mirror of https://github.com/acidanthera/audk.git
2182 lines
66 KiB
C
2182 lines
66 KiB
C
/** @file
|
|
The implementation of IPsec.
|
|
|
|
Copyright (c) 2009 - 2011, Intel Corporation. All rights reserved.<BR>
|
|
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php.
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include "IpSecImpl.h"
|
|
#include "IkeService.h"
|
|
#include "IpSecDebug.h"
|
|
#include "IpSecCryptIo.h"
|
|
#include "IpSecConfigImpl.h"
|
|
|
|
/**
|
|
Check if the specified Address is the Valid Address Range.
|
|
|
|
This function checks if the bytes after prefixed length are all Zero in this
|
|
Address. This Address is supposed to point to a range address. That means it
|
|
should gives the correct prefixed address and the bytes outside the prefixed are
|
|
zero.
|
|
|
|
@param[in] IpVersion The IP version.
|
|
@param[in] Address Points to EFI_IP_ADDRESS to be checked.
|
|
@param[in] PrefixLength The PrefixeLength of this address.
|
|
|
|
@retval TRUE The address is a vaild address range.
|
|
@retval FALSE The address is not a vaild address range.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IpSecValidAddressRange (
|
|
IN UINT8 IpVersion,
|
|
IN EFI_IP_ADDRESS *Address,
|
|
IN UINT8 PrefixLength
|
|
)
|
|
{
|
|
UINT8 Div;
|
|
UINT8 Mod;
|
|
UINT8 Mask;
|
|
UINT8 AddrLen;
|
|
UINT8 *Addr;
|
|
EFI_IP_ADDRESS ZeroAddr;
|
|
|
|
if (PrefixLength == 0) {
|
|
return TRUE;
|
|
}
|
|
|
|
AddrLen = (UINT8) ((IpVersion == IP_VERSION_4) ? 32 : 128);
|
|
|
|
if (AddrLen <= PrefixLength) {
|
|
return FALSE;
|
|
}
|
|
|
|
Div = (UINT8) (PrefixLength / 8);
|
|
Mod = (UINT8) (PrefixLength % 8);
|
|
Addr = (UINT8 *) Address;
|
|
ZeroMem (&ZeroAddr, sizeof (EFI_IP_ADDRESS));
|
|
|
|
//
|
|
// Check whether the mod part of host scope is zero or not.
|
|
//
|
|
if (Mod > 0) {
|
|
Mask = (UINT8) (0xFF << (8 - Mod));
|
|
|
|
if ((Addr[Div] | Mask) != Mask) {
|
|
return FALSE;
|
|
}
|
|
|
|
Div++;
|
|
}
|
|
//
|
|
// Check whether the div part of host scope is zero or not.
|
|
//
|
|
if (CompareMem (
|
|
&Addr[Div],
|
|
&ZeroAddr,
|
|
sizeof (EFI_IP_ADDRESS) - Div
|
|
) != 0) {
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
Extrct the Address Range from a Address.
|
|
|
|
This function keep the prefix address and zero other part address.
|
|
|
|
@param[in] Address Point to a specified address.
|
|
@param[in] PrefixLength The prefix length.
|
|
@param[out] Range Contain the return Address Range.
|
|
|
|
**/
|
|
VOID
|
|
IpSecExtractAddressRange (
|
|
IN EFI_IP_ADDRESS *Address,
|
|
IN UINT8 PrefixLength,
|
|
OUT EFI_IP_ADDRESS *Range
|
|
)
|
|
{
|
|
UINT8 Div;
|
|
UINT8 Mod;
|
|
UINT8 Mask;
|
|
UINT8 *Addr;
|
|
|
|
if (PrefixLength == 0) {
|
|
return ;
|
|
}
|
|
|
|
Div = (UINT8) (PrefixLength / 8);
|
|
Mod = (UINT8) (PrefixLength % 8);
|
|
Addr = (UINT8 *) Range;
|
|
|
|
CopyMem (Range, Address, sizeof (EFI_IP_ADDRESS));
|
|
|
|
//
|
|
// Zero the mod part of host scope.
|
|
//
|
|
if (Mod > 0) {
|
|
Mask = (UINT8) (0xFF << (8 - Mod));
|
|
Addr[Div] = (UINT8) (Addr[Div] & Mask);
|
|
Div++;
|
|
}
|
|
//
|
|
// Zero the div part of host scope.
|
|
//
|
|
ZeroMem (&Addr[Div], sizeof (EFI_IP_ADDRESS) - Div);
|
|
|
|
}
|
|
|
|
/**
|
|
Checks if the IP Address in the address range of AddressInfos specified.
|
|
|
|
@param[in] IpVersion The IP version.
|
|
@param[in] IpAddr Point to EFI_IP_ADDRESS to be check.
|
|
@param[in] AddressInfo A list of EFI_IP_ADDRESS_INFO that is used to check
|
|
the IP Address is matched.
|
|
@param[in] AddressCount The total numbers of the AddressInfo.
|
|
|
|
@retval TRUE If the Specified IP Address is in the range of the AddressInfos specified.
|
|
@retval FALSE If the Specified IP Address is not in the range of the AddressInfos specified.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IpSecMatchIpAddress (
|
|
IN UINT8 IpVersion,
|
|
IN EFI_IP_ADDRESS *IpAddr,
|
|
IN EFI_IP_ADDRESS_INFO *AddressInfo,
|
|
IN UINT32 AddressCount
|
|
)
|
|
{
|
|
EFI_IP_ADDRESS Range;
|
|
UINT32 Index;
|
|
BOOLEAN IsMatch;
|
|
|
|
IsMatch = FALSE;
|
|
|
|
for (Index = 0; Index < AddressCount; Index++) {
|
|
//
|
|
// Check whether the target address is in the address range
|
|
// if it's a valid range of address.
|
|
//
|
|
if (IpSecValidAddressRange (
|
|
IpVersion,
|
|
&AddressInfo[Index].Address,
|
|
AddressInfo[Index].PrefixLength
|
|
)) {
|
|
//
|
|
// Get the range of the target address belongs to.
|
|
//
|
|
ZeroMem (&Range, sizeof (EFI_IP_ADDRESS));
|
|
IpSecExtractAddressRange (
|
|
IpAddr,
|
|
AddressInfo[Index].PrefixLength,
|
|
&Range
|
|
);
|
|
|
|
if (CompareMem (
|
|
&Range,
|
|
&AddressInfo[Index].Address,
|
|
sizeof (EFI_IP_ADDRESS)
|
|
) == 0) {
|
|
//
|
|
// The target address is in the address range.
|
|
//
|
|
IsMatch = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (CompareMem (
|
|
IpAddr,
|
|
&AddressInfo[Index].Address,
|
|
sizeof (EFI_IP_ADDRESS)
|
|
) == 0) {
|
|
//
|
|
// The target address is exact same as the address.
|
|
//
|
|
IsMatch = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
return IsMatch;
|
|
}
|
|
|
|
/**
|
|
Check if the specified Protocol and Prot is supported by the specified SPD Entry.
|
|
|
|
This function is the subfunction of IPsecLookUpSpdEntry() that is used to
|
|
check if the sent/received IKE packet has the related SPD entry support.
|
|
|
|
@param[in] Protocol The Protocol to be checked.
|
|
@param[in] IpPayload Point to IP Payload to be check.
|
|
@param[in] SpdProtocol The Protocol supported by SPD.
|
|
@param[in] SpdLocalPort The Local Port in SPD.
|
|
@param[in] SpdRemotePort The Remote Port in SPD.
|
|
@param[in] IsOutbound Flag to indicate the is for IKE Packet sending or recieving.
|
|
|
|
@retval TRUE The Protocol and Port are supported by the SPD Entry.
|
|
@retval FALSE The Protocol and Port are not supported by the SPD Entry.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IpSecMatchNextLayerProtocol (
|
|
IN UINT8 Protocol,
|
|
IN UINT8 *IpPayload,
|
|
IN UINT16 SpdProtocol,
|
|
IN UINT16 SpdLocalPort,
|
|
IN UINT16 SpdRemotePort,
|
|
IN BOOLEAN IsOutbound
|
|
)
|
|
{
|
|
BOOLEAN IsMatch;
|
|
|
|
if (SpdProtocol == EFI_IPSEC_ANY_PROTOCOL) {
|
|
return TRUE;
|
|
}
|
|
|
|
IsMatch = FALSE;
|
|
|
|
if (SpdProtocol == Protocol) {
|
|
switch (Protocol) {
|
|
case EFI_IP_PROTO_UDP:
|
|
case EFI_IP_PROTO_TCP:
|
|
//
|
|
// For udp and tcp, (0, 0) means no need to check local and remote
|
|
// port. The payload is passed from upper level, which means it should
|
|
// be in network order.
|
|
//
|
|
IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
|
|
IsMatch = (BOOLEAN) (IsMatch ||
|
|
(IsOutbound &&
|
|
(BOOLEAN)(
|
|
NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdLocalPort &&
|
|
NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdRemotePort
|
|
)
|
|
));
|
|
|
|
IsMatch = (BOOLEAN) (IsMatch ||
|
|
(!IsOutbound &&
|
|
(BOOLEAN)(
|
|
NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdLocalPort &&
|
|
NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdRemotePort
|
|
)
|
|
));
|
|
break;
|
|
|
|
case EFI_IP_PROTO_ICMP:
|
|
//
|
|
// For icmpv4, type code is replaced with local port and remote port,
|
|
// and (0, 0) means no need to check.
|
|
//
|
|
IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
|
|
IsMatch = (BOOLEAN) (IsMatch ||
|
|
(BOOLEAN) (((IP4_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
|
|
((IP4_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
|
|
)
|
|
);
|
|
break;
|
|
|
|
case IP6_ICMP:
|
|
//
|
|
// For icmpv6, type code is replaced with local port and remote port,
|
|
// and (0, 0) means no need to check.
|
|
//
|
|
IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
|
|
|
|
IsMatch = (BOOLEAN) (IsMatch ||
|
|
(BOOLEAN) (((IP6_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
|
|
((IP6_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
|
|
)
|
|
);
|
|
break;
|
|
|
|
default:
|
|
IsMatch = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return IsMatch;
|
|
}
|
|
|
|
/**
|
|
Find the SAD through a specified SPD's SAD list.
|
|
|
|
@param[in] SadList SAD list related to a specified SPD entry.
|
|
@param[in] DestAddress The destination address used to find the SAD entry.
|
|
@param[in] IpVersion The IP version. Ip4 or Ip6.
|
|
|
|
@return The pointer to a certain SAD entry.
|
|
|
|
**/
|
|
IPSEC_SAD_ENTRY *
|
|
IpSecLookupSadBySpd (
|
|
IN LIST_ENTRY *SadList,
|
|
IN EFI_IP_ADDRESS *DestAddress,
|
|
IN UINT8 IpVersion
|
|
)
|
|
{
|
|
LIST_ENTRY *Entry;
|
|
IPSEC_SAD_ENTRY *SadEntry;
|
|
|
|
NET_LIST_FOR_EACH (Entry, SadList) {
|
|
|
|
SadEntry = IPSEC_SAD_ENTRY_FROM_SPD (Entry);
|
|
//
|
|
// Find the right SAD entry which contains the appointed dest address.
|
|
//
|
|
if (IpSecMatchIpAddress (
|
|
IpVersion,
|
|
DestAddress,
|
|
SadEntry->Data->SpdSelector->RemoteAddress,
|
|
SadEntry->Data->SpdSelector->RemoteAddressCount
|
|
)){
|
|
return SadEntry;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
Find the SAD through whole SAD list.
|
|
|
|
@param[in] Spi The SPI used to search the SAD entry.
|
|
@param[in] DestAddress The destination used to search the SAD entry.
|
|
@param[in] IpVersion The IP version. Ip4 or Ip6.
|
|
|
|
@return the pointer to a certain SAD entry.
|
|
|
|
**/
|
|
IPSEC_SAD_ENTRY *
|
|
IpSecLookupSadBySpi (
|
|
IN UINT32 Spi,
|
|
IN EFI_IP_ADDRESS *DestAddress,
|
|
IN UINT8 IpVersion
|
|
)
|
|
{
|
|
LIST_ENTRY *Entry;
|
|
LIST_ENTRY *SadList;
|
|
IPSEC_SAD_ENTRY *SadEntry;
|
|
|
|
SadList = &mConfigData[IPsecConfigDataTypeSad];
|
|
|
|
NET_LIST_FOR_EACH (Entry, SadList) {
|
|
|
|
SadEntry = IPSEC_SAD_ENTRY_FROM_LIST (Entry);
|
|
|
|
//
|
|
// Find the right SAD entry which contain the appointed spi and dest addr.
|
|
//
|
|
if (SadEntry->Id->Spi == Spi) {
|
|
if (SadEntry->Data->Mode == EfiIPsecTunnel) {
|
|
if (CompareMem (
|
|
&DestAddress,
|
|
&SadEntry->Data->TunnelDestAddress,
|
|
sizeof (EFI_IP_ADDRESS)
|
|
)) {
|
|
return SadEntry;
|
|
}
|
|
} else {
|
|
if (SadEntry->Data->SpdSelector != NULL &&
|
|
IpSecMatchIpAddress (
|
|
IpVersion,
|
|
DestAddress,
|
|
SadEntry->Data->SpdSelector->RemoteAddress,
|
|
SadEntry->Data->SpdSelector->RemoteAddressCount
|
|
)
|
|
) {
|
|
return SadEntry;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
Look up if there is existing SAD entry for specified IP packet sending.
|
|
|
|
This function is called by the IPsecProcess when there is some IP packet needed to
|
|
send out. This function checks if there is an existing SAD entry that can be serviced
|
|
to this IP packet sending. If no existing SAD entry could be used, this
|
|
function will invoke an IPsec Key Exchange Negotiation.
|
|
|
|
@param[in] Private Points to private data.
|
|
@param[in] NicHandle Points to a NIC handle.
|
|
@param[in] IpVersion The version of IP.
|
|
@param[in] IpHead The IP Header of packet to be sent out.
|
|
@param[in] IpPayload The IP Payload to be sent out.
|
|
@param[in] OldLastHead The Last protocol of the IP packet.
|
|
@param[in] SpdEntry Points to a related SPD entry.
|
|
@param[out] SadEntry Contains the Point of a related SAD entry.
|
|
|
|
@retval EFI_DEVICE_ERROR One of following conditions is TRUE:
|
|
- If don't find related UDP service.
|
|
- Sequence Number is used up.
|
|
- Extension Sequence Number is used up.
|
|
@retval EFI_NOT_READY No existing SAD entry could be used.
|
|
@retval EFI_SUCCESS Find the related SAD entry.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
IpSecLookupSadEntry (
|
|
IN IPSEC_PRIVATE_DATA *Private,
|
|
IN EFI_HANDLE NicHandle,
|
|
IN UINT8 IpVersion,
|
|
IN VOID *IpHead,
|
|
IN UINT8 *IpPayload,
|
|
IN UINT8 OldLastHead,
|
|
IN IPSEC_SPD_ENTRY *SpdEntry,
|
|
OUT IPSEC_SAD_ENTRY **SadEntry
|
|
)
|
|
{
|
|
IKE_UDP_SERVICE *UdpService;
|
|
IPSEC_SAD_ENTRY *Entry;
|
|
IPSEC_SAD_DATA *Data;
|
|
EFI_IP_ADDRESS DestIp;
|
|
UINT32 SeqNum32;
|
|
|
|
*SadEntry = NULL;
|
|
UdpService = IkeLookupUdp (Private, NicHandle, IpVersion);
|
|
|
|
if (UdpService == NULL) {
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
//
|
|
// Parse the destination address from ip header.
|
|
//
|
|
ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
|
|
if (IpVersion == IP_VERSION_4) {
|
|
CopyMem (
|
|
&DestIp,
|
|
&((IP4_HEAD *) IpHead)->Dst,
|
|
sizeof (IP4_ADDR)
|
|
);
|
|
} else {
|
|
CopyMem (
|
|
&DestIp,
|
|
&((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
|
|
sizeof (EFI_IP_ADDRESS)
|
|
);
|
|
}
|
|
|
|
//
|
|
// Find the SAD entry in the spd.sas list according to the dest address.
|
|
//
|
|
Entry = IpSecLookupSadBySpd (&SpdEntry->Data->Sas, &DestIp, IpVersion);
|
|
|
|
if (Entry == NULL) {
|
|
|
|
if (OldLastHead != IP6_ICMP ||
|
|
(OldLastHead == IP6_ICMP && *IpPayload == ICMP_V6_ECHO_REQUEST)
|
|
) {
|
|
//
|
|
// Start ike negotiation process except the request packet of ping.
|
|
//
|
|
if (SpdEntry->Data->ProcessingPolicy->Mode == EfiIPsecTunnel) {
|
|
IkeNegotiate (
|
|
UdpService,
|
|
SpdEntry,
|
|
&SpdEntry->Data->ProcessingPolicy->TunnelOption->RemoteTunnelAddress
|
|
);
|
|
} else {
|
|
IkeNegotiate (
|
|
UdpService,
|
|
SpdEntry,
|
|
&DestIp
|
|
);
|
|
}
|
|
|
|
}
|
|
|
|
return EFI_NOT_READY;
|
|
}
|
|
|
|
Data = Entry->Data;
|
|
|
|
if (!Data->ManualSet) {
|
|
if (Data->ESNEnabled) {
|
|
//
|
|
// Validate the 64bit sn number if 64bit sn enabled.
|
|
//
|
|
if ((UINT64) (Data->SequenceNumber + 1) == 0) {
|
|
//
|
|
// TODO: Re-negotiate SA
|
|
//
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
} else {
|
|
//
|
|
// Validate the 32bit sn number if 64bit sn disabled.
|
|
//
|
|
SeqNum32 = (UINT32) Data->SequenceNumber;
|
|
if ((UINT32) (SeqNum32 + 1) == 0) {
|
|
//
|
|
// TODO: Re-negotiate SA
|
|
//
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
*SadEntry = Entry;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Find a PAD entry according to a remote IP address.
|
|
|
|
@param[in] IpVersion The version of IP.
|
|
@param[in] IpAddr Points to remote IP address.
|
|
|
|
@return the pointer of related PAD entry.
|
|
|
|
**/
|
|
IPSEC_PAD_ENTRY *
|
|
IpSecLookupPadEntry (
|
|
IN UINT8 IpVersion,
|
|
IN EFI_IP_ADDRESS *IpAddr
|
|
)
|
|
{
|
|
LIST_ENTRY *PadList;
|
|
LIST_ENTRY *Entry;
|
|
EFI_IP_ADDRESS_INFO *IpAddrInfo;
|
|
IPSEC_PAD_ENTRY *PadEntry;
|
|
|
|
PadList = &mConfigData[IPsecConfigDataTypePad];
|
|
|
|
for (Entry = PadList->ForwardLink; Entry != PadList; Entry = Entry->ForwardLink) {
|
|
|
|
PadEntry = IPSEC_PAD_ENTRY_FROM_LIST (Entry);
|
|
IpAddrInfo = &PadEntry->Id->Id.IpAddress;
|
|
//
|
|
// Find the right pad entry which contain the appointed dest addr.
|
|
//
|
|
if (IpSecMatchIpAddress (IpVersion, IpAddr, IpAddrInfo, 1)) {
|
|
return PadEntry;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
Check if the specified IP packet can be serviced by this SPD entry.
|
|
|
|
@param[in] SpdEntry Point to SPD entry.
|
|
@param[in] IpVersion Version of IP.
|
|
@param[in] IpHead Point to IP header.
|
|
@param[in] IpPayload Point to IP payload.
|
|
@param[in] Protocol The Last protocol of IP packet.
|
|
@param[in] IsOutbound Traffic direction.
|
|
@param[out] Action The support action of SPD entry.
|
|
|
|
@retval EFI_SUCCESS Find the related SPD.
|
|
@retval EFI_NOT_FOUND Not find the related SPD entry;
|
|
|
|
**/
|
|
EFI_STATUS
|
|
IpSecLookupSpdEntry (
|
|
IN IPSEC_SPD_ENTRY *SpdEntry,
|
|
IN UINT8 IpVersion,
|
|
IN VOID *IpHead,
|
|
IN UINT8 *IpPayload,
|
|
IN UINT8 Protocol,
|
|
IN BOOLEAN IsOutbound,
|
|
OUT EFI_IPSEC_ACTION *Action
|
|
)
|
|
{
|
|
EFI_IPSEC_SPD_SELECTOR *SpdSel;
|
|
IP4_HEAD *Ip4;
|
|
EFI_IP6_HEADER *Ip6;
|
|
EFI_IP_ADDRESS SrcAddr;
|
|
EFI_IP_ADDRESS DstAddr;
|
|
BOOLEAN SpdMatch;
|
|
|
|
ASSERT (SpdEntry != NULL);
|
|
SpdSel = SpdEntry->Selector;
|
|
Ip4 = (IP4_HEAD *) IpHead;
|
|
Ip6 = (EFI_IP6_HEADER *) IpHead;
|
|
|
|
ZeroMem (&SrcAddr, sizeof (EFI_IP_ADDRESS));
|
|
ZeroMem (&DstAddr, sizeof (EFI_IP_ADDRESS));
|
|
|
|
//
|
|
// Parse the source and destination address from ip header.
|
|
//
|
|
if (IpVersion == IP_VERSION_4) {
|
|
CopyMem (&SrcAddr, &Ip4->Src, sizeof (IP4_ADDR));
|
|
CopyMem (&DstAddr, &Ip4->Dst, sizeof (IP4_ADDR));
|
|
} else {
|
|
CopyMem (&SrcAddr, &Ip6->SourceAddress, sizeof (EFI_IPv6_ADDRESS));
|
|
CopyMem (&DstAddr, &Ip6->DestinationAddress, sizeof (EFI_IPv6_ADDRESS));
|
|
}
|
|
//
|
|
// Check the local and remote addresses for outbound traffic
|
|
//
|
|
SpdMatch = (BOOLEAN)(IsOutbound &&
|
|
IpSecMatchIpAddress (
|
|
IpVersion,
|
|
&SrcAddr,
|
|
SpdSel->LocalAddress,
|
|
SpdSel->LocalAddressCount
|
|
) &&
|
|
IpSecMatchIpAddress (
|
|
IpVersion,
|
|
&DstAddr,
|
|
SpdSel->RemoteAddress,
|
|
SpdSel->RemoteAddressCount
|
|
)
|
|
);
|
|
|
|
//
|
|
// Check the local and remote addresses for inbound traffic
|
|
//
|
|
SpdMatch = (BOOLEAN) (SpdMatch ||
|
|
(!IsOutbound &&
|
|
IpSecMatchIpAddress (
|
|
IpVersion,
|
|
&DstAddr,
|
|
SpdSel->LocalAddress,
|
|
SpdSel->LocalAddressCount
|
|
) &&
|
|
IpSecMatchIpAddress (
|
|
IpVersion,
|
|
&SrcAddr,
|
|
SpdSel->RemoteAddress,
|
|
SpdSel->RemoteAddressCount
|
|
)
|
|
));
|
|
|
|
//
|
|
// Check the next layer protocol and local and remote ports.
|
|
//
|
|
SpdMatch = (BOOLEAN) (SpdMatch &&
|
|
IpSecMatchNextLayerProtocol (
|
|
Protocol,
|
|
IpPayload,
|
|
SpdSel->NextLayerProtocol,
|
|
SpdSel->LocalPort,
|
|
SpdSel->RemotePort,
|
|
IsOutbound
|
|
)
|
|
);
|
|
|
|
if (SpdMatch) {
|
|
//
|
|
// Find the right SPD entry if match the 5 key elements.
|
|
//
|
|
*Action = SpdEntry->Data->Action;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
/**
|
|
The call back function of NetbufFromExt.
|
|
|
|
@param[in] Arg The argument passed from the caller.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
IpSecOnRecyclePacket (
|
|
IN VOID *Arg
|
|
)
|
|
{
|
|
}
|
|
|
|
/**
|
|
This is a Notification function. It is called when the related IP6_TXTOKEN_WRAP
|
|
is released.
|
|
|
|
@param[in] Event The related event.
|
|
@param[in] Context The data passed by the caller.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
IpSecRecycleCallback (
|
|
IN EFI_EVENT Event,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
IPSEC_RECYCLE_CONTEXT *RecycleContext;
|
|
|
|
RecycleContext = (IPSEC_RECYCLE_CONTEXT *) Context;
|
|
|
|
if (RecycleContext->FragmentTable != NULL) {
|
|
FreePool (RecycleContext->FragmentTable);
|
|
}
|
|
|
|
if (RecycleContext->PayloadBuffer != NULL) {
|
|
FreePool (RecycleContext->PayloadBuffer);
|
|
}
|
|
|
|
FreePool (RecycleContext);
|
|
gBS->CloseEvent (Event);
|
|
|
|
}
|
|
|
|
/**
|
|
Calculate the extension hader of IP. The return length only doesn't contain
|
|
the fixed IP header length.
|
|
|
|
@param[in] IpHead Points to an IP head to be calculated.
|
|
@param[in] LastHead Points to the last header of the IP header.
|
|
|
|
@return The length of the extension header.
|
|
|
|
**/
|
|
UINT16
|
|
IpSecGetPlainExtHeadSize (
|
|
IN VOID *IpHead,
|
|
IN UINT8 *LastHead
|
|
)
|
|
{
|
|
UINT16 Size;
|
|
|
|
Size = (UINT16) (LastHead - (UINT8 *) IpHead);
|
|
|
|
if (Size > sizeof (EFI_IP6_HEADER)) {
|
|
//
|
|
// * (LastHead+1) point the last header's length but not include the first
|
|
// 8 octers, so this formluation add 8 at the end.
|
|
//
|
|
Size = (UINT16) (Size - sizeof (EFI_IP6_HEADER) + *(LastHead + 1) + 8);
|
|
} else {
|
|
Size = 0;
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
/**
|
|
Verify if the Authentication payload is correct.
|
|
|
|
@param[in] EspBuffer Points to the ESP wrapped buffer.
|
|
@param[in] EspSize The size of the ESP wrapped buffer.
|
|
@param[in] SadEntry The related SAD entry to store the authentication
|
|
algorithm key.
|
|
@param[in] IcvSize The length of ICV.
|
|
|
|
@retval EFI_SUCCESS The authentication data is correct.
|
|
@retval EFI_ACCESS_DENIED The authentication data is not correct.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
IpSecEspAuthVerifyPayload (
|
|
IN UINT8 *EspBuffer,
|
|
IN UINTN EspSize,
|
|
IN IPSEC_SAD_ENTRY *SadEntry,
|
|
IN UINTN IcvSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN AuthSize;
|
|
UINT8 IcvBuffer[12];
|
|
HASH_DATA_FRAGMENT HashFragment[1];
|
|
|
|
//
|
|
// Calculate the size of authentication payload.
|
|
//
|
|
AuthSize = EspSize - IcvSize;
|
|
|
|
//
|
|
// Calculate the icv buffer and size of the payload.
|
|
//
|
|
HashFragment[0].Data = EspBuffer;
|
|
HashFragment[0].DataSize = AuthSize;
|
|
|
|
Status = IpSecCryptoIoHmac (
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
|
|
HashFragment,
|
|
1,
|
|
IcvBuffer,
|
|
IcvSize
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// Compare the calculated icv and the appended original icv.
|
|
//
|
|
if (CompareMem (EspBuffer + AuthSize, IcvBuffer, IcvSize) == 0) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
DEBUG ((DEBUG_ERROR, "Error auth verify payload\n"));
|
|
return EFI_ACCESS_DENIED;
|
|
}
|
|
|
|
/**
|
|
Search the related SAD entry by the input .
|
|
|
|
@param[in] IpHead The pointer to IP header.
|
|
@param[in] IpVersion The version of IP (IP4 or IP6).
|
|
@param[in] Spi The SPI used to search the related SAD entry.
|
|
|
|
|
|
@retval NULL Not find the related SAD entry.
|
|
@retval IPSEC_SAD_ENTRY Return the related SAD entry.
|
|
|
|
**/
|
|
IPSEC_SAD_ENTRY *
|
|
IpSecFoundSadFromInboundPacket (
|
|
UINT8 *IpHead,
|
|
UINT8 IpVersion,
|
|
UINT32 Spi
|
|
)
|
|
{
|
|
EFI_IP_ADDRESS DestIp;
|
|
|
|
//
|
|
// Parse destination address from ip header.
|
|
//
|
|
ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
|
|
if (IpVersion == IP_VERSION_4) {
|
|
CopyMem (
|
|
&DestIp,
|
|
&((IP4_HEAD *) IpHead)->Dst,
|
|
sizeof (IP4_ADDR)
|
|
);
|
|
} else {
|
|
CopyMem (
|
|
&DestIp,
|
|
&((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
|
|
sizeof (EFI_IPv6_ADDRESS)
|
|
);
|
|
}
|
|
|
|
//
|
|
// Lookup SAD entry according to the spi and dest address.
|
|
//
|
|
return IpSecLookupSadBySpi (Spi, &DestIp, IpVersion);
|
|
}
|
|
|
|
/**
|
|
Validate the IP6 extension header format for both the packets we received
|
|
and that we will transmit.
|
|
|
|
@param[in] NextHeader The next header field in IPv6 basic header.
|
|
@param[in] ExtHdrs The first bye of the option.
|
|
@param[in] ExtHdrsLen The length of the whole option.
|
|
@param[out] LastHeader The pointer of NextHeader of the last extension
|
|
header processed by IP6.
|
|
@param[out] RealExtsLen The length of extension headers processed by IP6 layer.
|
|
This is an optional parameter that may be NULL.
|
|
|
|
@retval TRUE The option is properly formated.
|
|
@retval FALSE The option is malformated.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IpSecIsIp6ExtsValid (
|
|
IN UINT8 *NextHeader,
|
|
IN UINT8 *ExtHdrs,
|
|
IN UINT32 ExtHdrsLen,
|
|
OUT UINT8 **LastHeader,
|
|
OUT UINT32 *RealExtsLen OPTIONAL
|
|
)
|
|
{
|
|
UINT32 Pointer;
|
|
UINT8 *Option;
|
|
UINT8 OptionLen;
|
|
BOOLEAN Flag;
|
|
UINT8 CountD;
|
|
UINT8 CountF;
|
|
UINT8 CountA;
|
|
|
|
if (RealExtsLen != NULL) {
|
|
*RealExtsLen = 0;
|
|
}
|
|
|
|
*LastHeader = NextHeader;
|
|
|
|
if (ExtHdrs == NULL && ExtHdrsLen == 0) {
|
|
return TRUE;
|
|
}
|
|
|
|
if ((ExtHdrs == NULL && ExtHdrsLen != 0) || (ExtHdrs != NULL && ExtHdrsLen == 0)) {
|
|
return FALSE;
|
|
}
|
|
|
|
Pointer = 0;
|
|
Flag = FALSE;
|
|
CountD = 0;
|
|
CountF = 0;
|
|
CountA = 0;
|
|
|
|
while (Pointer <= ExtHdrsLen) {
|
|
|
|
switch (*NextHeader) {
|
|
case IP6_HOP_BY_HOP:
|
|
if (Pointer != 0) {
|
|
return FALSE;
|
|
}
|
|
|
|
Flag = TRUE;
|
|
|
|
//
|
|
// Fall through
|
|
//
|
|
case IP6_DESTINATION:
|
|
if (*NextHeader == IP6_DESTINATION) {
|
|
CountD++;
|
|
}
|
|
|
|
if (CountD > 2) {
|
|
return FALSE;
|
|
}
|
|
|
|
NextHeader = ExtHdrs + Pointer;
|
|
|
|
Pointer++;
|
|
Option = ExtHdrs + Pointer;
|
|
OptionLen = (UINT8) ((*Option + 1) * 8 - 2);
|
|
Option++;
|
|
Pointer++;
|
|
|
|
Pointer = Pointer + OptionLen;
|
|
break;
|
|
|
|
case IP6_FRAGMENT:
|
|
if (++CountF > 1) {
|
|
return FALSE;
|
|
}
|
|
//
|
|
// RFC2402, AH header should after fragment header.
|
|
//
|
|
if (CountA > 1) {
|
|
return FALSE;
|
|
}
|
|
|
|
NextHeader = ExtHdrs + Pointer;
|
|
Pointer = Pointer + 8;
|
|
break;
|
|
|
|
case IP6_AH:
|
|
if (++CountA > 1) {
|
|
return FALSE;
|
|
}
|
|
|
|
Option = ExtHdrs + Pointer;
|
|
NextHeader = Option;
|
|
Option++;
|
|
//
|
|
// RFC2402, Payload length is specified in 32-bit words, minus "2".
|
|
//
|
|
OptionLen = (UINT8) ((*Option + 2) * 4);
|
|
Pointer = Pointer + OptionLen;
|
|
break;
|
|
|
|
default:
|
|
*LastHeader = NextHeader;
|
|
if (RealExtsLen != NULL) {
|
|
*RealExtsLen = Pointer;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
*LastHeader = NextHeader;
|
|
|
|
if (RealExtsLen != NULL) {
|
|
*RealExtsLen = Pointer;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
The actual entry to process the tunnel header and inner header for tunnel mode
|
|
outbound traffic.
|
|
|
|
This function is the subfunction of IpSecEspInboundPacket(). It change the destination
|
|
Ip address to the station address and recalculate the uplayyer's checksum.
|
|
|
|
|
|
@param[in, out] IpHead Points to the IP header containing the ESP header
|
|
to be trimed on input, and without ESP header
|
|
on return.
|
|
@param[in] IpPayload The decrypted Ip payload. It start from the inner
|
|
header.
|
|
@param[in] IpVersion The version of IP.
|
|
@param[in] SadData Pointer of the relevant SAD.
|
|
@param[in, out] LastHead The Last Header in IP header on return.
|
|
|
|
**/
|
|
VOID
|
|
IpSecTunnelInboundPacket (
|
|
IN OUT UINT8 *IpHead,
|
|
IN UINT8 *IpPayload,
|
|
IN UINT8 IpVersion,
|
|
IN IPSEC_SAD_DATA *SadData,
|
|
IN OUT UINT8 *LastHead
|
|
)
|
|
{
|
|
EFI_UDP_HEADER *UdpHeader;
|
|
TCP_HEAD *TcpHeader;
|
|
UINT16 *Checksum;
|
|
UINT16 PseudoChecksum;
|
|
UINT16 PacketChecksum;
|
|
UINT32 OptionLen;
|
|
IP6_ICMP_HEAD *Icmp6Head;
|
|
|
|
Checksum = NULL;
|
|
|
|
if (IpVersion == IP_VERSION_4) {
|
|
//
|
|
// Zero OutIP header use this to indicate the input packet is under
|
|
// IPsec Tunnel protected.
|
|
//
|
|
ZeroMem (
|
|
(IP4_HEAD *)IpHead,
|
|
sizeof (IP4_HEAD)
|
|
);
|
|
CopyMem (
|
|
&((IP4_HEAD *)IpPayload)->Dst,
|
|
&SadData->TunnelDestAddress.v4,
|
|
sizeof (EFI_IPv4_ADDRESS)
|
|
);
|
|
|
|
//
|
|
// Recalculate IpHeader Checksum
|
|
//
|
|
if (((IP4_HEAD *)(IpPayload))->Checksum != 0 ) {
|
|
((IP4_HEAD *)(IpPayload))->Checksum = 0;
|
|
((IP4_HEAD *)(IpPayload))->Checksum = (UINT16) (~NetblockChecksum (
|
|
(UINT8 *)IpPayload,
|
|
((IP4_HEAD *)IpPayload)->HeadLen << 2
|
|
));
|
|
|
|
|
|
}
|
|
|
|
//
|
|
// Recalcualte PseudoChecksum
|
|
//
|
|
switch (((IP4_HEAD *)IpPayload)->Protocol) {
|
|
case EFI_IP_PROTO_UDP :
|
|
UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
|
|
Checksum = & UdpHeader->Checksum;
|
|
*Checksum = 0;
|
|
break;
|
|
|
|
case EFI_IP_PROTO_TCP:
|
|
TcpHeader = (TCP_HEAD *) ((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
|
|
Checksum = &TcpHeader->Checksum;
|
|
*Checksum = 0;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
PacketChecksum = NetblockChecksum (
|
|
(UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2),
|
|
NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)
|
|
);
|
|
PseudoChecksum = NetPseudoHeadChecksum (
|
|
((IP4_HEAD *)IpPayload)->Src,
|
|
((IP4_HEAD *)IpPayload)->Dst,
|
|
((IP4_HEAD *)IpPayload)->Protocol,
|
|
0
|
|
);
|
|
|
|
if (Checksum != NULL) {
|
|
*Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
|
|
*Checksum = (UINT16) ~(NetAddChecksum (*Checksum, HTONS((UINT16)(NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)))));
|
|
}
|
|
}else {
|
|
//
|
|
// Zero OutIP header use this to indicate the input packet is under
|
|
// IPsec Tunnel protected.
|
|
//
|
|
ZeroMem (
|
|
IpHead,
|
|
sizeof (EFI_IP6_HEADER)
|
|
);
|
|
CopyMem (
|
|
&((EFI_IP6_HEADER*)IpPayload)->DestinationAddress,
|
|
&SadData->TunnelDestAddress.v6,
|
|
sizeof (EFI_IPv6_ADDRESS)
|
|
);
|
|
|
|
//
|
|
// Get the Extension Header and Header length.
|
|
//
|
|
IpSecIsIp6ExtsValid (
|
|
&((EFI_IP6_HEADER *)IpPayload)->NextHeader,
|
|
IpPayload + sizeof (EFI_IP6_HEADER),
|
|
((EFI_IP6_HEADER *)IpPayload)->PayloadLength,
|
|
&LastHead,
|
|
&OptionLen
|
|
);
|
|
|
|
//
|
|
// Recalcualte PseudoChecksum
|
|
//
|
|
switch (*LastHead) {
|
|
case EFI_IP_PROTO_UDP:
|
|
UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
|
|
Checksum = &UdpHeader->Checksum;
|
|
*Checksum = 0;
|
|
break;
|
|
|
|
case EFI_IP_PROTO_TCP:
|
|
TcpHeader = (TCP_HEAD *)(IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
|
|
Checksum = &TcpHeader->Checksum;
|
|
*Checksum = 0;
|
|
break;
|
|
|
|
case IP6_ICMP:
|
|
Icmp6Head = (IP6_ICMP_HEAD *) (IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
|
|
Checksum = &Icmp6Head->Checksum;
|
|
*Checksum = 0;
|
|
break;
|
|
}
|
|
PacketChecksum = NetblockChecksum (
|
|
IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen,
|
|
NTOHS(((EFI_IP6_HEADER *)IpPayload)->PayloadLength) - OptionLen
|
|
);
|
|
PseudoChecksum = NetIp6PseudoHeadChecksum (
|
|
&((EFI_IP6_HEADER *)IpPayload)->SourceAddress,
|
|
&((EFI_IP6_HEADER *)IpPayload)->DestinationAddress,
|
|
*LastHead,
|
|
0
|
|
);
|
|
|
|
if (Checksum != NULL) {
|
|
*Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
|
|
*Checksum = (UINT16) ~(NetAddChecksum (
|
|
*Checksum,
|
|
HTONS ((UINT16)((NTOHS (((EFI_IP6_HEADER *)(IpPayload))->PayloadLength)) - OptionLen))
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
The actual entry to create inner header for tunnel mode inbound traffic.
|
|
|
|
This function is the subfunction of IpSecEspOutboundPacket(). It create
|
|
the sending packet by encrypting its payload and inserting ESP header in the orginal
|
|
IP header, then return the IpHeader and IPsec protected Fragmentable.
|
|
|
|
@param[in, out] IpHead Points to IP header containing the orginal IP header
|
|
to be processed on input, and inserted ESP header
|
|
on return.
|
|
@param[in] IpVersion The version of IP.
|
|
@param[in] SadData The related SAD data.
|
|
@param[in, out] LastHead The Last Header in IP header.
|
|
@param[in] OptionsBuffer Pointer to the options buffer.
|
|
@param[in] OptionsLength Length of the options buffer.
|
|
@param[in, out] FragmentTable Pointer to a list of fragments to be protected by
|
|
IPsec on input, and with IPsec protected
|
|
on return.
|
|
@param[in] FragmentCount The number of fragments.
|
|
|
|
@retval EFI_SUCCESS The operation was successful.
|
|
@retval EFI_OUT_OF_RESOURCES The required system resources can't be allocated.
|
|
|
|
**/
|
|
UINT8 *
|
|
IpSecTunnelOutboundPacket (
|
|
IN OUT UINT8 *IpHead,
|
|
IN UINT8 IpVersion,
|
|
IN IPSEC_SAD_DATA *SadData,
|
|
IN OUT UINT8 *LastHead,
|
|
IN VOID **OptionsBuffer,
|
|
IN UINT32 *OptionsLength,
|
|
IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
|
|
IN UINT32 *FragmentCount
|
|
)
|
|
{
|
|
UINT8 *InnerHead;
|
|
NET_BUF *Packet;
|
|
UINT16 PacketChecksum;
|
|
UINT16 *Checksum;
|
|
UINT16 PseudoChecksum;
|
|
IP6_ICMP_HEAD *IcmpHead;
|
|
|
|
Checksum = NULL;
|
|
if (OptionsLength == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (IpVersion == IP_VERSION_4) {
|
|
InnerHead = AllocateZeroPool (sizeof (IP4_HEAD) + *OptionsLength);
|
|
ASSERT (InnerHead != NULL);
|
|
CopyMem (
|
|
InnerHead,
|
|
IpHead,
|
|
sizeof (IP4_HEAD)
|
|
);
|
|
CopyMem (
|
|
InnerHead + sizeof (IP4_HEAD),
|
|
*OptionsBuffer,
|
|
*OptionsLength
|
|
);
|
|
} else {
|
|
InnerHead = AllocateZeroPool (sizeof (EFI_IP6_HEADER) + *OptionsLength);
|
|
ASSERT (InnerHead != NULL);
|
|
CopyMem (
|
|
InnerHead,
|
|
IpHead,
|
|
sizeof (EFI_IP6_HEADER)
|
|
);
|
|
CopyMem (
|
|
InnerHead + sizeof (EFI_IP6_HEADER),
|
|
*OptionsBuffer,
|
|
*OptionsLength
|
|
);
|
|
}
|
|
if (OptionsBuffer != NULL) {
|
|
if (*OptionsLength != 0) {
|
|
|
|
*OptionsBuffer = NULL;
|
|
*OptionsLength = 0;
|
|
}
|
|
}
|
|
|
|
//
|
|
// 2. Reassamlbe Fragment into Packet
|
|
//
|
|
Packet = NetbufFromExt (
|
|
(NET_FRAGMENT *)(*FragmentTable),
|
|
*FragmentCount,
|
|
0,
|
|
0,
|
|
IpSecOnRecyclePacket,
|
|
NULL
|
|
);
|
|
ASSERT (Packet != NULL);
|
|
//
|
|
// 3. Check the Last Header, if it is TCP, UDP or ICMP recalcualate its pesudo
|
|
// CheckSum.
|
|
//
|
|
switch (*LastHead) {
|
|
case EFI_IP_PROTO_UDP:
|
|
Packet->Udp = (EFI_UDP_HEADER *) NetbufGetByte (Packet, 0, 0);
|
|
ASSERT (Packet->Udp != NULL);
|
|
Checksum = &Packet->Udp->Checksum;
|
|
*Checksum = 0;
|
|
break;
|
|
|
|
case EFI_IP_PROTO_TCP:
|
|
Packet->Tcp = (TCP_HEAD *) NetbufGetByte (Packet, 0, 0);
|
|
ASSERT (Packet->Tcp != NULL);
|
|
Checksum = &Packet->Tcp->Checksum;
|
|
*Checksum = 0;
|
|
break;
|
|
|
|
case IP6_ICMP:
|
|
IcmpHead = (IP6_ICMP_HEAD *) NetbufGetByte (Packet, 0, NULL);
|
|
ASSERT (IcmpHead != NULL);
|
|
Checksum = &IcmpHead->Checksum;
|
|
*Checksum = 0;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
PacketChecksum = NetbufChecksum (Packet);
|
|
|
|
if (IpVersion == IP_VERSION_4) {
|
|
//
|
|
// Replace the source address of Inner Header.
|
|
//
|
|
CopyMem (
|
|
&((IP4_HEAD *)InnerHead)->Src,
|
|
&SadData->SpdSelector->LocalAddress[0].Address.v4,
|
|
sizeof (EFI_IPv4_ADDRESS)
|
|
);
|
|
|
|
PacketChecksum = NetbufChecksum (Packet);
|
|
PseudoChecksum = NetPseudoHeadChecksum (
|
|
((IP4_HEAD *)InnerHead)->Src,
|
|
((IP4_HEAD *)InnerHead)->Dst,
|
|
*LastHead,
|
|
0
|
|
);
|
|
|
|
} else {
|
|
//
|
|
// Replace the source address of Inner Header.
|
|
//
|
|
CopyMem (
|
|
&((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
|
|
&(SadData->SpdSelector->LocalAddress[0].Address.v6),
|
|
sizeof (EFI_IPv6_ADDRESS)
|
|
);
|
|
PacketChecksum = NetbufChecksum (Packet);
|
|
PseudoChecksum = NetIp6PseudoHeadChecksum (
|
|
&((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
|
|
&((EFI_IP6_HEADER *)InnerHead)->DestinationAddress,
|
|
*LastHead,
|
|
0
|
|
);
|
|
|
|
}
|
|
if (Checksum != NULL) {
|
|
*Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
|
|
*Checksum = (UINT16) ~(NetAddChecksum ((UINT16)*Checksum, HTONS ((UINT16) Packet->TotalSize)));
|
|
}
|
|
|
|
if (Packet != NULL) {
|
|
NetbufFree (Packet);
|
|
}
|
|
return InnerHead;
|
|
}
|
|
|
|
/**
|
|
The actual entry to relative function processes the inbound traffic of ESP header.
|
|
|
|
This function is the subfunction of IpSecProtectInboundPacket(). It checks the
|
|
received packet security property and trim the ESP header and then returns without
|
|
an IPsec protected IP Header and FramgmentTable.
|
|
|
|
@param[in] IpVersion The version of IP.
|
|
@param[in, out] IpHead Points to the IP header containing the ESP header
|
|
to be trimed on input, and without ESP header
|
|
on return.
|
|
@param[out] LastHead The Last Header in IP header on return.
|
|
@param[in, out] OptionsBuffer Pointer to the options buffer.
|
|
@param[in, out] OptionsLength Length of the options buffer.
|
|
@param[in, out] FragmentTable Pointer to a list of fragments in the form of IPsec
|
|
protected on input, and without IPsec protected
|
|
on return.
|
|
@param[in, out] FragmentCount The number of fragments.
|
|
@param[out] SpdSelector Pointer to contain the address of SPD selector on return.
|
|
@param[out] RecycleEvent The event for recycling of resources.
|
|
|
|
@retval EFI_SUCCESS The operation was successful.
|
|
@retval EFI_ACCESS_DENIED One or more following conditions is TRUE:
|
|
- ESP header was not found or mal-format.
|
|
- The related SAD entry was not found.
|
|
- The related SAD entry does not support the ESP protocol.
|
|
@retval EFI_OUT_OF_RESOURCES The required system resource can't be allocated.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
IpSecEspInboundPacket (
|
|
IN UINT8 IpVersion,
|
|
IN OUT VOID *IpHead,
|
|
OUT UINT8 *LastHead,
|
|
IN OUT VOID **OptionsBuffer,
|
|
IN OUT UINT32 *OptionsLength,
|
|
IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
|
|
IN OUT UINT32 *FragmentCount,
|
|
OUT EFI_IPSEC_SPD_SELECTOR **SpdSelector,
|
|
OUT EFI_EVENT *RecycleEvent
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
NET_BUF *Payload;
|
|
UINTN EspSize;
|
|
UINTN IvSize;
|
|
UINTN BlockSize;
|
|
UINTN MiscSize;
|
|
UINTN PlainPayloadSize;
|
|
UINTN PaddingSize;
|
|
UINTN IcvSize;
|
|
UINT8 *ProcessBuffer;
|
|
EFI_ESP_HEADER *EspHeader;
|
|
EFI_ESP_TAIL *EspTail;
|
|
EFI_IPSEC_SA_ID *SaId;
|
|
IPSEC_SAD_DATA *SadData;
|
|
IPSEC_SAD_ENTRY *SadEntry;
|
|
IPSEC_RECYCLE_CONTEXT *RecycleContext;
|
|
UINT8 NextHeader;
|
|
UINT16 IpSecHeadSize;
|
|
UINT8 *InnerHead;
|
|
|
|
Status = EFI_SUCCESS;
|
|
Payload = NULL;
|
|
ProcessBuffer = NULL;
|
|
RecycleContext = NULL;
|
|
*RecycleEvent = NULL;
|
|
PlainPayloadSize = 0;
|
|
NextHeader = 0;
|
|
|
|
//
|
|
// Build netbuf from fragment table first.
|
|
//
|
|
Payload = NetbufFromExt (
|
|
(NET_FRAGMENT *) *FragmentTable,
|
|
*FragmentCount,
|
|
0,
|
|
sizeof (EFI_ESP_HEADER),
|
|
IpSecOnRecyclePacket,
|
|
NULL
|
|
);
|
|
if (Payload == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Get the esp size and esp header from netbuf.
|
|
//
|
|
EspSize = Payload->TotalSize;
|
|
EspHeader = (EFI_ESP_HEADER *) NetbufGetByte (Payload, 0, NULL);
|
|
|
|
if (EspHeader == NULL) {
|
|
Status = EFI_ACCESS_DENIED;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Parse destination address from ip header and found the related SAD Entry.
|
|
//
|
|
SadEntry = IpSecFoundSadFromInboundPacket (
|
|
IpHead,
|
|
IpVersion,
|
|
NTOHL (EspHeader->Spi)
|
|
);
|
|
|
|
if (SadEntry == NULL) {
|
|
Status = EFI_ACCESS_DENIED;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
SaId = SadEntry->Id;
|
|
SadData = SadEntry->Data;
|
|
|
|
//
|
|
// Only support esp protocol currently.
|
|
//
|
|
if (SaId->Proto != EfiIPsecESP) {
|
|
Status = EFI_ACCESS_DENIED;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
if (!SadData->ManualSet) {
|
|
//
|
|
// TODO: Check SA lifetime and sequence number
|
|
//
|
|
}
|
|
|
|
//
|
|
// Allocate buffer for decryption and authentication.
|
|
//
|
|
ProcessBuffer = AllocateZeroPool (EspSize);
|
|
if (ProcessBuffer == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
NetbufCopy (Payload, 0, (UINT32) EspSize, ProcessBuffer);
|
|
|
|
//
|
|
// Get the IcvSize for authentication and BlockSize/IvSize for Decryption.
|
|
//
|
|
IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
|
|
IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
|
|
BlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
|
|
|
|
//
|
|
// Make sure the ESP packet is not mal-formt.
|
|
// 1. Check whether the Espsize is larger than ESP header + IvSize + EspTail + IcvSize.
|
|
// 2. Check whether the left payload size is multiple of IvSize.
|
|
//
|
|
MiscSize = sizeof (EFI_ESP_HEADER) + IvSize + IcvSize;
|
|
if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL))) {
|
|
Status = EFI_ACCESS_DENIED;
|
|
goto ON_EXIT;
|
|
}
|
|
if ((EspSize - MiscSize) % BlockSize != 0) {
|
|
Status = EFI_ACCESS_DENIED;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Authenticate the ESP packet.
|
|
//
|
|
if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
|
|
Status = IpSecEspAuthVerifyPayload (
|
|
ProcessBuffer,
|
|
EspSize,
|
|
SadEntry,
|
|
IcvSize
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
goto ON_EXIT;
|
|
}
|
|
}
|
|
//
|
|
// Decrypt the payload by the SAD entry if it has decrypt key.
|
|
//
|
|
if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
|
|
Status = IpSecCryptoIoDecrypt (
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
|
|
ProcessBuffer + sizeof (EFI_ESP_HEADER),
|
|
ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize,
|
|
EspSize - sizeof (EFI_ESP_HEADER) - IvSize - IcvSize,
|
|
ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
goto ON_EXIT;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Parse EspTail and compute the plain payload size.
|
|
//
|
|
EspTail = (EFI_ESP_TAIL *) (ProcessBuffer + EspSize - IcvSize - sizeof (EFI_ESP_TAIL));
|
|
PaddingSize = EspTail->PaddingLength;
|
|
NextHeader = EspTail->NextHeader;
|
|
|
|
if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL) + PaddingSize)) {
|
|
Status = EFI_ACCESS_DENIED;
|
|
goto ON_EXIT;
|
|
}
|
|
PlainPayloadSize = EspSize - MiscSize - sizeof (EFI_ESP_TAIL) - PaddingSize;
|
|
|
|
//
|
|
// TODO: handle anti-replay window
|
|
//
|
|
//
|
|
// Decryption and authentication with esp has been done, so it's time to
|
|
// reload the new packet, create recycle event and fixup ip header.
|
|
//
|
|
RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
|
|
if (RecycleContext == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
Status = gBS->CreateEvent (
|
|
EVT_NOTIFY_SIGNAL,
|
|
TPL_NOTIFY,
|
|
IpSecRecycleCallback,
|
|
RecycleContext,
|
|
RecycleEvent
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// The caller will take responsible to handle the original fragment table
|
|
//
|
|
*FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
|
|
if (*FragmentTable == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
RecycleContext->PayloadBuffer = ProcessBuffer;
|
|
RecycleContext->FragmentTable = *FragmentTable;
|
|
|
|
//
|
|
// If Tunnel, recalculate upper-layyer PesudoCheckSum and trim the out
|
|
//
|
|
if (SadData->Mode == EfiIPsecTunnel) {
|
|
InnerHead = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
|
|
IpSecTunnelInboundPacket (
|
|
IpHead,
|
|
InnerHead,
|
|
IpVersion,
|
|
SadData,
|
|
LastHead
|
|
);
|
|
|
|
if (IpVersion == IP_VERSION_4) {
|
|
(*FragmentTable)[0].FragmentBuffer = InnerHead ;
|
|
(*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
|
|
|
|
}else {
|
|
(*FragmentTable)[0].FragmentBuffer = InnerHead;
|
|
(*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
|
|
}
|
|
} else {
|
|
(*FragmentTable)[0].FragmentBuffer = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
|
|
(*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
|
|
}
|
|
|
|
*FragmentCount = 1;
|
|
|
|
//
|
|
// Update the total length field in ip header since processed by esp.
|
|
//
|
|
if (!SadData->Mode == EfiIPsecTunnel) {
|
|
if (IpVersion == IP_VERSION_4) {
|
|
((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + PlainPayloadSize));
|
|
} else {
|
|
IpSecHeadSize = IpSecGetPlainExtHeadSize (IpHead, LastHead);
|
|
((EFI_IP6_HEADER *) IpHead)->PayloadLength = HTONS ((UINT16)(IpSecHeadSize + PlainPayloadSize));
|
|
}
|
|
//
|
|
// Update the next layer field in ip header since esp header inserted.
|
|
//
|
|
*LastHead = NextHeader;
|
|
}
|
|
|
|
|
|
//
|
|
// Update the SPD association of the SAD entry.
|
|
//
|
|
*SpdSelector = SadData->SpdSelector;
|
|
|
|
ON_EXIT:
|
|
if (Payload != NULL) {
|
|
NetbufFree (Payload);
|
|
}
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
if (ProcessBuffer != NULL) {
|
|
FreePool (ProcessBuffer);
|
|
}
|
|
|
|
if (RecycleContext != NULL) {
|
|
FreePool (RecycleContext);
|
|
}
|
|
|
|
if (*RecycleEvent != NULL) {
|
|
gBS->CloseEvent (*RecycleEvent);
|
|
}
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
The actual entry to the relative function processes the output traffic using the ESP protocol.
|
|
|
|
This function is the subfunction of IpSecProtectOutboundPacket(). It protected
|
|
the sending packet by encrypting its payload and inserting ESP header in the orginal
|
|
IP header, then return the IpHeader and IPsec protected Fragmentable.
|
|
|
|
@param[in] IpVersion The version of IP.
|
|
@param[in, out] IpHead Points to IP header containing the orginal IP header
|
|
to be processed on input, and inserted ESP header
|
|
on return.
|
|
@param[in, out] LastHead The Last Header in IP header.
|
|
@param[in, out] OptionsBuffer Pointer to the options buffer.
|
|
@param[in, out] OptionsLength Length of the options buffer.
|
|
@param[in, out] FragmentTable Pointer to a list of fragments to be protected by
|
|
IPsec on input, and with IPsec protected
|
|
on return.
|
|
@param[in, out] FragmentCount The number of fragments.
|
|
@param[in] SadEntry The related SAD entry.
|
|
@param[out] RecycleEvent The event for recycling of resources.
|
|
|
|
@retval EFI_SUCCESS The operation was successful.
|
|
@retval EFI_OUT_OF_RESOURCES The required system resources can't be allocated.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
IpSecEspOutboundPacket (
|
|
IN UINT8 IpVersion,
|
|
IN OUT VOID *IpHead,
|
|
IN OUT UINT8 *LastHead,
|
|
IN OUT VOID **OptionsBuffer,
|
|
IN OUT UINT32 *OptionsLength,
|
|
IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
|
|
IN OUT UINT32 *FragmentCount,
|
|
IN IPSEC_SAD_ENTRY *SadEntry,
|
|
OUT EFI_EVENT *RecycleEvent
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN Index;
|
|
EFI_IPSEC_SA_ID *SaId;
|
|
IPSEC_SAD_DATA *SadData;
|
|
IPSEC_RECYCLE_CONTEXT *RecycleContext;
|
|
UINT8 *ProcessBuffer;
|
|
UINTN BytesCopied;
|
|
INTN EncryptBlockSize;// Size of encryption block, 4 bytes aligned and >= 4
|
|
UINTN EspSize; // Total size of esp wrapped ip payload
|
|
UINTN IvSize; // Size of IV, optional, might be 0
|
|
UINTN PlainPayloadSize;// Original IP payload size
|
|
UINTN PaddingSize; // Size of padding
|
|
UINTN EncryptSize; // Size of data to be encrypted, start after IV and
|
|
// stop before ICV
|
|
UINTN IcvSize; // Size of ICV, optional, might be 0
|
|
UINT8 *RestOfPayload; // Start of Payload after IV
|
|
UINT8 *Padding; // Start address of padding
|
|
EFI_ESP_HEADER *EspHeader; // Start address of ESP frame
|
|
EFI_ESP_TAIL *EspTail; // Address behind padding
|
|
UINT8 *InnerHead;
|
|
HASH_DATA_FRAGMENT HashFragment[1];
|
|
|
|
Status = EFI_ACCESS_DENIED;
|
|
SaId = SadEntry->Id;
|
|
SadData = SadEntry->Data;
|
|
ProcessBuffer = NULL;
|
|
RecycleContext = NULL;
|
|
*RecycleEvent = NULL;
|
|
InnerHead = NULL;
|
|
|
|
if (!SadData->ManualSet &&
|
|
SadData->AlgoInfo.EspAlgoInfo.EncKey == NULL &&
|
|
SadData->AlgoInfo.EspAlgoInfo.AuthKey == NULL
|
|
) {
|
|
//
|
|
// Invalid manual SAD entry configuration.
|
|
//
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Create OutHeader according to Inner Header
|
|
//
|
|
if (SadData->Mode == EfiIPsecTunnel) {
|
|
InnerHead = IpSecTunnelOutboundPacket (
|
|
IpHead,
|
|
IpVersion,
|
|
SadData,
|
|
LastHead,
|
|
OptionsBuffer,
|
|
OptionsLength,
|
|
FragmentTable,
|
|
FragmentCount
|
|
);
|
|
|
|
if (InnerHead == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
// Calculate enctrypt block size, need iv by default and 4 bytes alignment.
|
|
//
|
|
EncryptBlockSize = 4;
|
|
|
|
if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
|
|
EncryptBlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
|
|
|
|
if (EncryptBlockSize < 0 || (EncryptBlockSize != 1 && EncryptBlockSize % 4 != 0)) {
|
|
goto ON_EXIT;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Calculate the plain payload size accroding to the fragment table.
|
|
//
|
|
PlainPayloadSize = 0;
|
|
for (Index = 0; Index < *FragmentCount; Index++) {
|
|
PlainPayloadSize += (*FragmentTable)[Index].FragmentLength;
|
|
}
|
|
|
|
//
|
|
// Add IPHeader size for Tunnel Mode
|
|
//
|
|
if (SadData->Mode == EfiIPsecTunnel) {
|
|
if (IpVersion == IP_VERSION_4) {
|
|
PlainPayloadSize += sizeof (IP4_HEAD);
|
|
} else {
|
|
PlainPayloadSize += sizeof (EFI_IP6_HEADER);
|
|
}
|
|
//
|
|
// OPtions should be encryption into it
|
|
//
|
|
PlainPayloadSize += *OptionsLength;
|
|
}
|
|
|
|
|
|
//
|
|
// Calculate icv size, optional by default and 4 bytes alignment.
|
|
//
|
|
IcvSize = 0;
|
|
if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
|
|
IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
|
|
if (IcvSize % 4 != 0) {
|
|
goto ON_EXIT;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Calcuate the total size of esp wrapped ip payload.
|
|
//
|
|
IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
|
|
EncryptSize = (PlainPayloadSize + sizeof (EFI_ESP_TAIL) + EncryptBlockSize - 1) / EncryptBlockSize * EncryptBlockSize;
|
|
PaddingSize = EncryptSize - PlainPayloadSize - sizeof (EFI_ESP_TAIL);
|
|
EspSize = sizeof (EFI_ESP_HEADER) + IvSize + EncryptSize + IcvSize;
|
|
|
|
ProcessBuffer = AllocateZeroPool (EspSize);
|
|
if (ProcessBuffer == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Calculate esp header and esp tail including header, payload and padding.
|
|
//
|
|
EspHeader = (EFI_ESP_HEADER *) ProcessBuffer;
|
|
RestOfPayload = (UINT8 *) (EspHeader + 1) + IvSize;
|
|
Padding = RestOfPayload + PlainPayloadSize;
|
|
EspTail = (EFI_ESP_TAIL *) (Padding + PaddingSize);
|
|
|
|
//
|
|
// Fill the sn and spi fields in esp header.
|
|
//
|
|
EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber + 1);
|
|
//EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber);
|
|
EspHeader->Spi = HTONL (SaId->Spi);
|
|
|
|
//
|
|
// Copy the rest of payload (after iv) from the original fragment buffer.
|
|
//
|
|
BytesCopied = 0;
|
|
|
|
//
|
|
// For Tunnel Mode
|
|
//
|
|
if (SadData->Mode == EfiIPsecTunnel) {
|
|
if (IpVersion == IP_VERSION_4) {
|
|
//
|
|
// HeadLen, Total Length
|
|
//
|
|
((IP4_HEAD *)InnerHead)->HeadLen = (UINT8) ((sizeof (IP4_HEAD) + *OptionsLength) >> 2);
|
|
((IP4_HEAD *)InnerHead)->TotalLen = HTONS ((UINT16) PlainPayloadSize);
|
|
((IP4_HEAD *)InnerHead)->Checksum = 0;
|
|
((IP4_HEAD *)InnerHead)->Checksum = (UINT16) (~NetblockChecksum (
|
|
(UINT8 *)InnerHead,
|
|
sizeof(IP4_HEAD)
|
|
));
|
|
CopyMem (
|
|
RestOfPayload + BytesCopied,
|
|
InnerHead,
|
|
sizeof (IP4_HEAD) + *OptionsLength
|
|
);
|
|
BytesCopied += sizeof (IP4_HEAD) + *OptionsLength;
|
|
|
|
} else {
|
|
((EFI_IP6_HEADER *)InnerHead)->PayloadLength = HTONS ((UINT16) (PlainPayloadSize - sizeof (EFI_IP6_HEADER)));
|
|
CopyMem (
|
|
RestOfPayload + BytesCopied,
|
|
InnerHead,
|
|
sizeof (EFI_IP6_HEADER) + *OptionsLength
|
|
);
|
|
BytesCopied += sizeof (EFI_IP6_HEADER) + *OptionsLength;
|
|
}
|
|
}
|
|
|
|
for (Index = 0; Index < *FragmentCount; Index++) {
|
|
CopyMem (
|
|
(RestOfPayload + BytesCopied),
|
|
(*FragmentTable)[Index].FragmentBuffer,
|
|
(*FragmentTable)[Index].FragmentLength
|
|
);
|
|
BytesCopied += (*FragmentTable)[Index].FragmentLength;
|
|
}
|
|
//
|
|
// Fill the padding buffer by natural number sequence.
|
|
//
|
|
for (Index = 0; Index < PaddingSize; Index++) {
|
|
Padding[Index] = (UINT8) (Index + 1);
|
|
}
|
|
//
|
|
// Fill the padding length and next header fields in esp tail.
|
|
//
|
|
EspTail->PaddingLength = (UINT8) PaddingSize;
|
|
EspTail->NextHeader = *LastHead;
|
|
|
|
//
|
|
// Fill the next header for Tunnel mode.
|
|
//
|
|
if (SadData->Mode == EfiIPsecTunnel) {
|
|
if (IpVersion == IP_VERSION_4) {
|
|
EspTail->NextHeader = 4;
|
|
} else {
|
|
EspTail->NextHeader = 41;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Generate iv at random by crypt library.
|
|
//
|
|
Status = IpSecGenerateIv (
|
|
(UINT8 *) (EspHeader + 1),
|
|
IvSize
|
|
);
|
|
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Encryption the payload (after iv) by the SAD entry if has encrypt key.
|
|
//
|
|
if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
|
|
Status = IpSecCryptoIoEncrypt (
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
|
|
(UINT8 *)(EspHeader + 1),
|
|
RestOfPayload,
|
|
EncryptSize,
|
|
RestOfPayload
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
goto ON_EXIT;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Authenticate the esp wrapped buffer by the SAD entry if it has auth key.
|
|
//
|
|
if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
|
|
|
|
HashFragment[0].Data = ProcessBuffer;
|
|
HashFragment[0].DataSize = EspSize - IcvSize;
|
|
Status = IpSecCryptoIoHmac (
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
|
|
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
|
|
HashFragment,
|
|
1,
|
|
ProcessBuffer + EspSize - IcvSize,
|
|
IcvSize
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
goto ON_EXIT;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Encryption and authentication with esp has been done, so it's time to
|
|
// reload the new packet, create recycle event and fixup ip header.
|
|
//
|
|
RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
|
|
if (RecycleContext == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
Status = gBS->CreateEvent (
|
|
EVT_NOTIFY_SIGNAL,
|
|
TPL_NOTIFY,
|
|
IpSecRecycleCallback,
|
|
RecycleContext,
|
|
RecycleEvent
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
goto ON_EXIT;
|
|
}
|
|
//
|
|
// Caller take responsible to handle the original fragment table.
|
|
//
|
|
*FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
|
|
if (*FragmentTable == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
RecycleContext->FragmentTable = *FragmentTable;
|
|
RecycleContext->PayloadBuffer = ProcessBuffer;
|
|
(*FragmentTable)[0].FragmentBuffer = ProcessBuffer;
|
|
(*FragmentTable)[0].FragmentLength = (UINT32) EspSize;
|
|
*FragmentCount = 1;
|
|
|
|
//
|
|
// Update the total length field in ip header since processed by esp.
|
|
//
|
|
if (IpVersion == IP_VERSION_4) {
|
|
((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + EspSize));
|
|
} else {
|
|
((EFI_IP6_HEADER *) IpHead)->PayloadLength = (UINT16) (IpSecGetPlainExtHeadSize (IpHead, LastHead) + EspSize);
|
|
}
|
|
|
|
//
|
|
// If tunnel mode, it should change the outer Ip header with tunnel source address
|
|
// and destination tunnel address.
|
|
//
|
|
if (SadData->Mode == EfiIPsecTunnel) {
|
|
if (IpVersion == IP_VERSION_4) {
|
|
CopyMem (
|
|
&((IP4_HEAD *) IpHead)->Src,
|
|
&SadData->TunnelSourceAddress.v4,
|
|
sizeof (EFI_IPv4_ADDRESS)
|
|
);
|
|
CopyMem (
|
|
&((IP4_HEAD *) IpHead)->Dst,
|
|
&SadData->TunnelDestAddress.v4,
|
|
sizeof (EFI_IPv4_ADDRESS)
|
|
);
|
|
} else {
|
|
CopyMem (
|
|
&((EFI_IP6_HEADER *) IpHead)->SourceAddress,
|
|
&SadData->TunnelSourceAddress.v6,
|
|
sizeof (EFI_IPv6_ADDRESS)
|
|
);
|
|
CopyMem (
|
|
&((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
|
|
&SadData->TunnelDestAddress.v6,
|
|
sizeof (EFI_IPv6_ADDRESS)
|
|
);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Update the next layer field in ip header since esp header inserted.
|
|
//
|
|
*LastHead = IPSEC_ESP_PROTOCOL;
|
|
|
|
//
|
|
// Increase the sn number in SAD entry according to rfc4303.
|
|
//
|
|
SadData->SequenceNumber++;
|
|
|
|
ON_EXIT:
|
|
if (EFI_ERROR (Status)) {
|
|
if (ProcessBuffer != NULL) {
|
|
FreePool (ProcessBuffer);
|
|
}
|
|
|
|
if (RecycleContext != NULL) {
|
|
FreePool (RecycleContext);
|
|
}
|
|
|
|
if (*RecycleEvent != NULL) {
|
|
gBS->CloseEvent (*RecycleEvent);
|
|
}
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
This function processes the inbound traffic with IPsec.
|
|
|
|
It checks the received packet security property, trims the ESP/AH header, and then
|
|
returns without an IPsec protected IP Header and FragmentTable.
|
|
|
|
@param[in] IpVersion The version of IP.
|
|
@param[in, out] IpHead Points to IP header containing the ESP/AH header
|
|
to be trimed on input, and without ESP/AH header
|
|
on return.
|
|
@param[in, out] LastHead The Last Header in IP header on return.
|
|
@param[in, out] OptionsBuffer Pointer to the options buffer.
|
|
@param[in, out] OptionsLength Length of the options buffer.
|
|
@param[in, out] FragmentTable Pointer to a list of fragments in form of IPsec
|
|
protected on input, and without IPsec protected
|
|
on return.
|
|
@param[in, out] FragmentCount The number of fragments.
|
|
@param[out] SpdEntry Pointer to contain the address of SPD entry on return.
|
|
@param[out] RecycleEvent The event for recycling of resources.
|
|
|
|
@retval EFI_SUCCESS The operation was successful.
|
|
@retval EFI_UNSUPPORTED The IPSEC protocol is not supported.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
IpSecProtectInboundPacket (
|
|
IN UINT8 IpVersion,
|
|
IN OUT VOID *IpHead,
|
|
IN OUT UINT8 *LastHead,
|
|
IN OUT VOID **OptionsBuffer,
|
|
IN OUT UINT32 *OptionsLength,
|
|
IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
|
|
IN OUT UINT32 *FragmentCount,
|
|
OUT EFI_IPSEC_SPD_SELECTOR **SpdEntry,
|
|
OUT EFI_EVENT *RecycleEvent
|
|
)
|
|
{
|
|
if (*LastHead == IPSEC_ESP_PROTOCOL) {
|
|
//
|
|
// Process the esp ipsec header of the inbound traffic.
|
|
//
|
|
return IpSecEspInboundPacket (
|
|
IpVersion,
|
|
IpHead,
|
|
LastHead,
|
|
OptionsBuffer,
|
|
OptionsLength,
|
|
FragmentTable,
|
|
FragmentCount,
|
|
SpdEntry,
|
|
RecycleEvent
|
|
);
|
|
}
|
|
//
|
|
// The other protocols are not supported.
|
|
//
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
/**
|
|
This fucntion processes the output traffic with IPsec.
|
|
|
|
It protected the sending packet by encrypting it payload and inserting ESP/AH header
|
|
in the orginal IP header, then return the IpHeader and IPsec protected Fragmentable.
|
|
|
|
@param[in] IpVersion The version of IP.
|
|
@param[in, out] IpHead Point to IP header containing the orginal IP header
|
|
to be processed on input, and inserted ESP/AH header
|
|
on return.
|
|
@param[in, out] LastHead The Last Header in IP header.
|
|
@param[in, out] OptionsBuffer Pointer to the options buffer.
|
|
@param[in, out] OptionsLength Length of the options buffer.
|
|
@param[in, out] FragmentTable Pointer to a list of fragments to be protected by
|
|
IPsec on input, and with IPsec protected
|
|
on return.
|
|
@param[in, out] FragmentCount Number of fragments.
|
|
@param[in] SadEntry Related SAD entry.
|
|
@param[out] RecycleEvent Event for recycling of resources.
|
|
|
|
@retval EFI_SUCCESS The operation is successful.
|
|
@retval EFI_UNSUPPORTED If the IPSEC protocol is not supported.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
IpSecProtectOutboundPacket (
|
|
IN UINT8 IpVersion,
|
|
IN OUT VOID *IpHead,
|
|
IN OUT UINT8 *LastHead,
|
|
IN OUT VOID **OptionsBuffer,
|
|
IN OUT UINT32 *OptionsLength,
|
|
IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
|
|
IN OUT UINT32 *FragmentCount,
|
|
IN IPSEC_SAD_ENTRY *SadEntry,
|
|
OUT EFI_EVENT *RecycleEvent
|
|
)
|
|
{
|
|
if (SadEntry->Id->Proto == EfiIPsecESP) {
|
|
//
|
|
// Process the esp ipsec header of the outbound traffic.
|
|
//
|
|
return IpSecEspOutboundPacket (
|
|
IpVersion,
|
|
IpHead,
|
|
LastHead,
|
|
OptionsBuffer,
|
|
OptionsLength,
|
|
FragmentTable,
|
|
FragmentCount,
|
|
SadEntry,
|
|
RecycleEvent
|
|
);
|
|
}
|
|
//
|
|
// The other protocols are not supported.
|
|
//
|
|
return EFI_UNSUPPORTED;
|
|
}
|