audk/MdeModulePkg/Universal/DevicePathDxe/DevicePathFromText.c

2371 lines
62 KiB
C

/*++
Copyright (c) 2006, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
DevicePathFromText.c
Abstract:
DevicePathFromText protocol as defined in the UEFI 2.0 specification.
--*/
#include "DevicePath.h"
STATIC
CHAR16 *
StrDuplicate (
IN CONST CHAR16 *Src
)
/*++
Routine Description:
Duplicate a string
Arguments:
Src - Source string
Returns:
Duplicated string
--*/
{
UINTN Length;
CHAR16 *ReturnStr;
Length = StrLen ((CHAR16 *) Src);
ReturnStr = AllocateCopyPool ((Length + 1) * sizeof (CHAR16), (VOID *) Src);
return ReturnStr;
}
STATIC
CHAR16 *
GetParamByNodeName (
IN CHAR16 *Str,
IN CHAR16 *NodeName
)
/*++
Routine Description:
Get parameter in a pair of parentheses follow the given node name.
For example, given the "Pci(0,1)" and NodeName "Pci", it returns "0,1".
Arguments:
Str - Device Path Text
NodeName - Name of the node
Returns:
Parameter text for the node
--*/
{
CHAR16 *ParamStr;
CHAR16 *StrPointer;
UINTN NodeNameLength;
UINTN ParameterLength;
//
// Check whether the node name matchs
//
NodeNameLength = StrLen (NodeName);
if (CompareMem (Str, NodeName, NodeNameLength * sizeof (CHAR16)) != 0) {
return NULL;
}
ParamStr = Str + NodeNameLength;
if (!IS_LEFT_PARENTH (*ParamStr)) {
return NULL;
}
//
// Skip the found '(' and find first occurrence of ')'
//
ParamStr++;
ParameterLength = 0;
StrPointer = ParamStr;
while (!IS_NULL (*StrPointer)) {
if (IS_RIGHT_PARENTH (*StrPointer)) {
break;
}
StrPointer++;
ParameterLength++;
}
if (IS_NULL (*StrPointer)) {
//
// ')' not found
//
return NULL;
}
ParamStr = AllocateCopyPool ((ParameterLength + 1) * sizeof (CHAR16), ParamStr);
if (ParamStr == NULL) {
return NULL;
}
//
// Terminate the parameter string
//
ParamStr[ParameterLength] = L'\0';
return ParamStr;
}
STATIC
CHAR16 *
SplitStr (
IN OUT CHAR16 **List,
IN CHAR16 Separator
)
/*++
Routine Description:
Get current sub-string from a string list, before return
the list header is moved to next sub-string. The sub-string is separated
by the specified character. For example, the separator is ',', the string
list is "2,0,3", it returns "2", the remain list move to "2,3"
Arguments:
List - A string list separated by the specified separator
Separator - The separator character
Returns:
pointer - The current sub-string
--*/
{
CHAR16 *Str;
CHAR16 *ReturnStr;
Str = *List;
ReturnStr = Str;
if (IS_NULL (*Str)) {
return ReturnStr;
}
//
// Find first occurrence of the separator
//
while (!IS_NULL (*Str)) {
if (*Str == Separator) {
break;
}
Str++;
}
if (*Str == Separator) {
//
// Find a sub-string, terminate it
//
*Str = L'\0';
Str++;
}
//
// Move to next sub-string
//
*List = Str;
return ReturnStr;
}
STATIC
CHAR16 *
GetNextParamStr (
IN OUT CHAR16 **List
)
{
//
// The separator is comma
//
return SplitStr (List, L',');
}
STATIC
CHAR16 *
GetNextDeviceNodeStr (
IN OUT CHAR16 **DevicePath,
OUT BOOLEAN *IsInstanceEnd
)
/*++
Routine Description:
Get one device node from entire device path text.
Arguments:
Str - The entire device path text string
IsInstanceEnd - This node is the end of a device path instance
Returns:
a pointer - A device node text
NULL - No more device node available
--*/
{
CHAR16 *Str;
CHAR16 *ReturnStr;
UINTN ParenthesesStack;
Str = *DevicePath;
if (IS_NULL (*Str)) {
return NULL;
}
//
// Skip the leading '/', '(', ')' and ','
//
while (!IS_NULL (*Str)) {
if (!IS_SLASH (*Str) &&
!IS_COMMA (*Str) &&
!IS_LEFT_PARENTH (*Str) &&
!IS_RIGHT_PARENTH (*Str)) {
break;
}
Str++;
}
ReturnStr = Str;
//
// Scan for the separator of this device node, '/' or ','
//
ParenthesesStack = 0;
while (!IS_NULL (*Str)) {
if ((IS_COMMA (*Str) || IS_SLASH (*Str)) && (ParenthesesStack == 0)) {
break;
}
if (IS_LEFT_PARENTH (*Str)) {
ParenthesesStack++;
} else if (IS_RIGHT_PARENTH (*Str)) {
ParenthesesStack--;
}
Str++;
}
if (ParenthesesStack != 0) {
//
// The '(' doesn't pair with ')', invalid device path text
//
return NULL;
}
if (IS_COMMA (*Str)) {
*IsInstanceEnd = TRUE;
*Str = L'\0';
Str++;
} else {
*IsInstanceEnd = FALSE;
if (!IS_NULL (*Str)) {
*Str = L'\0';
Str++;
}
}
*DevicePath = Str;
return ReturnStr;
}
STATIC
BOOLEAN
IsHexDigit (
OUT UINT8 *Digit,
IN CHAR16 Char
)
/*++
Routine Description:
Determines if a Unicode character is a hexadecimal digit.
The test is case insensitive.
Arguments:
Digit - Pointer to byte that receives the value of the hex character.
Char - Unicode character to test.
Returns:
TRUE - If the character is a hexadecimal digit.
FALSE - Otherwise.
--*/
{
if ((Char >= L'0') && (Char <= L'9')) {
*Digit = (UINT8) (Char - L'0');
return TRUE;
}
if ((Char >= L'A') && (Char <= L'F')) {
*Digit = (UINT8) (Char - L'A' + 0x0A);
return TRUE;
}
if ((Char >= L'a') && (Char <= L'f')) {
*Digit = (UINT8) (Char - L'a' + 0x0A);
return TRUE;
}
return FALSE;
}
STATIC
EFI_STATUS
HexStringToBuf (
IN OUT UINT8 *Buf,
IN OUT UINTN *Len,
IN CHAR16 *Str,
OUT UINTN *ConvertedStrLen OPTIONAL
)
/*++
Routine Description:
Converts Unicode string to binary buffer.
The conversion may be partial.
The first character in the string that is not hex digit stops the conversion.
At a minimum, any blob of data could be represented as a hex string.
Arguments:
Buf - Pointer to buffer that receives the data.
Len - Length in bytes of the buffer to hold converted data.
If routine return with EFI_SUCCESS, containing length of converted data.
If routine return with EFI_BUFFER_TOO_SMALL, containg length of buffer desired.
Str - String to be converted from.
ConvertedStrLen - Length of the Hex String consumed.
Returns:
EFI_SUCCESS: Routine Success.
EFI_BUFFER_TOO_SMALL: The buffer is too small to hold converted data.
EFI_
--*/
{
UINTN HexCnt;
UINTN Idx;
UINTN BufferLength;
UINT8 Digit;
UINT8 Byte;
//
// Find out how many hex characters the string has.
//
for (Idx = 0, HexCnt = 0; IsHexDigit (&Digit, Str[Idx]); Idx++, HexCnt++);
if (HexCnt == 0) {
*Len = 0;
return EFI_SUCCESS;
}
//
// Two Unicode characters make up 1 buffer byte. Round up.
//
BufferLength = (HexCnt + 1) / 2;
//
// Test if buffer is passed enough.
//
if (BufferLength > (*Len)) {
*Len = BufferLength;
return EFI_BUFFER_TOO_SMALL;
}
*Len = BufferLength;
for (Idx = 0; Idx < HexCnt; Idx++) {
IsHexDigit (&Digit, Str[HexCnt - 1 - Idx]);
//
// For odd charaters, write the lower nibble for each buffer byte,
// and for even characters, the upper nibble.
//
if ((Idx & 1) == 0) {
Byte = Digit;
} else {
Byte = Buf[Idx / 2];
Byte &= 0x0F;
Byte = (UINT8) (Byte | Digit << 4);
}
Buf[Idx / 2] = Byte;
}
if (ConvertedStrLen != NULL) {
*ConvertedStrLen = HexCnt;
}
return EFI_SUCCESS;
}
STATIC
CHAR16 *
TrimHexStr (
IN CHAR16 *Str
)
/*++
Routine Description:
Skip the leading white space and '0x' or '0X' of a hex string
Arguments:
Str - The hex string
Returns:
--*/
{
//
// skip preceeding white space
//
while (*Str && *Str == ' ') {
Str += 1;
}
//
// skip preceeding zeros
//
while (*Str && *Str == '0') {
Str += 1;
}
//
// skip preceeding character 'x' or 'X'
//
if (*Str && (*Str == 'x' || *Str == 'X')) {
Str += 1;
}
return Str;
}
STATIC
UINTN
Xtoi (
IN CHAR16 *Str
)
/*++
Routine Description:
Convert hex string to uint
Arguments:
Str - The string
Returns:
--*/
{
UINTN Rvalue;
UINTN Length;
ASSERT (Str != NULL);
//
// convert hex digits
//
Rvalue = 0;
Length = sizeof (UINTN);
HexStringToBuf ((UINT8 *) &Rvalue, &Length, TrimHexStr (Str), NULL);
return Rvalue;
}
STATIC
VOID
Xtoi64 (
IN CHAR16 *Str,
IN UINT64 *Data
)
/*++
Routine Description:
Convert hex string to 64 bit data.
Arguments:
Str - The string
Returns:
--*/
{
UINTN Length;
*Data = 0;
Length = sizeof (UINT64);
HexStringToBuf ((UINT8 *) Data, &Length, TrimHexStr (Str), NULL);
}
STATIC
UINTN
Atoi (
IN CHAR16 *str
)
/*++
Routine Description:
Convert decimal string to uint
Arguments:
Str - The string
Returns:
--*/
{
UINTN Rvalue;
CHAR16 Char;
UINTN High;
UINTN Low;
ASSERT (str != NULL);
High = (UINTN) -1 / 10;
Low = (UINTN) -1 % 10;
//
// skip preceeding white space
//
while (*str && *str == ' ') {
str += 1;
}
//
// convert digits
//
Rvalue = 0;
Char = *(str++);
while (Char) {
if (Char >= '0' && Char <= '9') {
if ((Rvalue > High || Rvalue == High) && (Char - '0' > (INTN) Low)) {
return (UINTN) -1;
}
Rvalue = (Rvalue * 10) + Char - '0';
} else {
break;
}
Char = *(str++);
}
return Rvalue;
}
STATIC
EFI_STATUS
StrToBuf (
OUT UINT8 *Buf,
IN UINTN BufferLength,
IN CHAR16 *Str
)
{
UINTN Index;
UINTN StrLength;
UINT8 Digit;
UINT8 Byte;
//
// Two hex char make up one byte
//
StrLength = BufferLength * sizeof (CHAR16);
for(Index = 0; Index < StrLength; Index++, Str++) {
IsHexDigit (&Digit, *Str);
//
// For odd charaters, write the upper nibble for each buffer byte,
// and for even characters, the lower nibble.
//
if ((Index & 1) == 0) {
Byte = (UINT8) (Digit << 4);
} else {
Byte = Buf[Index / 2];
Byte &= 0xF0;
Byte = (UINT8) (Byte | Digit);
}
Buf[Index / 2] = Byte;
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
StrToGuid (
IN CHAR16 *Str,
OUT EFI_GUID *Guid
)
{
UINTN BufferLength;
UINTN ConvertedStrLen;
EFI_STATUS Status;
BufferLength = sizeof (Guid->Data1);
Status = HexStringToBuf ((UINT8 *) &Guid->Data1, &BufferLength, Str, &ConvertedStrLen);
if (EFI_ERROR (Status)) {
return Status;
}
Str += ConvertedStrLen;
if (IS_HYPHEN (*Str)) {
Str++;
} else {
return EFI_UNSUPPORTED;
}
BufferLength = sizeof (Guid->Data2);
Status = HexStringToBuf ((UINT8 *) &Guid->Data2, &BufferLength, Str, &ConvertedStrLen);
if (EFI_ERROR (Status)) {
return Status;
}
Str += ConvertedStrLen;
if (IS_HYPHEN (*Str)) {
Str++;
} else {
return EFI_UNSUPPORTED;
}
BufferLength = sizeof (Guid->Data3);
Status = HexStringToBuf ((UINT8 *) &Guid->Data3, &BufferLength, Str, &ConvertedStrLen);
if (EFI_ERROR (Status)) {
return Status;
}
Str += ConvertedStrLen;
if (IS_HYPHEN (*Str)) {
Str++;
} else {
return EFI_UNSUPPORTED;
}
StrToBuf (&Guid->Data4[0], 2, Str);
//
// Skip 2 byte hex chars
//
Str += 2 * 2;
if (IS_HYPHEN (*Str)) {
Str++;
} else {
return EFI_UNSUPPORTED;
}
StrToBuf (&Guid->Data4[2], 6, Str);
return EFI_SUCCESS;
}
STATIC
VOID
StrToIPv4Addr (
IN OUT CHAR16 **Str,
OUT EFI_IPv4_ADDRESS *IPv4Addr
)
{
UINTN Index;
for (Index = 0; Index < 4; Index++) {
IPv4Addr->Addr[Index] = (UINT8) Atoi (SplitStr (Str, L'.'));
}
}
STATIC
VOID
StrToIPv6Addr (
IN OUT CHAR16 **Str,
OUT EFI_IPv6_ADDRESS *IPv6Addr
)
{
UINTN Index;
UINT16 Data;
for (Index = 0; Index < 8; Index++) {
Data = (UINT16) Xtoi (SplitStr (Str, L':'));
IPv6Addr->Addr[Index * 2] = (UINT8) (Data >> 8);
IPv6Addr->Addr[Index * 2 + 1] = (UINT8) (Data & 0xff);
}
}
STATIC
VOID
StrToAscii (
IN CHAR16 *Str,
IN OUT CHAR8 **AsciiStr
)
{
CHAR8 *Dest;
Dest = *AsciiStr;
while (!IS_NULL (*Str)) {
*(Dest++) = (CHAR8) *(Str++);
}
*Dest = 0;
//
// Return the string next to it
//
*AsciiStr = Dest + 1;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextPci (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *FunctionStr;
CHAR16 *DeviceStr;
PCI_DEVICE_PATH *Pci;
FunctionStr = GetNextParamStr (&TextDeviceNode);
DeviceStr = GetNextParamStr (&TextDeviceNode);
Pci = (PCI_DEVICE_PATH *) CreateDeviceNode (
HARDWARE_DEVICE_PATH,
HW_PCI_DP,
sizeof (PCI_DEVICE_PATH)
);
Pci->Function = (UINT8) Xtoi (FunctionStr);
Pci->Device = (UINT8) Xtoi (DeviceStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Pci;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextPcCard (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *FunctionNumberStr;
PCCARD_DEVICE_PATH *Pccard;
FunctionNumberStr = GetNextParamStr (&TextDeviceNode);
Pccard = (PCCARD_DEVICE_PATH *) CreateDeviceNode (
HARDWARE_DEVICE_PATH,
HW_PCCARD_DP,
sizeof (PCCARD_DEVICE_PATH)
);
Pccard->FunctionNumber = (UINT8) Xtoi (FunctionNumberStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Pccard;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextMemoryMapped (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *StartingAddressStr;
CHAR16 *EndingAddressStr;
MEMMAP_DEVICE_PATH *MemMap;
StartingAddressStr = GetNextParamStr (&TextDeviceNode);
EndingAddressStr = GetNextParamStr (&TextDeviceNode);
MemMap = (MEMMAP_DEVICE_PATH *) CreateDeviceNode (
HARDWARE_DEVICE_PATH,
HW_MEMMAP_DP,
sizeof (MEMMAP_DEVICE_PATH)
);
MemMap->MemoryType = 0;
Xtoi64 (StartingAddressStr, &MemMap->StartingAddress);
Xtoi64 (EndingAddressStr, &MemMap->EndingAddress);
return (EFI_DEVICE_PATH_PROTOCOL *) MemMap;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
ConvertFromTextVendor (
IN CHAR16 *TextDeviceNode,
IN UINT8 Type,
IN UINT8 SubType
)
{
CHAR16 *GuidStr;
CHAR16 *DataStr;
UINTN Length;
VENDOR_DEVICE_PATH *Vendor;
GuidStr = GetNextParamStr (&TextDeviceNode);
DataStr = GetNextParamStr (&TextDeviceNode);
Length = StrLen (DataStr);
//
// Two hex characters make up 1 buffer byte
//
Length = (Length + 1) / 2;
Vendor = (VENDOR_DEVICE_PATH *) CreateDeviceNode (
Type,
SubType,
sizeof (VENDOR_DEVICE_PATH) + (UINT16) Length
);
StrToGuid (GuidStr, &Vendor->Guid);
StrToBuf (((UINT8 *) Vendor) + sizeof (VENDOR_DEVICE_PATH), Length, DataStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Vendor;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenHw (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextVendor (
TextDeviceNode,
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP
);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextCtrl (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *ControllerStr;
CONTROLLER_DEVICE_PATH *Controller;
ControllerStr = GetNextParamStr (&TextDeviceNode);
Controller = (CONTROLLER_DEVICE_PATH *) CreateDeviceNode (
HARDWARE_DEVICE_PATH,
HW_CONTROLLER_DP,
sizeof (CONTROLLER_DEVICE_PATH)
);
Controller->ControllerNumber = (UINT32) Xtoi (ControllerStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Controller;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextAcpi (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *HIDStr;
CHAR16 *UIDStr;
ACPI_HID_DEVICE_PATH *Acpi;
HIDStr = GetNextParamStr (&TextDeviceNode);
UIDStr = GetNextParamStr (&TextDeviceNode);
Acpi = (ACPI_HID_DEVICE_PATH *) CreateDeviceNode (
ACPI_DEVICE_PATH,
ACPI_DP,
sizeof (ACPI_HID_DEVICE_PATH)
);
if ((HIDStr[0] == L'P') && (HIDStr[1] == L'N') && (HIDStr[2] == L'P')) {
HIDStr += 3;
}
Acpi->HID = EISA_PNP_ID (Xtoi (HIDStr));
Acpi->UID = (UINT32) Xtoi (UIDStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Acpi;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
ConvertFromTextAcpi (
IN CHAR16 *TextDeviceNode,
IN UINT32 Hid
)
{
CHAR16 *UIDStr;
ACPI_HID_DEVICE_PATH *Acpi;
UIDStr = GetNextParamStr (&TextDeviceNode);
Acpi = (ACPI_HID_DEVICE_PATH *) CreateDeviceNode (
ACPI_DEVICE_PATH,
ACPI_DP,
sizeof (ACPI_HID_DEVICE_PATH)
);
Acpi->HID = Hid;
Acpi->UID = (UINT32) Xtoi (UIDStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Acpi;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextPciRoot (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextAcpi (TextDeviceNode, 0x0a0341d0);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextFloppy (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextAcpi (TextDeviceNode, 0x060441d0);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextKeyboard (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextAcpi (TextDeviceNode, 0x030141d0);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextSerial (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextAcpi (TextDeviceNode, 0x050141d0);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextParallelPort (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextAcpi (TextDeviceNode, 0x040141d0);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextAcpiEx (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *HIDStr;
CHAR16 *CIDStr;
CHAR16 *UIDStr;
CHAR16 *HIDSTRStr;
CHAR16 *CIDSTRStr;
CHAR16 *UIDSTRStr;
CHAR8 *AsciiStr;
UINT16 Length;
ACPI_EXTENDED_HID_DEVICE_PATH_WITH_STR *AcpiExt;
HIDStr = GetNextParamStr (&TextDeviceNode);
CIDStr = GetNextParamStr (&TextDeviceNode);
UIDStr = GetNextParamStr (&TextDeviceNode);
HIDSTRStr = GetNextParamStr (&TextDeviceNode);
CIDSTRStr = GetNextParamStr (&TextDeviceNode);
UIDSTRStr = GetNextParamStr (&TextDeviceNode);
Length = (UINT16) (sizeof (ACPI_EXTENDED_HID_DEVICE_PATH) + StrLen (HIDSTRStr) + 1);
Length = (UINT16) (Length + StrLen (UIDSTRStr) + 1);
Length = (UINT16) (Length + StrLen (CIDSTRStr) + 1);
AcpiExt = (ACPI_EXTENDED_HID_DEVICE_PATH_WITH_STR *) CreateDeviceNode (
ACPI_DEVICE_PATH,
ACPI_EXTENDED_DP,
Length
);
if ((HIDStr[0] == L'P') && (HIDStr[1] == L'N') && (HIDStr[2] == L'P')) {
HIDStr += 3;
AcpiExt->HID = EISA_PNP_ID (Xtoi (HIDStr));
} else {
AcpiExt->HID = (UINT32) Xtoi (HIDStr);
}
AcpiExt->UID = (UINT32) Xtoi (UIDStr);
AcpiExt->CID = (UINT32) Xtoi (CIDStr);
AsciiStr = AcpiExt->HidUidCidStr;
StrToAscii (HIDSTRStr, &AsciiStr);
StrToAscii (UIDSTRStr, &AsciiStr);
StrToAscii (CIDSTRStr, &AsciiStr);
return (EFI_DEVICE_PATH_PROTOCOL *) AcpiExt;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextAcpiExp (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *HIDStr;
CHAR16 *CIDStr;
CHAR16 *UIDSTRStr;
CHAR8 *AsciiStr;
UINT16 Length;
ACPI_EXTENDED_HID_DEVICE_PATH_WITH_STR *AcpiExt;
HIDStr = GetNextParamStr (&TextDeviceNode);
CIDStr = GetNextParamStr (&TextDeviceNode);
UIDSTRStr = GetNextParamStr (&TextDeviceNode);
Length = sizeof (ACPI_EXTENDED_HID_DEVICE_PATH) + (UINT16) StrLen (UIDSTRStr) + 3;
AcpiExt = (ACPI_EXTENDED_HID_DEVICE_PATH_WITH_STR *) CreateDeviceNode (
ACPI_DEVICE_PATH,
ACPI_EXTENDED_DP,
Length
);
if ((HIDStr[0] == L'P') && (HIDStr[1] == L'N') && (HIDStr[2] == L'P')) {
HIDStr += 3;
AcpiExt->HID = EISA_PNP_ID (Xtoi (HIDStr));
} else {
AcpiExt->HID = (UINT32) Xtoi (HIDStr);
}
AcpiExt->UID = 0;
AcpiExt->CID = (UINT32) Xtoi (CIDStr);
AsciiStr = AcpiExt->HidUidCidStr;
//
// HID string is NULL
//
*AsciiStr = 0;
//
// Convert UID string
//
AsciiStr++;
StrToAscii (UIDSTRStr, &AsciiStr);
//
// CID string is NULL
//
*AsciiStr = 0;
return (EFI_DEVICE_PATH_PROTOCOL *) AcpiExt;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextAta (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *PrimarySecondaryStr;
CHAR16 *SlaveMasterStr;
CHAR16 *LunStr;
ATAPI_DEVICE_PATH *Atapi;
Atapi = (ATAPI_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_ATAPI_DP,
sizeof (ATAPI_DEVICE_PATH)
);
PrimarySecondaryStr = GetNextParamStr (&TextDeviceNode);
SlaveMasterStr = GetNextParamStr (&TextDeviceNode);
LunStr = GetNextParamStr (&TextDeviceNode);
Atapi->PrimarySecondary = (UINT8) ((StrCmp (PrimarySecondaryStr, L"Primary") == 0) ? 0 : 1);
Atapi->SlaveMaster = (UINT8) ((StrCmp (SlaveMasterStr, L"Master") == 0) ? 0 : 1);
Atapi->Lun = (UINT16) Xtoi (LunStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Atapi;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextScsi (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *PunStr;
CHAR16 *LunStr;
SCSI_DEVICE_PATH *Scsi;
PunStr = GetNextParamStr (&TextDeviceNode);
LunStr = GetNextParamStr (&TextDeviceNode);
Scsi = (SCSI_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_SCSI_DP,
sizeof (SCSI_DEVICE_PATH)
);
Scsi->Pun = (UINT16) Xtoi (PunStr);
Scsi->Lun = (UINT16) Xtoi (LunStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Scsi;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextFibre (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *WWNStr;
CHAR16 *LunStr;
FIBRECHANNEL_DEVICE_PATH *Fibre;
WWNStr = GetNextParamStr (&TextDeviceNode);
LunStr = GetNextParamStr (&TextDeviceNode);
Fibre = (FIBRECHANNEL_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_FIBRECHANNEL_DP,
sizeof (FIBRECHANNEL_DEVICE_PATH)
);
Fibre->Reserved = 0;
Xtoi64 (WWNStr, &Fibre->WWN);
Xtoi64 (LunStr, &Fibre->Lun);
return (EFI_DEVICE_PATH_PROTOCOL *) Fibre;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromText1394 (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *GuidStr;
F1394_DEVICE_PATH *F1394;
GuidStr = GetNextParamStr (&TextDeviceNode);
F1394 = (F1394_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_1394_DP,
sizeof (F1394_DEVICE_PATH)
);
F1394->Reserved = 0;
Xtoi64 (GuidStr, &F1394->Guid);
return (EFI_DEVICE_PATH_PROTOCOL *) F1394;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsb (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *PortStr;
CHAR16 *InterfaceStr;
USB_DEVICE_PATH *Usb;
PortStr = GetNextParamStr (&TextDeviceNode);
InterfaceStr = GetNextParamStr (&TextDeviceNode);
Usb = (USB_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_USB_DP,
sizeof (USB_DEVICE_PATH)
);
Usb->ParentPortNumber = (UINT8) Xtoi (PortStr);
Usb->InterfaceNumber = (UINT8) Xtoi (InterfaceStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Usb;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextI2O (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *TIDStr;
I2O_DEVICE_PATH *I2O;
TIDStr = GetNextParamStr (&TextDeviceNode);
I2O = (I2O_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_I2O_DP,
sizeof (I2O_DEVICE_PATH)
);
I2O->Tid = (UINT32) Xtoi (TIDStr);
return (EFI_DEVICE_PATH_PROTOCOL *) I2O;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextInfiniband (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *FlagsStr;
CHAR16 *GuidStr;
CHAR16 *SidStr;
CHAR16 *TidStr;
CHAR16 *DidStr;
EFI_GUID PortGid;
INFINIBAND_DEVICE_PATH *InfiniBand;
FlagsStr = GetNextParamStr (&TextDeviceNode);
GuidStr = GetNextParamStr (&TextDeviceNode);
SidStr = GetNextParamStr (&TextDeviceNode);
TidStr = GetNextParamStr (&TextDeviceNode);
DidStr = GetNextParamStr (&TextDeviceNode);
InfiniBand = (INFINIBAND_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_INFINIBAND_DP,
sizeof (INFINIBAND_DEVICE_PATH)
);
InfiniBand->ResourceFlags = (UINT32) Xtoi (FlagsStr);
StrToGuid (GuidStr, &PortGid);
CopyMem (InfiniBand->PortGid, &PortGid, sizeof (EFI_GUID));
Xtoi64 (SidStr, &InfiniBand->ServiceId);
Xtoi64 (TidStr, &InfiniBand->TargetPortId);
Xtoi64 (DidStr, &InfiniBand->DeviceId);
return (EFI_DEVICE_PATH_PROTOCOL *) InfiniBand;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenMsg (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextVendor (
TextDeviceNode,
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP
);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenPcAnsi (
IN CHAR16 *TextDeviceNode
)
{
VENDOR_DEVICE_PATH *Vendor;
Vendor = (VENDOR_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (VENDOR_DEVICE_PATH));
CopyGuid (&Vendor->Guid, &gEfiPcAnsiGuid);
return (EFI_DEVICE_PATH_PROTOCOL *) Vendor;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenVt100 (
IN CHAR16 *TextDeviceNode
)
{
VENDOR_DEVICE_PATH *Vendor;
Vendor = (VENDOR_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (VENDOR_DEVICE_PATH));
CopyGuid (&Vendor->Guid, &gEfiVT100Guid);
return (EFI_DEVICE_PATH_PROTOCOL *) Vendor;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenVt100Plus (
IN CHAR16 *TextDeviceNode
)
{
VENDOR_DEVICE_PATH *Vendor;
Vendor = (VENDOR_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (VENDOR_DEVICE_PATH));
CopyGuid (&Vendor->Guid, &gEfiVT100PlusGuid);
return (EFI_DEVICE_PATH_PROTOCOL *) Vendor;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenUtf8 (
IN CHAR16 *TextDeviceNode
)
{
VENDOR_DEVICE_PATH *Vendor;
Vendor = (VENDOR_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (VENDOR_DEVICE_PATH));
CopyGuid (&Vendor->Guid, &gEfiVTUTF8Guid);
return (EFI_DEVICE_PATH_PROTOCOL *) Vendor;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUartFlowCtrl (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *ValueStr;
UART_FLOW_CONTROL_DEVICE_PATH *UartFlowControl;
ValueStr = GetNextParamStr (&TextDeviceNode);
UartFlowControl = (UART_FLOW_CONTROL_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (UART_FLOW_CONTROL_DEVICE_PATH)
);
CopyGuid (&UartFlowControl->Guid, &mEfiDevicePathMessagingUartFlowControlGuid);
if (StrCmp (ValueStr, L"XonXoff") == 0) {
UartFlowControl->FlowControlMap = 2;
} else if (StrCmp (ValueStr, L"Hardware") == 0) {
UartFlowControl->FlowControlMap = 1;
} else {
UartFlowControl->FlowControlMap = 0;
}
return (EFI_DEVICE_PATH_PROTOCOL *) UartFlowControl;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextSAS (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *AddressStr;
CHAR16 *LunStr;
CHAR16 *RTPStr;
CHAR16 *SASSATAStr;
CHAR16 *LocationStr;
CHAR16 *ConnectStr;
CHAR16 *DriveBayStr;
CHAR16 *ReservedStr;
UINT16 Info;
SAS_DEVICE_PATH *Sas;
AddressStr = GetNextParamStr (&TextDeviceNode);
LunStr = GetNextParamStr (&TextDeviceNode);
RTPStr = GetNextParamStr (&TextDeviceNode);
SASSATAStr = GetNextParamStr (&TextDeviceNode);
LocationStr = GetNextParamStr (&TextDeviceNode);
ConnectStr = GetNextParamStr (&TextDeviceNode);
DriveBayStr = GetNextParamStr (&TextDeviceNode);
ReservedStr = GetNextParamStr (&TextDeviceNode);
Info = 0x0000;
Sas = (SAS_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (SAS_DEVICE_PATH)
);
CopyGuid (&Sas->Guid, &mEfiDevicePathMessagingSASGuid);
Xtoi64 (AddressStr, &Sas->SasAddress);
Xtoi64 (LunStr, &Sas->Lun);
Sas->RelativeTargetPort = (UINT16) Xtoi (RTPStr);
if (StrCmp (SASSATAStr, L"NoTopology") == 0)
;
else {
if (StrCmp (DriveBayStr, L"0") == 0) {
Info |= 0x0001;
} else {
Info |= 0x0002;
Info |= (Xtoi (DriveBayStr) << 8);
}
if (StrCmp (SASSATAStr, L"SATA") == 0) {
Info |= 0x0010;
}
if (StrCmp (LocationStr, L"External") == 0) {
Info |= 0x0020;
}
if (StrCmp (ConnectStr, L"Expanded") == 0) {
Info |= 0x0040;
}
}
Sas->DeviceTopology = Info;
Sas->Reserved = (UINT32) Xtoi (ReservedStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Sas;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextDebugPort (
IN CHAR16 *TextDeviceNode
)
{
VENDOR_DEFINED_MESSAGING_DEVICE_PATH *Vend;
Vend = (VENDOR_DEFINED_MESSAGING_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (VENDOR_DEFINED_MESSAGING_DEVICE_PATH)
);
CopyGuid (&Vend->Guid, &gEfiDebugPortProtocolGuid);
return (EFI_DEVICE_PATH_PROTOCOL *) Vend;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextMAC (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *AddressStr;
CHAR16 *IfTypeStr;
UINTN Length;
MAC_ADDR_DEVICE_PATH *MAC;
AddressStr = GetNextParamStr (&TextDeviceNode);
IfTypeStr = GetNextParamStr (&TextDeviceNode);
MAC = (MAC_ADDR_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_MAC_ADDR_DP,
sizeof (MAC_ADDR_DEVICE_PATH)
);
MAC->IfType = (UINT8) Xtoi (IfTypeStr);
Length = sizeof (EFI_MAC_ADDRESS);
StrToBuf (&MAC->MacAddress.Addr[0], Length, AddressStr);
return (EFI_DEVICE_PATH_PROTOCOL *) MAC;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextIPv4 (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *RemoteIPStr;
CHAR16 *ProtocolStr;
CHAR16 *TypeStr;
CHAR16 *LocalIPStr;
IPv4_DEVICE_PATH *IPv4;
RemoteIPStr = GetNextParamStr (&TextDeviceNode);
ProtocolStr = GetNextParamStr (&TextDeviceNode);
TypeStr = GetNextParamStr (&TextDeviceNode);
LocalIPStr = GetNextParamStr (&TextDeviceNode);
IPv4 = (IPv4_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_IPv4_DP,
sizeof (IPv4_DEVICE_PATH)
);
StrToIPv4Addr (&RemoteIPStr, &IPv4->RemoteIpAddress);
IPv4->Protocol = (UINT16) ((StrCmp (ProtocolStr, L"UDP") == 0) ? 0 : 1);
if (StrCmp (TypeStr, L"Static") == 0) {
IPv4->StaticIpAddress = TRUE;
} else {
IPv4->StaticIpAddress = FALSE;
}
StrToIPv4Addr (&LocalIPStr, &IPv4->LocalIpAddress);
IPv4->LocalPort = 0;
IPv4->RemotePort = 0;
return (EFI_DEVICE_PATH_PROTOCOL *) IPv4;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextIPv6 (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *RemoteIPStr;
CHAR16 *ProtocolStr;
CHAR16 *TypeStr;
CHAR16 *LocalIPStr;
IPv6_DEVICE_PATH *IPv6;
RemoteIPStr = GetNextParamStr (&TextDeviceNode);
ProtocolStr = GetNextParamStr (&TextDeviceNode);
TypeStr = GetNextParamStr (&TextDeviceNode);
LocalIPStr = GetNextParamStr (&TextDeviceNode);
IPv6 = (IPv6_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_IPv6_DP,
sizeof (IPv6_DEVICE_PATH)
);
StrToIPv6Addr (&RemoteIPStr, &IPv6->RemoteIpAddress);
IPv6->Protocol = (UINT16) ((StrCmp (ProtocolStr, L"UDP") == 0) ? 0 : 1);
if (StrCmp (TypeStr, L"Static") == 0) {
IPv6->StaticIpAddress = TRUE;
} else {
IPv6->StaticIpAddress = FALSE;
}
StrToIPv6Addr (&LocalIPStr, &IPv6->LocalIpAddress);
IPv6->LocalPort = 0;
IPv6->RemotePort = 0;
return (EFI_DEVICE_PATH_PROTOCOL *) IPv6;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUart (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *BaudStr;
CHAR16 *DataBitsStr;
CHAR16 *ParityStr;
CHAR16 *StopBitsStr;
UART_DEVICE_PATH *Uart;
BaudStr = GetNextParamStr (&TextDeviceNode);
DataBitsStr = GetNextParamStr (&TextDeviceNode);
ParityStr = GetNextParamStr (&TextDeviceNode);
StopBitsStr = GetNextParamStr (&TextDeviceNode);
Uart = (UART_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_UART_DP,
sizeof (UART_DEVICE_PATH)
);
Uart->BaudRate = (StrCmp (BaudStr, L"DEFAULT") == 0) ? 115200 : Atoi (BaudStr);
Uart->DataBits = (UINT8) ((StrCmp (DataBitsStr, L"DEFAULT") == 0) ? 8 : Atoi (DataBitsStr));
switch (*ParityStr) {
case L'D':
Uart->Parity = 0;
break;
case L'N':
Uart->Parity = 1;
break;
case L'E':
Uart->Parity = 2;
break;
case L'O':
Uart->Parity = 3;
break;
case L'M':
Uart->Parity = 4;
break;
case L'S':
Uart->Parity = 5;
default:
Uart->Parity = 0xff;
}
if (StrCmp (StopBitsStr, L"D") == 0) {
Uart->StopBits = (UINT8) 0;
} else if (StrCmp (StopBitsStr, L"1") == 0) {
Uart->StopBits = (UINT8) 1;
} else if (StrCmp (StopBitsStr, L"1.5") == 0) {
Uart->StopBits = (UINT8) 2;
} else if (StrCmp (StopBitsStr, L"2") == 0) {
Uart->StopBits = (UINT8) 3;
} else {
Uart->StopBits = 0xff;
}
return (EFI_DEVICE_PATH_PROTOCOL *) Uart;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
ConvertFromTextUsbClass (
IN CHAR16 *TextDeviceNode,
IN USB_CLASS_TEXT *UsbClassText
)
{
CHAR16 *VIDStr;
CHAR16 *PIDStr;
CHAR16 *ClassStr;
CHAR16 *SubClassStr;
CHAR16 *ProtocolStr;
USB_CLASS_DEVICE_PATH *UsbClass;
UsbClass = (USB_CLASS_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_USB_CLASS_DP,
sizeof (USB_CLASS_DEVICE_PATH)
);
VIDStr = GetNextParamStr (&TextDeviceNode);
PIDStr = GetNextParamStr (&TextDeviceNode);
if (UsbClassText->ClassExist) {
ClassStr = GetNextParamStr (&TextDeviceNode);
UsbClass->DeviceClass = (UINT8) Xtoi (ClassStr);
} else {
UsbClass->DeviceClass = UsbClassText->Class;
}
if (UsbClassText->SubClassExist) {
SubClassStr = GetNextParamStr (&TextDeviceNode);
UsbClass->DeviceSubClass = (UINT8) Xtoi (SubClassStr);
} else {
UsbClass->DeviceSubClass = UsbClassText->SubClass;
}
ProtocolStr = GetNextParamStr (&TextDeviceNode);
UsbClass->VendorId = (UINT16) Xtoi (VIDStr);
UsbClass->ProductId = (UINT16) Xtoi (PIDStr);
UsbClass->DeviceProtocol = (UINT8) Xtoi (ProtocolStr);
return (EFI_DEVICE_PATH_PROTOCOL *) UsbClass;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbClass (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = TRUE;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbAudio (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_AUDIO;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbCDCControl (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_CDCCONTROL;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbHID (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_HID;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbImage (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_IMAGE;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbPrinter (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_PRINTER;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbMassStorage (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_MASS_STORAGE;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbHub (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_HUB;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbCDCData (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_CDCDATA;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbSmartCard (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_SMART_CARD;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbVideo (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_VIDEO;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbDiagnostic (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_DIAGNOSTIC;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbWireless (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_WIRELESS;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbDeviceFirmwareUpdate (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_RESERVE;
UsbClassText.SubClassExist = FALSE;
UsbClassText.SubClass = USB_SUBCLASS_FW_UPDATE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbIrdaBridge (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_RESERVE;
UsbClassText.SubClassExist = FALSE;
UsbClassText.SubClass = USB_SUBCLASS_IRDA_BRIDGE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbTestAndMeasurement (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_RESERVE;
UsbClassText.SubClassExist = FALSE;
UsbClassText.SubClass = USB_SUBCLASS_TEST;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbWwid (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *VIDStr;
CHAR16 *PIDStr;
CHAR16 *InterfaceNumStr;
USB_WWID_DEVICE_PATH *UsbWwid;
VIDStr = GetNextParamStr (&TextDeviceNode);
PIDStr = GetNextParamStr (&TextDeviceNode);
InterfaceNumStr = GetNextParamStr (&TextDeviceNode);
UsbWwid = (USB_WWID_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_USB_WWID_DP,
sizeof (USB_WWID_DEVICE_PATH)
);
UsbWwid->VendorId = (UINT16) Xtoi (VIDStr);
UsbWwid->ProductId = (UINT16) Xtoi (PIDStr);
UsbWwid->InterfaceNumber = (UINT16) Xtoi (InterfaceNumStr);
return (EFI_DEVICE_PATH_PROTOCOL *) UsbWwid;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUnit (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *LunStr;
DEVICE_LOGICAL_UNIT_DEVICE_PATH *LogicalUnit;
LunStr = GetNextParamStr (&TextDeviceNode);
LogicalUnit = (DEVICE_LOGICAL_UNIT_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_DEVICE_LOGICAL_UNIT_DP,
sizeof (DEVICE_LOGICAL_UNIT_DEVICE_PATH)
);
LogicalUnit->Lun = (UINT8) Xtoi (LunStr);
return (EFI_DEVICE_PATH_PROTOCOL *) LogicalUnit;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextiSCSI (
IN CHAR16 *TextDeviceNode
)
{
UINT16 Options;
CHAR16 *NameStr;
CHAR16 *PortalGroupStr;
CHAR16 *LunStr;
CHAR16 *HeaderDigestStr;
CHAR16 *DataDigestStr;
CHAR16 *AuthenticationStr;
CHAR16 *ProtocolStr;
ISCSI_DEVICE_PATH_WITH_NAME *iSCSI;
NameStr = GetNextParamStr (&TextDeviceNode);
PortalGroupStr = GetNextParamStr (&TextDeviceNode);
LunStr = GetNextParamStr (&TextDeviceNode);
HeaderDigestStr = GetNextParamStr (&TextDeviceNode);
DataDigestStr = GetNextParamStr (&TextDeviceNode);
AuthenticationStr = GetNextParamStr (&TextDeviceNode);
ProtocolStr = GetNextParamStr (&TextDeviceNode);
iSCSI = (ISCSI_DEVICE_PATH_WITH_NAME *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_ISCSI_DP,
sizeof (ISCSI_DEVICE_PATH_WITH_NAME) + (UINT16) (StrLen (NameStr) * 2)
);
StrCpy (iSCSI->iSCSITargetName, NameStr);
iSCSI->TargetPortalGroupTag = (UINT16) Xtoi (PortalGroupStr);
Xtoi64 (LunStr, &iSCSI->Lun);
Options = 0x0000;
if (StrCmp (HeaderDigestStr, L"CRC32C") == 0) {
Options |= 0x0002;
}
if (StrCmp (DataDigestStr, L"CRC32C") == 0) {
Options |= 0x0008;
}
if (StrCmp (AuthenticationStr, L"None") == 0) {
Options |= 0x0800;
}
if (StrCmp (AuthenticationStr, L"CHAP_UNI") == 0) {
Options |= 0x1000;
}
iSCSI->LoginOption = (UINT16) Options;
iSCSI->NetworkProtocol = (UINT16) StrCmp (ProtocolStr, L"TCP");
iSCSI->Reserved = (UINT16) 0;
return (EFI_DEVICE_PATH_PROTOCOL *) iSCSI;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextHD (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *PartitionStr;
CHAR16 *TypeStr;
CHAR16 *SignatureStr;
CHAR16 *StartStr;
CHAR16 *SizeStr;
UINT32 Signature32;
EFI_GUID SignatureGuid;
HARDDRIVE_DEVICE_PATH *Hd;
PartitionStr = GetNextParamStr (&TextDeviceNode);
TypeStr = GetNextParamStr (&TextDeviceNode);
SignatureStr = GetNextParamStr (&TextDeviceNode);
StartStr = GetNextParamStr (&TextDeviceNode);
SizeStr = GetNextParamStr (&TextDeviceNode);
Hd = (HARDDRIVE_DEVICE_PATH *) CreateDeviceNode (
MEDIA_DEVICE_PATH,
MEDIA_HARDDRIVE_DP,
sizeof (HARDDRIVE_DEVICE_PATH)
);
Hd->PartitionNumber = (UINT32) Atoi (PartitionStr);
ZeroMem (Hd->Signature, 16);
Hd->MBRType = (UINT8) 0;
if (StrCmp (TypeStr, L"None") == 0) {
Hd->SignatureType = (UINT8) 0;
} else if (StrCmp (TypeStr, L"MBR") == 0) {
Hd->SignatureType = SIGNATURE_TYPE_MBR;
Hd->MBRType = 0x01;
Signature32 = (UINT32) Xtoi (SignatureStr);
CopyMem (Hd->Signature, &Signature32, sizeof (UINT32));
} else if (StrCmp (TypeStr, L"GUID") == 0) {
Hd->SignatureType = SIGNATURE_TYPE_GUID;
Hd->MBRType = 0x02;
StrToGuid (SignatureStr, &SignatureGuid);
CopyMem (Hd->Signature, &SignatureGuid, sizeof (EFI_GUID));
} else {
Hd->SignatureType = 0xff;
}
Xtoi64 (StartStr, &Hd->PartitionStart);
Xtoi64 (SizeStr, &Hd->PartitionSize);
return (EFI_DEVICE_PATH_PROTOCOL *) Hd;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextCDROM (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *EntryStr;
CHAR16 *StartStr;
CHAR16 *SizeStr;
CDROM_DEVICE_PATH *CDROM;
EntryStr = GetNextParamStr (&TextDeviceNode);
StartStr = GetNextParamStr (&TextDeviceNode);
SizeStr = GetNextParamStr (&TextDeviceNode);
CDROM = (CDROM_DEVICE_PATH *) CreateDeviceNode (
MEDIA_DEVICE_PATH,
MEDIA_CDROM_DP,
sizeof (CDROM_DEVICE_PATH)
);
CDROM->BootEntry = (UINT32) Xtoi (EntryStr);
Xtoi64 (StartStr, &CDROM->PartitionStart);
Xtoi64 (SizeStr, &CDROM->PartitionSize);
return (EFI_DEVICE_PATH_PROTOCOL *) CDROM;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenMEDIA (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextVendor (
TextDeviceNode,
MEDIA_DEVICE_PATH,
MEDIA_VENDOR_DP
);
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextFilePath (
IN CHAR16 *TextDeviceNode
)
{
FILEPATH_DEVICE_PATH *File;
File = (FILEPATH_DEVICE_PATH *) CreateDeviceNode (
MEDIA_DEVICE_PATH,
MEDIA_FILEPATH_DP,
sizeof (FILEPATH_DEVICE_PATH) + (UINT16) (StrLen (TextDeviceNode) * 2)
);
StrCpy (File->PathName, TextDeviceNode);
return (EFI_DEVICE_PATH_PROTOCOL *) File;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextMedia (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *GuidStr;
MEDIA_PROTOCOL_DEVICE_PATH *Media;
GuidStr = GetNextParamStr (&TextDeviceNode);
Media = (MEDIA_PROTOCOL_DEVICE_PATH *) CreateDeviceNode (
MEDIA_DEVICE_PATH,
MEDIA_PROTOCOL_DP,
sizeof (MEDIA_PROTOCOL_DEVICE_PATH)
);
StrToGuid (GuidStr, &Media->Protocol);
return (EFI_DEVICE_PATH_PROTOCOL *) Media;
}
STATIC
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextBBS (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *TypeStr;
CHAR16 *IdStr;
CHAR16 *FlagsStr;
UINT8 *AsciiStr;
BBS_BBS_DEVICE_PATH *Bbs;
TypeStr = GetNextParamStr (&TextDeviceNode);
IdStr = GetNextParamStr (&TextDeviceNode);
FlagsStr = GetNextParamStr (&TextDeviceNode);
Bbs = (BBS_BBS_DEVICE_PATH *) CreateDeviceNode (
BBS_DEVICE_PATH,
BBS_BBS_DP,
sizeof (BBS_BBS_DEVICE_PATH) + (UINT16) (StrLen (IdStr))
);
if (StrCmp (TypeStr, L"Floppy") == 0) {
Bbs->DeviceType = BBS_TYPE_FLOPPY;
} else if (StrCmp (TypeStr, L"HD") == 0) {
Bbs->DeviceType = BBS_TYPE_HARDDRIVE;
} else if (StrCmp (TypeStr, L"CDROM") == 0) {
Bbs->DeviceType = BBS_TYPE_CDROM;
} else if (StrCmp (TypeStr, L"PCMCIA") == 0) {
Bbs->DeviceType = BBS_TYPE_PCMCIA;
} else if (StrCmp (TypeStr, L"USB") == 0) {
Bbs->DeviceType = BBS_TYPE_USB;
} else if (StrCmp (TypeStr, L"Network") == 0) {
Bbs->DeviceType = BBS_TYPE_EMBEDDED_NETWORK;
} else {
Bbs->DeviceType = BBS_TYPE_UNKNOWN;
}
AsciiStr = (UINT8 *) Bbs->String;
StrToAscii (IdStr, (CHAR8 **) &AsciiStr);
Bbs->StatusFlag = (UINT16) Xtoi (FlagsStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Bbs;
}
GLOBAL_REMOVE_IF_UNREFERENCED DEVICE_PATH_FROM_TEXT_TABLE DevPathFromTextTable[] = {
{L"Pci", DevPathFromTextPci},
{L"PcCard", DevPathFromTextPcCard},
{L"MemoryMapped", DevPathFromTextMemoryMapped},
{L"VenHw", DevPathFromTextVenHw},
{L"Ctrl", DevPathFromTextCtrl},
{L"Acpi", DevPathFromTextAcpi},
{L"PciRoot", DevPathFromTextPciRoot},
{L"Floppy", DevPathFromTextFloppy},
{L"Keyboard", DevPathFromTextKeyboard},
{L"Serial", DevPathFromTextSerial},
{L"ParallelPort", DevPathFromTextParallelPort},
{L"AcpiEx", DevPathFromTextAcpiEx},
{L"AcpiExp", DevPathFromTextAcpiExp},
{L"Ata", DevPathFromTextAta},
{L"Scsi", DevPathFromTextScsi},
{L"Fibre", DevPathFromTextFibre},
{L"I1394", DevPathFromText1394},
{L"USB", DevPathFromTextUsb},
{L"I2O", DevPathFromTextI2O},
{L"Infiniband", DevPathFromTextInfiniband},
{L"VenMsg", DevPathFromTextVenMsg},
{L"VenPcAnsi", DevPathFromTextVenPcAnsi},
{L"VenVt100", DevPathFromTextVenVt100},
{L"VenVt100Plus", DevPathFromTextVenVt100Plus},
{L"VenUtf8", DevPathFromTextVenUtf8},
{L"UartFlowCtrl", DevPathFromTextUartFlowCtrl},
{L"SAS", DevPathFromTextSAS},
{L"DebugPort", DevPathFromTextDebugPort},
{L"MAC", DevPathFromTextMAC},
{L"IPv4", DevPathFromTextIPv4},
{L"IPv6", DevPathFromTextIPv6},
{L"Uart", DevPathFromTextUart},
{L"UsbClass", DevPathFromTextUsbClass},
{L"UsbAudio", DevPathFromTextUsbAudio},
{L"UsbCDCControl", DevPathFromTextUsbCDCControl},
{L"UsbHID", DevPathFromTextUsbHID},
{L"UsbImage", DevPathFromTextUsbImage},
{L"UsbPrinter", DevPathFromTextUsbPrinter},
{L"UsbMassStorage", DevPathFromTextUsbMassStorage},
{L"UsbHub", DevPathFromTextUsbHub},
{L"UsbCDCData", DevPathFromTextUsbCDCData},
{L"UsbSmartCard", DevPathFromTextUsbSmartCard},
{L"UsbVideo", DevPathFromTextUsbVideo},
{L"UsbDiagnostic", DevPathFromTextUsbDiagnostic},
{L"UsbWireless", DevPathFromTextUsbWireless},
{L"UsbDeviceFirmwareUpdate", DevPathFromTextUsbDeviceFirmwareUpdate},
{L"UsbIrdaBridge", DevPathFromTextUsbIrdaBridge},
{L"UsbTestAndMeasurement", DevPathFromTextUsbTestAndMeasurement},
{L"UsbWwid", DevPathFromTextUsbWwid},
{L"Unit", DevPathFromTextUnit},
{L"iSCSI", DevPathFromTextiSCSI},
{L"HD", DevPathFromTextHD},
{L"CDROM", DevPathFromTextCDROM},
{L"VenMEDIA", DevPathFromTextVenMEDIA},
{L"Media", DevPathFromTextMedia},
{L"BBS", DevPathFromTextBBS},
{NULL, NULL}
};
EFI_DEVICE_PATH_PROTOCOL *
ConvertTextToDeviceNode (
IN CONST CHAR16 *TextDeviceNode
)
/*++
Routine Description:
Convert text to the binary representation of a device node.
Arguments:
TextDeviceNode - TextDeviceNode points to the text representation of a device
node. Conversion starts with the first character and continues
until the first non-device node character.
Returns:
A pointer - Pointer to the EFI device node.
NULL - If TextDeviceNode is NULL or there was insufficient memory or text unsupported.
--*/
{
EFI_DEVICE_PATH_PROTOCOL * (*DumpNode) (CHAR16 *);
CHAR16 *ParamStr;
EFI_DEVICE_PATH_PROTOCOL *DeviceNode;
CHAR16 *DeviceNodeStr;
UINTN Index;
if ((TextDeviceNode == NULL) || (IS_NULL (*TextDeviceNode))) {
return NULL;
}
ParamStr = NULL;
DumpNode = NULL;
DeviceNodeStr = StrDuplicate (TextDeviceNode);
for (Index = 0; DevPathFromTextTable[Index].Function; Index++) {
ParamStr = GetParamByNodeName (DeviceNodeStr, DevPathFromTextTable[Index].DevicePathNodeText);
if (ParamStr != NULL) {
DumpNode = DevPathFromTextTable[Index].Function;
break;
}
}
if (DumpNode == NULL) {
//
// A file path
//
DumpNode = DevPathFromTextFilePath;
DeviceNode = DumpNode (DeviceNodeStr);
} else {
DeviceNode = DumpNode (ParamStr);
FreePool (ParamStr);
}
FreePool (DeviceNodeStr);
return DeviceNode;
}
EFI_DEVICE_PATH_PROTOCOL *
ConvertTextToDevicePath (
IN CONST CHAR16 *TextDevicePath
)
/*++
Routine Description:
Convert text to the binary representation of a device path.
Arguments:
TextDevicePath - TextDevicePath points to the text representation of a device
path. Conversion starts with the first character and continues
until the first non-device node character.
Returns:
A pointer - Pointer to the allocated device path.
NULL - If TextDeviceNode is NULL or there was insufficient memory.
--*/
{
EFI_DEVICE_PATH_PROTOCOL * (*DumpNode) (CHAR16 *);
CHAR16 *ParamStr;
EFI_DEVICE_PATH_PROTOCOL *DeviceNode;
UINTN Index;
EFI_DEVICE_PATH_PROTOCOL *NewDevicePath;
CHAR16 *DevicePathStr;
CHAR16 *Str;
CHAR16 *DeviceNodeStr;
UINT8 IsInstanceEnd;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
if ((TextDevicePath == NULL) || (IS_NULL (*TextDevicePath))) {
return NULL;
}
DevicePath = (EFI_DEVICE_PATH_PROTOCOL *) AllocatePool (END_DEVICE_PATH_LENGTH);
SetDevicePathEndNode (DevicePath);
ParamStr = NULL;
DeviceNodeStr = NULL;
DevicePathStr = StrDuplicate (TextDevicePath);
Str = DevicePathStr;
while ((DeviceNodeStr = GetNextDeviceNodeStr (&Str, &IsInstanceEnd)) != NULL) {
DumpNode = NULL;
for (Index = 0; DevPathFromTextTable[Index].Function; Index++) {
ParamStr = GetParamByNodeName (DeviceNodeStr, DevPathFromTextTable[Index].DevicePathNodeText);
if (ParamStr != NULL) {
DumpNode = DevPathFromTextTable[Index].Function;
break;
}
}
if (DumpNode == NULL) {
//
// A file path
//
DumpNode = DevPathFromTextFilePath;
DeviceNode = DumpNode (DeviceNodeStr);
} else {
DeviceNode = DumpNode (ParamStr);
FreePool (ParamStr);
}
NewDevicePath = AppendDeviceNodeProtocolInterface (DevicePath, DeviceNode);
FreePool (DevicePath);
FreePool (DeviceNode);
DevicePath = NewDevicePath;
if (IsInstanceEnd) {
DeviceNode = (EFI_DEVICE_PATH_PROTOCOL *) AllocatePool (END_DEVICE_PATH_LENGTH);
SetDevicePathInstanceEndNode (DeviceNode);
NewDevicePath = AppendDeviceNodeProtocolInterface (DevicePath, DeviceNode);
FreePool (DevicePath);
FreePool (DeviceNode);
DevicePath = NewDevicePath;
}
}
FreePool (DevicePathStr);
return DevicePath;
}