audk/OvmfPkg/Csm/LegacyBiosDxe/Thunk.c

420 lines
13 KiB
C

/** @file
Call into 16-bit BIOS code, Use AsmThunk16 function of BaseLib.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "LegacyBiosInterface.h"
THUNK_CONTEXT mThunkContext;
/**
Sets the counter value for Timer #0 in a legacy 8254 timer.
@param Count - The 16-bit counter value to program into Timer #0 of the legacy 8254 timer.
**/
VOID
SetPitCount (
IN UINT16 Count
)
{
IoWrite8 (TIMER_CONTROL_PORT, TIMER0_CONTROL_WORD);
IoWrite8 (TIMER0_COUNT_PORT, (UINT8) (Count & 0xFF));
IoWrite8 (TIMER0_COUNT_PORT, (UINT8) ((Count>>8) & 0xFF));
}
/**
Thunk to 16-bit real mode and execute a software interrupt with a vector
of BiosInt. Regs will contain the 16-bit register context on entry and
exit.
@param This Protocol instance pointer.
@param BiosInt Processor interrupt vector to invoke
@param Regs Register contexted passed into (and returned) from thunk to
16-bit mode
@retval FALSE Thunk completed, and there were no BIOS errors in the target code.
See Regs for status.
@retval TRUE There was a BIOS erro in the target code.
**/
BOOLEAN
EFIAPI
LegacyBiosInt86 (
IN EFI_LEGACY_BIOS_PROTOCOL *This,
IN UINT8 BiosInt,
IN EFI_IA32_REGISTER_SET *Regs
)
{
UINT16 Segment;
UINT16 Offset;
Regs->X.Flags.Reserved1 = 1;
Regs->X.Flags.Reserved2 = 0;
Regs->X.Flags.Reserved3 = 0;
Regs->X.Flags.Reserved4 = 0;
Regs->X.Flags.IOPL = 3;
Regs->X.Flags.NT = 0;
Regs->X.Flags.IF = 0;
Regs->X.Flags.TF = 0;
Regs->X.Flags.CF = 0;
//
// The base address of legacy interrupt vector table is 0.
// We use this base address to get the legacy interrupt handler.
//
ACCESS_PAGE0_CODE (
Segment = (UINT16)(((UINT32 *)0)[BiosInt] >> 16);
Offset = (UINT16)((UINT32 *)0)[BiosInt];
);
return InternalLegacyBiosFarCall (
This,
Segment,
Offset,
Regs,
&Regs->X.Flags,
sizeof (Regs->X.Flags)
);
}
/**
Thunk to 16-bit real mode and call Segment:Offset. Regs will contain the
16-bit register context on entry and exit. Arguments can be passed on
the Stack argument
@param This Protocol instance pointer.
@param Segment Segemnt of 16-bit mode call
@param Offset Offset of 16-bit mdoe call
@param Regs Register contexted passed into (and returned) from
thunk to 16-bit mode
@param Stack Caller allocated stack used to pass arguments
@param StackSize Size of Stack in bytes
@retval FALSE Thunk completed, and there were no BIOS errors in
the target code. See Regs for status.
@retval TRUE There was a BIOS erro in the target code.
**/
BOOLEAN
EFIAPI
LegacyBiosFarCall86 (
IN EFI_LEGACY_BIOS_PROTOCOL *This,
IN UINT16 Segment,
IN UINT16 Offset,
IN EFI_IA32_REGISTER_SET *Regs,
IN VOID *Stack,
IN UINTN StackSize
)
{
Regs->X.Flags.Reserved1 = 1;
Regs->X.Flags.Reserved2 = 0;
Regs->X.Flags.Reserved3 = 0;
Regs->X.Flags.Reserved4 = 0;
Regs->X.Flags.IOPL = 3;
Regs->X.Flags.NT = 0;
Regs->X.Flags.IF = 1;
Regs->X.Flags.TF = 0;
Regs->X.Flags.CF = 0;
return InternalLegacyBiosFarCall (This, Segment, Offset, Regs, Stack, StackSize);
}
/**
Provide NULL interrupt handler which is used to check
if there is more than one HW interrupt registers with the CPU AP.
@param InterruptType - The type of interrupt that occured
@param SystemContext - A pointer to the system context when the interrupt occured
**/
VOID
EFIAPI
LegacyBiosNullInterruptHandler (
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
}
/**
Thunk to 16-bit real mode and call Segment:Offset. Regs will contain the
16-bit register context on entry and exit. Arguments can be passed on
the Stack argument
@param This Protocol instance pointer.
@param Segment Segemnt of 16-bit mode call
@param Offset Offset of 16-bit mdoe call
@param Regs Register contexted passed into (and returned) from thunk to
16-bit mode
@param Stack Caller allocated stack used to pass arguments
@param StackSize Size of Stack in bytes
@retval FALSE Thunk completed, and there were no BIOS errors in the target code.
See Regs for status.
@retval TRUE There was a BIOS erro in the target code.
**/
BOOLEAN
EFIAPI
InternalLegacyBiosFarCall (
IN EFI_LEGACY_BIOS_PROTOCOL *This,
IN UINT16 Segment,
IN UINT16 Offset,
IN EFI_IA32_REGISTER_SET *Regs,
IN VOID *Stack,
IN UINTN StackSize
)
{
UINTN Status;
LEGACY_BIOS_INSTANCE *Private;
UINT16 *Stack16;
EFI_TPL OriginalTpl;
IA32_REGISTER_SET ThunkRegSet;
BOOLEAN InterruptState;
UINT64 TimerPeriod;
Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
ZeroMem (&ThunkRegSet, sizeof (ThunkRegSet));
ThunkRegSet.X.DI = Regs->X.DI;
ThunkRegSet.X.SI = Regs->X.SI;
ThunkRegSet.X.BP = Regs->X.BP;
ThunkRegSet.X.BX = Regs->X.BX;
ThunkRegSet.X.DX = Regs->X.DX;
//
// Sometimes, ECX is used to pass in 32 bit data. For example, INT 1Ah, AX = B10Dh is
// "PCI BIOS v2.0c + Write Configuration DWORD" and ECX has the dword to write.
//
ThunkRegSet.E.ECX = Regs->E.ECX;
ThunkRegSet.X.AX = Regs->X.AX;
ThunkRegSet.E.DS = Regs->X.DS;
ThunkRegSet.E.ES = Regs->X.ES;
CopyMem (&(ThunkRegSet.E.EFLAGS.UintN), &(Regs->X.Flags), sizeof (Regs->X.Flags));
//
// Clear the error flag; thunk code may set it. Stack16 should be the high address
// Make Statk16 address the low 16 bit must be not zero.
//
Stack16 = (UINT16 *)((UINT8 *) mThunkContext.RealModeBuffer + mThunkContext.RealModeBufferSize - sizeof (UINT16));
//
// Save current rate of DXE Timer
//
Private->Timer->GetTimerPeriod (Private->Timer, &TimerPeriod);
//
// Disable DXE Timer while executing in real mode
//
Private->Timer->SetTimerPeriod (Private->Timer, 0);
//
// Save and disable interrupt of debug timer
//
InterruptState = SaveAndSetDebugTimerInterrupt (FALSE);
//
// The call to Legacy16 is a critical section to EFI
//
OriginalTpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
//
// Check to see if there is more than one HW interrupt registers with the CPU AP.
// If there is, then ASSERT() since that is not compatible with the CSM because
// interupts other than the Timer interrupt that was disabled above can not be
// handled properly from real mode.
//
DEBUG_CODE (
UINTN Vector;
UINTN Count;
for (Vector = 0x20, Count = 0; Vector < 0x100; Vector++) {
Status = Private->Cpu->RegisterInterruptHandler (Private->Cpu, Vector, LegacyBiosNullInterruptHandler);
if (Status == EFI_ALREADY_STARTED) {
Count++;
}
if (Status == EFI_SUCCESS) {
Private->Cpu->RegisterInterruptHandler (Private->Cpu, Vector, NULL);
}
}
if (Count >= 2) {
DEBUG ((EFI_D_ERROR, "ERROR: More than one HW interrupt active with CSM enabled\n"));
}
ASSERT (Count < 2);
);
//
// If the Timer AP has enabled the 8254 timer IRQ and the current 8254 timer
// period is less than the CSM required rate of 54.9254, then force the 8254
// PIT counter to 0, which is the CSM required rate of 54.9254 ms
//
if (Private->TimerUses8254 && TimerPeriod < 549254) {
SetPitCount (0);
}
if (Stack != NULL && StackSize != 0) {
//
// Copy Stack to low memory stack
//
Stack16 -= StackSize / sizeof (UINT16);
CopyMem (Stack16, Stack, StackSize);
}
ThunkRegSet.E.SS = (UINT16) (((UINTN) Stack16 >> 16) << 12);
ThunkRegSet.E.ESP = (UINT16) (UINTN) Stack16;
ThunkRegSet.E.CS = Segment;
ThunkRegSet.E.Eip = Offset;
mThunkContext.RealModeState = &ThunkRegSet;
//
// Set Legacy16 state. 0x08, 0x70 is legacy 8259 vector bases.
//
Status = Private->Legacy8259->SetMode (Private->Legacy8259, Efi8259LegacyMode, NULL, NULL);
ASSERT_EFI_ERROR (Status);
AsmThunk16 (&mThunkContext);
if (Stack != NULL && StackSize != 0) {
//
// Copy low memory stack to Stack
//
CopyMem (Stack, Stack16, StackSize);
}
//
// Restore protected mode interrupt state
//
Status = Private->Legacy8259->SetMode (Private->Legacy8259, Efi8259ProtectedMode, NULL, NULL);
ASSERT_EFI_ERROR (Status);
mThunkContext.RealModeState = NULL;
//
// Enable and restore rate of DXE Timer
//
Private->Timer->SetTimerPeriod (Private->Timer, TimerPeriod);
//
// End critical section
//
gBS->RestoreTPL (OriginalTpl);
//
// OPROM may allocate EBDA range by itself and change EBDA base and EBDA size.
// Get the current EBDA base address, and compared with pre-allocate minimum
// EBDA base address, if the current EBDA base address is smaller, it indicates
// PcdEbdaReservedMemorySize should be adjusted to larger for more OPROMs.
//
DEBUG_CODE (
{
UINTN EbdaBaseAddress;
UINTN ReservedEbdaBaseAddress;
ACCESS_PAGE0_CODE (
EbdaBaseAddress = (*(UINT16 *) (UINTN) 0x40E) << 4;
ReservedEbdaBaseAddress = CONVENTIONAL_MEMORY_TOP
- PcdGet32 (PcdEbdaReservedMemorySize);
ASSERT (ReservedEbdaBaseAddress <= EbdaBaseAddress);
);
}
);
//
// Restore interrupt of debug timer
//
SaveAndSetDebugTimerInterrupt (InterruptState);
Regs->E.EDI = ThunkRegSet.E.EDI;
Regs->E.ESI = ThunkRegSet.E.ESI;
Regs->E.EBP = ThunkRegSet.E.EBP;
Regs->E.EBX = ThunkRegSet.E.EBX;
Regs->E.EDX = ThunkRegSet.E.EDX;
Regs->E.ECX = ThunkRegSet.E.ECX;
Regs->E.EAX = ThunkRegSet.E.EAX;
Regs->X.SS = ThunkRegSet.E.SS;
Regs->X.CS = ThunkRegSet.E.CS;
Regs->X.DS = ThunkRegSet.E.DS;
Regs->X.ES = ThunkRegSet.E.ES;
CopyMem (&(Regs->X.Flags), &(ThunkRegSet.E.EFLAGS.UintN), sizeof (Regs->X.Flags));
return (BOOLEAN) (Regs->X.Flags.CF == 1);
}
/**
Allocate memory < 1 MB and copy the thunker code into low memory. Se up
all the descriptors.
@param Private Private context for Legacy BIOS
@retval EFI_SUCCESS Should only pass.
**/
EFI_STATUS
LegacyBiosInitializeThunk (
IN LEGACY_BIOS_INSTANCE *Private
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS MemoryAddress;
UINT8 TimerVector;
MemoryAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) Private->IntThunk;
mThunkContext.RealModeBuffer = (VOID *) (UINTN) (MemoryAddress + ((sizeof (LOW_MEMORY_THUNK) / EFI_PAGE_SIZE) + 1) * EFI_PAGE_SIZE);
mThunkContext.RealModeBufferSize = EFI_PAGE_SIZE;
mThunkContext.ThunkAttributes = THUNK_ATTRIBUTE_BIG_REAL_MODE | THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15;
AsmPrepareThunk16 (&mThunkContext);
//
// Get the interrupt vector number corresponding to IRQ0 from the 8259 driver
//
TimerVector = 0;
Status = Private->Legacy8259->GetVector (Private->Legacy8259, Efi8259Irq0, &TimerVector);
ASSERT_EFI_ERROR (Status);
//
// Check to see if the Timer AP has hooked the IRQ0 from the 8254 PIT
//
Status = Private->Cpu->RegisterInterruptHandler (
Private->Cpu,
TimerVector,
LegacyBiosNullInterruptHandler
);
if (Status == EFI_SUCCESS) {
//
// If the Timer AP has not enabled the 8254 timer IRQ, then force the 8254 PIT
// counter to 0, which is the CSM required rate of 54.9254 ms
//
Private->Cpu->RegisterInterruptHandler (
Private->Cpu,
TimerVector,
NULL
);
SetPitCount (0);
//
// Save status that the Timer AP is not using the 8254 PIT
//
Private->TimerUses8254 = FALSE;
} else if (Status == EFI_ALREADY_STARTED) {
//
// Save status that the Timer AP is using the 8254 PIT
//
Private->TimerUses8254 = TRUE;
} else {
//
// Unexpected status from CPU AP RegisterInterruptHandler()
//
ASSERT (FALSE);
}
return EFI_SUCCESS;
}