mirror of https://github.com/acidanthera/audk.git
600 lines
18 KiB
C
600 lines
18 KiB
C
/** @file
|
|
Implement EFI RealTimeClock runtime services via RTC Lib.
|
|
|
|
Currently this driver does not support runtime virtual calling.
|
|
|
|
Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.<BR>
|
|
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include <Uefi.h>
|
|
#include <PiDxe.h>
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/UefiLib.h>
|
|
#include <Library/IoLib.h>
|
|
#include <Library/RealTimeClockLib.h>
|
|
#include <Library/MemoryAllocationLib.h>
|
|
#include <Library/PcdLib.h>
|
|
#include <Library/ArmPlatformSysConfigLib.h>
|
|
#include <Library/UefiBootServicesTableLib.h>
|
|
#include <Library/UefiRuntimeServicesTableLib.h>
|
|
#include <Protocol/RealTimeClock.h>
|
|
#include <Guid/GlobalVariable.h>
|
|
#include <Drivers/PL031RealTimeClock.h>
|
|
|
|
#include <ArmPlatform.h>
|
|
|
|
CHAR16 mTimeZoneVariableName[] = L"PL031_TimeZone";
|
|
CHAR16 mDaylightVariableName[] = L"PL031_Daylight";
|
|
BOOLEAN mPL031Initialized = FALSE;
|
|
|
|
EFI_STATUS
|
|
IdentifyPL031 (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
// Check if this is a PrimeCell Peripheral
|
|
if ( (MmioRead8 (PL031_RTC_PCELL_ID0) != 0x0D)
|
|
|| (MmioRead8 (PL031_RTC_PCELL_ID1) != 0xF0)
|
|
|| (MmioRead8 (PL031_RTC_PCELL_ID2) != 0x05)
|
|
|| (MmioRead8 (PL031_RTC_PCELL_ID3) != 0xB1)) {
|
|
Status = EFI_NOT_FOUND;
|
|
goto EXIT;
|
|
}
|
|
|
|
// Check if this PrimeCell Peripheral is the SP805 Watchdog Timer
|
|
if ( (MmioRead8 (PL031_RTC_PERIPH_ID0) != 0x31)
|
|
|| (MmioRead8 (PL031_RTC_PERIPH_ID1) != 0x10)
|
|
|| ((MmioRead8 (PL031_RTC_PERIPH_ID2) & 0xF) != 0x04)
|
|
|| (MmioRead8 (PL031_RTC_PERIPH_ID3) != 0x00)) {
|
|
Status = EFI_NOT_FOUND;
|
|
goto EXIT;
|
|
}
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
EXIT:
|
|
return Status;
|
|
}
|
|
|
|
EFI_STATUS
|
|
InitializePL031 (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
// Prepare the hardware
|
|
Status = IdentifyPL031();
|
|
if (EFI_ERROR (Status)) {
|
|
goto EXIT;
|
|
}
|
|
|
|
// Ensure interrupts are masked. We do not want RTC interrupts in UEFI
|
|
if ((MmioRead32 (PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER) & PL031_SET_IRQ_MASK) != PL031_SET_IRQ_MASK) {
|
|
MmioOr32 (PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER, PL031_SET_IRQ_MASK);
|
|
}
|
|
|
|
// Clear any existing interrupts
|
|
if ((MmioRead32 (PL031_RTC_RIS_RAW_IRQ_STATUS_REGISTER) & PL031_IRQ_TRIGGERED) == PL031_IRQ_TRIGGERED) {
|
|
MmioOr32 (PL031_RTC_ICR_IRQ_CLEAR_REGISTER, PL031_CLEAR_IRQ);
|
|
}
|
|
|
|
// Start the clock counter
|
|
if ((MmioRead32 (PL031_RTC_CR_CONTROL_REGISTER) & PL031_RTC_ENABLED) != PL031_RTC_ENABLED) {
|
|
MmioOr32 (PL031_RTC_CR_CONTROL_REGISTER, PL031_RTC_ENABLED);
|
|
}
|
|
|
|
mPL031Initialized = TRUE;
|
|
|
|
EXIT:
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Converts Epoch seconds (elapsed since 1970 JANUARY 01, 00:00:00 UTC) to EFI_TIME
|
|
**/
|
|
VOID
|
|
EpochToEfiTime (
|
|
IN UINTN EpochSeconds,
|
|
OUT EFI_TIME *Time
|
|
)
|
|
{
|
|
UINTN a;
|
|
UINTN b;
|
|
UINTN c;
|
|
UINTN d;
|
|
UINTN g;
|
|
UINTN j;
|
|
UINTN m;
|
|
UINTN y;
|
|
UINTN da;
|
|
UINTN db;
|
|
UINTN dc;
|
|
UINTN dg;
|
|
UINTN hh;
|
|
UINTN mm;
|
|
UINTN ss;
|
|
UINTN J;
|
|
|
|
if (Time->Daylight == TRUE) {
|
|
|
|
}
|
|
|
|
J = (EpochSeconds / 86400) + 2440588;
|
|
j = J + 32044;
|
|
g = j / 146097;
|
|
dg = j % 146097;
|
|
c = (((dg / 36524) + 1) * 3) / 4;
|
|
dc = dg - (c * 36524);
|
|
b = dc / 1461;
|
|
db = dc % 1461;
|
|
a = (((db / 365) + 1) * 3) / 4;
|
|
da = db - (a * 365);
|
|
y = (g * 400) + (c * 100) + (b * 4) + a;
|
|
m = (((da * 5) + 308) / 153) - 2;
|
|
d = da - (((m + 4) * 153) / 5) + 122;
|
|
|
|
Time->Year = y - 4800 + ((m + 2) / 12);
|
|
Time->Month = ((m + 2) % 12) + 1;
|
|
Time->Day = d + 1;
|
|
|
|
ss = EpochSeconds % 60;
|
|
a = (EpochSeconds - ss) / 60;
|
|
mm = a % 60;
|
|
b = (a - mm) / 60;
|
|
hh = b % 24;
|
|
|
|
Time->Hour = hh;
|
|
Time->Minute = mm;
|
|
Time->Second = ss;
|
|
Time->Nanosecond = 0;
|
|
|
|
}
|
|
|
|
/**
|
|
Converts EFI_TIME to Epoch seconds (elapsed since 1970 JANUARY 01, 00:00:00 UTC)
|
|
**/
|
|
UINTN
|
|
EfiTimeToEpoch (
|
|
IN EFI_TIME *Time
|
|
)
|
|
{
|
|
UINTN a;
|
|
UINTN y;
|
|
UINTN m;
|
|
UINTN JulianDate; // Absolute Julian Date representation of the supplied Time
|
|
UINTN EpochDays; // Number of days elapsed since EPOCH_JULIAN_DAY
|
|
UINTN EpochSeconds;
|
|
|
|
a = (14 - Time->Month) / 12 ;
|
|
y = Time->Year + 4800 - a;
|
|
m = Time->Month + (12*a) - 3;
|
|
|
|
JulianDate = Time->Day + ((153*m + 2)/5) + (365*y) + (y/4) - (y/100) + (y/400) - 32045;
|
|
|
|
ASSERT(JulianDate > EPOCH_JULIAN_DATE);
|
|
EpochDays = JulianDate - EPOCH_JULIAN_DATE;
|
|
|
|
EpochSeconds = (EpochDays * SEC_PER_DAY) + ((UINTN)Time->Hour * SEC_PER_HOUR) + (Time->Minute * SEC_PER_MIN) + Time->Second;
|
|
|
|
return EpochSeconds;
|
|
}
|
|
|
|
BOOLEAN
|
|
IsLeapYear (
|
|
IN EFI_TIME *Time
|
|
)
|
|
{
|
|
if (Time->Year % 4 == 0) {
|
|
if (Time->Year % 100 == 0) {
|
|
if (Time->Year % 400 == 0) {
|
|
return TRUE;
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
} else {
|
|
return TRUE;
|
|
}
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
BOOLEAN
|
|
DayValid (
|
|
IN EFI_TIME *Time
|
|
)
|
|
{
|
|
INTN DayOfMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
|
|
|
if (Time->Day < 1 ||
|
|
Time->Day > DayOfMonth[Time->Month - 1] ||
|
|
(Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28))
|
|
) {
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
Returns the current time and date information, and the time-keeping capabilities
|
|
of the hardware platform.
|
|
|
|
@param Time A pointer to storage to receive a snapshot of the current time.
|
|
@param Capabilities An optional pointer to a buffer to receive the real time clock
|
|
device's capabilities.
|
|
|
|
@retval EFI_SUCCESS The operation completed successfully.
|
|
@retval EFI_INVALID_PARAMETER Time is NULL.
|
|
@retval EFI_DEVICE_ERROR The time could not be retrieved due to hardware error.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
LibGetTime (
|
|
OUT EFI_TIME *Time,
|
|
OUT EFI_TIME_CAPABILITIES *Capabilities
|
|
)
|
|
{
|
|
EFI_STATUS Status = EFI_SUCCESS;
|
|
UINTN EpochSeconds;
|
|
INT16 *TimeZone = 0;
|
|
UINTN *Daylight = 0;
|
|
|
|
// Initialize the hardware if not already done
|
|
if (!mPL031Initialized) {
|
|
Status = InitializePL031 ();
|
|
if (EFI_ERROR (Status)) {
|
|
goto EXIT;
|
|
}
|
|
}
|
|
|
|
// Snapshot the time as early in the function call as possible
|
|
// On some platforms we may have access to a battery backed up hardware clock.
|
|
// If such RTC exists try to use it first.
|
|
Status = ArmPlatformSysConfigGet (SYS_CFG_RTC, &EpochSeconds);
|
|
if (Status == EFI_UNSUPPORTED) {
|
|
// Battery backed up hardware RTC does not exist, revert to PL031
|
|
EpochSeconds = MmioRead32 (PL031_RTC_DR_DATA_REGISTER);
|
|
Status = EFI_SUCCESS;
|
|
} else if (EFI_ERROR (Status)) {
|
|
// Battery backed up hardware RTC exists but could not be read due to error. Abort.
|
|
goto EXIT;
|
|
} else {
|
|
// Battery backed up hardware RTC exists and we read the time correctly from it.
|
|
// Now sync the PL031 to the new time.
|
|
MmioWrite32 (PL031_RTC_LR_LOAD_REGISTER, EpochSeconds);
|
|
}
|
|
|
|
// Ensure Time is a valid pointer
|
|
if (Time == NULL) {
|
|
Status = EFI_INVALID_PARAMETER;
|
|
goto EXIT;
|
|
}
|
|
|
|
// Get the current time zone information from non-volatile storage
|
|
TimeZone = (INT16 *)GetVariable(mTimeZoneVariableName, &gEfiGlobalVariableGuid);
|
|
|
|
if (TimeZone == NULL) {
|
|
// The time zone variable does not exist in non-volatile storage, so create it.
|
|
Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE;
|
|
// Store it
|
|
Status = gRT->SetVariable (
|
|
mTimeZoneVariableName,
|
|
&gEfiGlobalVariableGuid,
|
|
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
|
|
sizeof(Time->TimeZone),
|
|
&(Time->TimeZone)
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG((EFI_D_ERROR,"LibGetTime: ERROR: TimeZone\n"));
|
|
goto EXIT;
|
|
}
|
|
} else {
|
|
// Got the time zone
|
|
Time->TimeZone = *TimeZone;
|
|
FreePool(TimeZone);
|
|
|
|
// Check TimeZone bounds: -1440 to 1440 or 2047
|
|
if (((Time->TimeZone < -1440) || (Time->TimeZone > 1440))
|
|
&& (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE)) {
|
|
Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE;
|
|
}
|
|
|
|
// Adjust for the correct time zone
|
|
if (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) {
|
|
EpochSeconds += Time->TimeZone * SEC_PER_MIN;
|
|
}
|
|
}
|
|
|
|
// Get the current daylight information from non-volatile storage
|
|
Daylight = (UINTN *)GetVariable(mDaylightVariableName, &gEfiGlobalVariableGuid);
|
|
|
|
if (Daylight == NULL) {
|
|
// The daylight variable does not exist in non-volatile storage, so create it.
|
|
Time->Daylight = 0;
|
|
// Store it
|
|
Status = gRT->SetVariable (
|
|
mDaylightVariableName,
|
|
&gEfiGlobalVariableGuid,
|
|
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
|
|
sizeof(Time->Daylight),
|
|
&(Time->Daylight)
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG((EFI_D_ERROR,"LibGetTime: ERROR: Daylight\n"));
|
|
goto EXIT;
|
|
}
|
|
} else {
|
|
// Got the daylight information
|
|
Time->Daylight = *Daylight;
|
|
FreePool(Daylight);
|
|
|
|
// Adjust for the correct period
|
|
if ((Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT) {
|
|
// Convert to adjusted time, i.e. spring forwards one hour
|
|
EpochSeconds += SEC_PER_HOUR;
|
|
}
|
|
}
|
|
|
|
// Convert from internal 32-bit time to UEFI time
|
|
EpochToEfiTime (EpochSeconds, Time);
|
|
|
|
// Update the Capabilities info
|
|
if (Capabilities != NULL) {
|
|
// PL031 runs at frequency 1Hz
|
|
Capabilities->Resolution = PL031_COUNTS_PER_SECOND;
|
|
// Accuracy in ppm multiplied by 1,000,000, e.g. for 50ppm set 50,000,000
|
|
Capabilities->Accuracy = (UINT32)PcdGet32 (PcdPL031RtcPpmAccuracy);
|
|
// FALSE: Setting the time does not clear the values below the resolution level
|
|
Capabilities->SetsToZero = FALSE;
|
|
}
|
|
|
|
EXIT:
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Sets the current local time and date information.
|
|
|
|
@param Time A pointer to the current time.
|
|
|
|
@retval EFI_SUCCESS The operation completed successfully.
|
|
@retval EFI_INVALID_PARAMETER A time field is out of range.
|
|
@retval EFI_DEVICE_ERROR The time could not be set due due to hardware error.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
LibSetTime (
|
|
IN EFI_TIME *Time
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN EpochSeconds;
|
|
|
|
// Because the PL031 is a 32-bit counter counting seconds,
|
|
// the maximum time span is just over 136 years.
|
|
// Time is stored in Unix Epoch format, so it starts in 1970,
|
|
// Therefore it can not exceed the year 2106.
|
|
// This is not a problem for UEFI, as the current spec limits the years
|
|
// to the range 1998 .. 2011
|
|
|
|
// Check the input parameters' range.
|
|
if ((Time->Year < 1998) ||
|
|
(Time->Year > 2099) ||
|
|
(Time->Month < 1 ) ||
|
|
(Time->Month > 12 ) ||
|
|
(!DayValid (Time) ) ||
|
|
(Time->Hour > 23 ) ||
|
|
(Time->Minute > 59 ) ||
|
|
(Time->Second > 59 ) ||
|
|
(Time->Nanosecond > 999999999) ||
|
|
(!((Time->TimeZone == EFI_UNSPECIFIED_TIMEZONE) || ((Time->TimeZone >= -1440) && (Time->TimeZone <= 1440)))) ||
|
|
(Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT)))
|
|
) {
|
|
Status = EFI_INVALID_PARAMETER;
|
|
goto EXIT;
|
|
}
|
|
|
|
// Initialize the hardware if not already done
|
|
if (!mPL031Initialized) {
|
|
Status = InitializePL031 ();
|
|
if (EFI_ERROR (Status)) {
|
|
goto EXIT;
|
|
}
|
|
}
|
|
|
|
EpochSeconds = EfiTimeToEpoch (Time);
|
|
|
|
// Adjust for the correct time zone, i.e. convert to UTC time zone
|
|
if (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) {
|
|
EpochSeconds -= Time->TimeZone * SEC_PER_MIN;
|
|
}
|
|
|
|
// TODO: Automatic Daylight activation
|
|
|
|
// Adjust for the correct period
|
|
if ((Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT) {
|
|
// Convert to un-adjusted time, i.e. fall back one hour
|
|
EpochSeconds -= SEC_PER_HOUR;
|
|
}
|
|
|
|
// On some platforms we may have access to a battery backed up hardware clock.
|
|
//
|
|
// If such RTC exists then it must be updated first, before the PL031,
|
|
// to minimise any time drift. This is important because the battery backed-up
|
|
// RTC maintains the master time for the platform across reboots.
|
|
//
|
|
// If such RTC does not exist then the following function returns UNSUPPORTED.
|
|
Status = ArmPlatformSysConfigSet (SYS_CFG_RTC, EpochSeconds);
|
|
if ((EFI_ERROR (Status)) && (Status != EFI_UNSUPPORTED)){
|
|
// Any status message except SUCCESS and UNSUPPORTED indicates a hardware failure.
|
|
goto EXIT;
|
|
}
|
|
|
|
|
|
// Set the PL031
|
|
MmioWrite32 (PL031_RTC_LR_LOAD_REGISTER, EpochSeconds);
|
|
|
|
// The accesses to Variable Services can be very slow, because we may be writing to Flash.
|
|
// Do this after having set the RTC.
|
|
|
|
// Save the current time zone information into non-volatile storage
|
|
Status = gRT->SetVariable (
|
|
mTimeZoneVariableName,
|
|
&gEfiGlobalVariableGuid,
|
|
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
|
|
sizeof(Time->TimeZone),
|
|
&(Time->TimeZone)
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG((EFI_D_ERROR,"LibSetTime: ERROR: TimeZone\n"));
|
|
goto EXIT;
|
|
}
|
|
|
|
// Save the current daylight information into non-volatile storage
|
|
Status = gRT->SetVariable (
|
|
mDaylightVariableName,
|
|
&gEfiGlobalVariableGuid,
|
|
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
|
|
sizeof(Time->Daylight),
|
|
&(Time->Daylight)
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG((EFI_D_ERROR,"LibSetTime: ERROR: Daylight\n"));
|
|
goto EXIT;
|
|
}
|
|
|
|
EXIT:
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Returns the current wakeup alarm clock setting.
|
|
|
|
@param Enabled Indicates if the alarm is currently enabled or disabled.
|
|
@param Pending Indicates if the alarm signal is pending and requires acknowledgement.
|
|
@param Time The current alarm setting.
|
|
|
|
@retval EFI_SUCCESS The alarm settings were returned.
|
|
@retval EFI_INVALID_PARAMETER Any parameter is NULL.
|
|
@retval EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
LibGetWakeupTime (
|
|
OUT BOOLEAN *Enabled,
|
|
OUT BOOLEAN *Pending,
|
|
OUT EFI_TIME *Time
|
|
)
|
|
{
|
|
// Not a required feature
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
|
|
/**
|
|
Sets the system wakeup alarm clock time.
|
|
|
|
@param Enabled Enable or disable the wakeup alarm.
|
|
@param Time If Enable is TRUE, the time to set the wakeup alarm for.
|
|
|
|
@retval EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. If
|
|
Enable is FALSE, then the wakeup alarm was disabled.
|
|
@retval EFI_INVALID_PARAMETER A time field is out of range.
|
|
@retval EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error.
|
|
@retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
LibSetWakeupTime (
|
|
IN BOOLEAN Enabled,
|
|
OUT EFI_TIME *Time
|
|
)
|
|
{
|
|
// Not a required feature
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
This is the declaration of an EFI image entry point. This can be the entry point to an application
|
|
written to this specification, an EFI boot service driver, or an EFI runtime driver.
|
|
|
|
@param ImageHandle Handle that identifies the loaded image.
|
|
@param SystemTable System Table for this image.
|
|
|
|
@retval EFI_SUCCESS The operation completed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
LibRtcInitialize (
|
|
IN EFI_HANDLE ImageHandle,
|
|
IN EFI_SYSTEM_TABLE *SystemTable
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_HANDLE Handle;
|
|
|
|
// Setup the setters and getters
|
|
gRT->GetTime = LibGetTime;
|
|
gRT->SetTime = LibSetTime;
|
|
gRT->GetWakeupTime = LibGetWakeupTime;
|
|
gRT->SetWakeupTime = LibSetWakeupTime;
|
|
|
|
// Install the protocol
|
|
Handle = NULL;
|
|
Status = gBS->InstallMultipleProtocolInterfaces (
|
|
&Handle,
|
|
&gEfiRealTimeClockArchProtocolGuid, NULL,
|
|
NULL
|
|
);
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Fixup internal data so that EFI can be call in virtual mode.
|
|
Call the passed in Child Notify event and convert any pointers in
|
|
lib to virtual mode.
|
|
|
|
@param[in] Event The Event that is being processed
|
|
@param[in] Context Event Context
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
LibRtcVirtualNotifyEvent (
|
|
IN EFI_EVENT Event,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
//
|
|
// Only needed if you are going to support the OS calling RTC functions in virtual mode.
|
|
// You will need to call EfiConvertPointer (). To convert any stored physical addresses
|
|
// to virtual address. After the OS transitions to calling in virtual mode, all future
|
|
// runtime calls will be made in virtual mode.
|
|
//
|
|
return;
|
|
}
|