assumption is made so the format string definition is compatible with the ANSI C
// Specification for formatted strings. It is recommended that the Base Types be used
// everywhere, but in this one case, compliance with ANSI C is more important, and
// provides an implementation that is compatible with that largest possible set of CPU
// architectures. This is why the type "unsigned int" is used in this one case.
//
Value = (unsigned int)Value;
}
}
//
// Convert Value to a reversed string
//
Count = BasePrintLibValueToString (ValueBuffer, Value, Radix) - ValueBuffer;
if (Value == 0 && Precision == 0) {
Count = 0;
}
ArgumentString = (CHAR8 *)ValueBuffer + Count;
Digits = Count % 3;
if (Digits != 0) {
Digits = 3 - Digits;
}
if (Comma && Count != 0) {
Count += ((Count - 1) / 3);
}
if (Prefix != 0) {
Count++;
Precision++;
}
Flags |= ARGUMENT_REVERSED;
ZeroPad = TRUE;
if ((Flags & PREFIX_ZERO) != 0) {
if ((Flags & LEFT_JUSTIFY) == 0) {
if ((Flags & PAD_TO_WIDTH) != 0) {
if ((Flags & PRECISION) == 0) {
Precision = Width;
}
}
}
}
break;
case 's':
case 'S':
Flags |= ARGUMENT_UNICODE;
//
// break skipped on purpose
//
case 'a':
if (BaseListMarker == NULL) {
ArgumentString = VA_ARG (VaListMarker, CHAR8 *);
} else {
ArgumentString = BASE_ARG (BaseListMarker, CHAR8 *);
}
if (ArgumentString == NULL) {
Flags &= (~ARGUMENT_UNICODE);
ArgumentString = "<null string>";
}
//
// Set the default precision for string to be zero if not specified.
//
if ((Flags & PRECISION) == 0) {
Precision = 0;
}
break;
case 'c':
if (BaseListMarker == NULL) {
Character = VA_ARG (VaListMarker, UINTN) & 0xffff;
} else {
Character = BASE_ARG (BaseListMarker, UINTN) & 0xffff;
}
ArgumentString = (CHAR8 *)&Character;
Flags |= ARGUMENT_UNICODE;
break;
case 'g':
if (BaseListMarker == NULL) {
TmpGuid = VA_ARG (VaListMarker, GUID *);
} else {
TmpGuid = BASE_ARG (BaseListMarker, GUID *);
}
if (TmpGuid == NULL) {
ArgumentString = "<null guid>";
} else {
BasePrintLibSPrint (
ValueBuffer,
MAXIMUM_VALUE_CHARACTERS,
0,
"%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
TmpGuid->Data1,
TmpGuid->Data2,
TmpGuid->Data3,
TmpGuid->Data4[0],
TmpGuid->Data4[1],
TmpGuid->Data4[2],
TmpGuid->Data4[3],
TmpGuid->Data4[4],
TmpGuid->Data4[5],
TmpGuid->Data4[6],
TmpGuid->Data4[7]
);
ArgumentString = ValueBuffer;
}
break;
case 't':
if (BaseListMarker == NULL) {
TmpTime = VA_ARG (VaListMarker, TIME *);
} else {
TmpTime = BASE_ARG (BaseListMarker, TIME *);
}
if (TmpTime == NULL) {
ArgumentString = "<null time>";
} else {
BasePrintLibSPrint (
ValueBuffer,
MAXIMUM_VALUE_CHARACTERS,
0,
"%02d/%02d/%04d %02d:%02d",
TmpTime->Month,
TmpTime->Day,
TmpTime->Year,
TmpTime->Hour,
TmpTime->Minute
);
ArgumentString = ValueBuffer;
}
break;
case 'r':
if (BaseListMarker == NULL) {
Status = VA_ARG (VaListMarker, RETURN_STATUS);
} else {
Status = BASE_ARG (BaseListMarker, RETURN_STATUS);
}
ArgumentString = ValueBuffer;
if (RETURN_ERROR (Status)) {
//
// Clear error bit
//
Index = Status & ~MAX_BIT;
if (Index > 0 && Index <= ERROR_STATUS_NUMBER) {
ArgumentString = mStatusString [Index + WARNING_STATUS_NUMBER];
}
} else {
Index = Status;
if (Index <= WARNING_STATUS_NUMBER) {
ArgumentString = mStatusString [Index];
}
}
if (ArgumentString == ValueBuffer) {
BasePrintLibSPrint ((CHAR8 *) ValueBuffer, MAXIMUM_VALUE_CHARACTERS, 0, "%08X", Status);
}
break;
case '\n':
ArgumentString = "\n\r";
break;
case '%':
default:
//
// if the type is '%' or unknown, then print it to the screen
//
ArgumentString = (CHAR8 *)&FormatCharacter;
Flags |= ARGUMENT_UNICODE;
break;
}
break;
case '\n':
ArgumentString = "\n\r";
break;
default:
ArgumentString = (CHAR8 *)&FormatCharacter;
Flags |= ARGUMENT_UNICODE;
break;
}
//
// Retrieve the ArgumentString attriubutes
//
if ((Flags & ARGUMENT_UNICODE) != 0) {
ArgumentMask = 0xffff;
BytesPerArgumentCharacter = 2;
} else {
ArgumentMask = 0xff;
BytesPerArgumentCharacter = 1;
}
if ((Flags & ARGUMENT_REVERSED) != 0) {
BytesPerArgumentCharacter = -BytesPerArgumentCharacter;
} else {
//
// Compute the number of characters in ArgumentString and store it in Count
// ArgumentString is either null-terminated, or it contains Precision characters
//
for (Count = 0; Count < Precision || ((Flags & PRECISION) == 0); Count++) {
ArgumentCharacter = ((ArgumentString[Count * BytesPerArgumentCharacter] & 0xff) | ((ArgumentString[Count * BytesPerArgumentCharacter + 1]) << 8)) & ArgumentMask;
if (ArgumentCharacter == 0) {
break;
}
}
}
if (Precision < Count) {
Precision = Count;
}
//
// Pad before the string
//
if ((Flags & (PAD_TO_WIDTH | LEFT_JUSTIFY)) == (PAD_TO_WIDTH)) {
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, Width - Precision, ' ', BytesPerOutputCharacter);
}
if (ZeroPad) {
if (Prefix != 0) {
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, 1, Prefix, BytesPerOutputCharacter);
}
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, Precision - Count, '0', BytesPerOutputCharacter);
} else {
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, Precision - Count, ' ', BytesPerOutputCharacter);
if (Prefix != 0) {
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, 1, Prefix, BytesPerOutputCharacter);
}
}
//
// Output the Prefix character if it is present
//
Index = 0;
if (Prefix != 0) {
Index++;
}
//
// Copy the string into the output buffer performing the required type conversions
//
while (Index < Count) {
ArgumentCharacter = ((*ArgumentString & 0xff) | (*(ArgumentString + 1) << 8)) & ArgumentMask;
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, 1, ArgumentCharacter, BytesPerOutputCharacter);
ArgumentString += BytesPerArgumentCharacter;
Index++;
if (Comma) {
Digits++;
if (Digits == 3) {
Digits = 0;
Index++;
if (Index < Count) {
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, 1, ',', BytesPerOutputCharacter);
}
}
}
}
//
// Pad after the string
//
if ((Flags & (PAD_TO_WIDTH | LEFT_JUSTIFY)) == (PAD_TO_WIDTH | LEFT_JUSTIFY)) {
Buffer = BasePrintLibFillBuffer (Buffer, EndBuffer, Width - Precision, ' ', BytesPerOutputCharacter);
}
//
// Get the next character from the format string
//
Format += BytesPerFormatCharacter;
//
// Get the next character from the format string
//
FormatCharacter = ((*Format & 0xff) | (*(Format + 1) << 8)) & FormatMask;
}
//
// Null terminate the Unicode or ASCII string
//
BasePrintLibFillBuffer (Buffer, EndBuffer + BytesPerOutputCharacter, 1, 0, BytesPerOutputCharacter);
//
// Make sure output buffer cannot contain more than PcdMaximumUnicodeStringLength
// Unicode characters if PcdMaximumUnicodeStringLength is not zero.
//
ASSERT ((((Flags & OUTPUT_UNICODE) == 0)) || (StrSize ((CHAR16 *) OriginalBuffer) != 0));
//
// Make sure output buffer cannot contain more than PcdMaximumAsciiStringLength
// ASCII characters if PcdMaximumAsciiStringLength is not zero.
//
ASSERT ((((Flags & OUTPUT_UNICODE) != 0)) || (AsciiStrSize (OriginalBuffer) != 0));
return ((Buffer - OriginalBuffer) / BytesPerOutputCharacter);
}
/**
Worker function that produces a Null-terminated string in an output buffer
based on a Null-terminated format string and variable argument list.
VSPrint function to process format and place the results in Buffer. Since a
VA_LIST is used this routine allows the nesting of Vararg routines. Thus
this is the main print working routine
@param StartOfBuffer Character buffer to print the results of the parsing
of Format into.
@param BufferSize Maximum number of characters to put into buffer.
Zero means no limit.
@param Flags Initial flags value.
Can only have FORMAT_UNICODE and OUTPUT_UNICODE set
@param FormatString Null-terminated format string.
@param ... The variable argument list.
@return Number of characters printed.
**/
UINTN
BasePrintLibSPrint (
OUT CHAR8 *StartOfBuffer,
IN UINTN BufferSize,
IN UINTN Flags,
IN CONST CHAR8 *FormatString,
...
)
{
VA_LIST Marker;
VA_START (Marker, FormatString);
return BasePrintLibSPrintMarker (StartOfBuffer, BufferSize, Flags, FormatString, Marker, NULL);
}