mirror of https://github.com/acidanthera/audk.git
5390 lines
130 KiB
C
5390 lines
130 KiB
C
/** @file
|
|
Contains code that implements the virtual machine.
|
|
|
|
Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
#include "EbcInt.h"
|
|
#include "EbcExecute.h"
|
|
#include "EbcDebuggerHook.h"
|
|
|
|
|
|
//
|
|
// Define some useful data size constants to allow switch statements based on
|
|
// size of operands or data.
|
|
//
|
|
#define DATA_SIZE_INVALID 0
|
|
#define DATA_SIZE_8 1
|
|
#define DATA_SIZE_16 2
|
|
#define DATA_SIZE_32 4
|
|
#define DATA_SIZE_64 8
|
|
#define DATA_SIZE_N 48 // 4 or 8
|
|
//
|
|
// Structure we'll use to dispatch opcodes to execute functions.
|
|
//
|
|
typedef struct {
|
|
EFI_STATUS (*ExecuteFunction) (IN VM_CONTEXT * VmPtr);
|
|
}
|
|
VM_TABLE_ENTRY;
|
|
|
|
typedef
|
|
UINT64
|
|
(*DATA_MANIP_EXEC_FUNCTION) (
|
|
IN VM_CONTEXT * VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Decode a 16-bit index to determine the offset. Given an index value:
|
|
|
|
b15 - sign bit
|
|
b14:12 - number of bits in this index assigned to natural units (=a)
|
|
ba:11 - constant units = ConstUnits
|
|
b0:a - natural units = NaturalUnits
|
|
|
|
Given this info, the offset can be computed by:
|
|
offset = sign_bit * (ConstUnits + NaturalUnits * sizeof(UINTN))
|
|
|
|
Max offset is achieved with index = 0x7FFF giving an offset of
|
|
0x27B (32-bit machine) or 0x477 (64-bit machine).
|
|
Min offset is achieved with index =
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param CodeOffset Offset from IP of the location of the 16-bit index
|
|
to decode.
|
|
|
|
@return The decoded offset.
|
|
|
|
**/
|
|
INT16
|
|
VmReadIndex16 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 CodeOffset
|
|
);
|
|
|
|
/**
|
|
Decode a 32-bit index to determine the offset.
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param CodeOffset Offset from IP of the location of the 32-bit index
|
|
to decode.
|
|
|
|
@return Converted index per EBC VM specification.
|
|
|
|
**/
|
|
INT32
|
|
VmReadIndex32 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 CodeOffset
|
|
);
|
|
|
|
/**
|
|
Decode a 64-bit index to determine the offset.
|
|
|
|
@param VmPtr A pointer to VM context.s
|
|
@param CodeOffset Offset from IP of the location of the 64-bit index
|
|
to decode.
|
|
|
|
@return Converted index per EBC VM specification
|
|
|
|
**/
|
|
INT64
|
|
VmReadIndex64 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 CodeOffset
|
|
);
|
|
|
|
/**
|
|
Reads 8-bit data form the memory address.
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param Addr The memory address.
|
|
|
|
@return The 8-bit value from the memory address.
|
|
|
|
**/
|
|
UINT8
|
|
VmReadMem8 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
);
|
|
|
|
/**
|
|
Reads 16-bit data form the memory address.
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param Addr The memory address.
|
|
|
|
@return The 16-bit value from the memory address.
|
|
|
|
**/
|
|
UINT16
|
|
VmReadMem16 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
);
|
|
|
|
/**
|
|
Reads 32-bit data form the memory address.
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param Addr The memory address.
|
|
|
|
@return The 32-bit value from the memory address.
|
|
|
|
**/
|
|
UINT32
|
|
VmReadMem32 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
);
|
|
|
|
/**
|
|
Reads 64-bit data form the memory address.
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param Addr The memory address.
|
|
|
|
@return The 64-bit value from the memory address.
|
|
|
|
**/
|
|
UINT64
|
|
VmReadMem64 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
);
|
|
|
|
/**
|
|
Read a natural value from memory. May or may not be aligned.
|
|
|
|
@param VmPtr current VM context
|
|
@param Addr the address to read from
|
|
|
|
@return The natural value at address Addr.
|
|
|
|
**/
|
|
UINTN
|
|
VmReadMemN (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
);
|
|
|
|
/**
|
|
Writes 8-bit data to memory address.
|
|
|
|
This routine is called by the EBC data
|
|
movement instructions that write to memory. Since these writes
|
|
may be to the stack, which looks like (high address on top) this,
|
|
|
|
[EBC entry point arguments]
|
|
[VM stack]
|
|
[EBC stack]
|
|
|
|
we need to detect all attempts to write to the EBC entry point argument
|
|
stack area and adjust the address (which will initially point into the
|
|
VM stack) to point into the EBC entry point arguments.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Addr Address to write to.
|
|
@param Data Value to write to Addr.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
@retval Other Some error occurs when writing data to the address.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VmWriteMem8 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr,
|
|
IN UINT8 Data
|
|
);
|
|
|
|
/**
|
|
Writes 16-bit data to memory address.
|
|
|
|
This routine is called by the EBC data
|
|
movement instructions that write to memory. Since these writes
|
|
may be to the stack, which looks like (high address on top) this,
|
|
|
|
[EBC entry point arguments]
|
|
[VM stack]
|
|
[EBC stack]
|
|
|
|
we need to detect all attempts to write to the EBC entry point argument
|
|
stack area and adjust the address (which will initially point into the
|
|
VM stack) to point into the EBC entry point arguments.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Addr Address to write to.
|
|
@param Data Value to write to Addr.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
@retval Other Some error occurs when writing data to the address.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VmWriteMem16 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr,
|
|
IN UINT16 Data
|
|
);
|
|
|
|
/**
|
|
Writes 32-bit data to memory address.
|
|
|
|
This routine is called by the EBC data
|
|
movement instructions that write to memory. Since these writes
|
|
may be to the stack, which looks like (high address on top) this,
|
|
|
|
[EBC entry point arguments]
|
|
[VM stack]
|
|
[EBC stack]
|
|
|
|
we need to detect all attempts to write to the EBC entry point argument
|
|
stack area and adjust the address (which will initially point into the
|
|
VM stack) to point into the EBC entry point arguments.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Addr Address to write to.
|
|
@param Data Value to write to Addr.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
@retval Other Some error occurs when writing data to the address.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VmWriteMem32 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr,
|
|
IN UINT32 Data
|
|
);
|
|
|
|
/**
|
|
Reads 16-bit unsigned data from the code stream.
|
|
|
|
This routine provides the ability to read raw unsigned data from the code
|
|
stream.
|
|
|
|
@param VmPtr A pointer to VM context
|
|
@param Offset Offset from current IP to the raw data to read.
|
|
|
|
@return The raw unsigned 16-bit value from the code stream.
|
|
|
|
**/
|
|
UINT16
|
|
VmReadCode16 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
);
|
|
|
|
/**
|
|
Reads 32-bit unsigned data from the code stream.
|
|
|
|
This routine provides the ability to read raw unsigned data from the code
|
|
stream.
|
|
|
|
@param VmPtr A pointer to VM context
|
|
@param Offset Offset from current IP to the raw data to read.
|
|
|
|
@return The raw unsigned 32-bit value from the code stream.
|
|
|
|
**/
|
|
UINT32
|
|
VmReadCode32 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
);
|
|
|
|
/**
|
|
Reads 64-bit unsigned data from the code stream.
|
|
|
|
This routine provides the ability to read raw unsigned data from the code
|
|
stream.
|
|
|
|
@param VmPtr A pointer to VM context
|
|
@param Offset Offset from current IP to the raw data to read.
|
|
|
|
@return The raw unsigned 64-bit value from the code stream.
|
|
|
|
**/
|
|
UINT64
|
|
VmReadCode64 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
);
|
|
|
|
/**
|
|
Reads 8-bit immediate value at the offset.
|
|
|
|
This routine is called by the EBC execute
|
|
functions to read EBC immediate values from the code stream.
|
|
Since we can't assume alignment, each tries to read in the biggest
|
|
chunks size available, but will revert to smaller reads if necessary.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Offset offset from IP of the code bytes to read.
|
|
|
|
@return Signed data of the requested size from the specified address.
|
|
|
|
**/
|
|
INT8
|
|
VmReadImmed8 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
);
|
|
|
|
/**
|
|
Reads 16-bit immediate value at the offset.
|
|
|
|
This routine is called by the EBC execute
|
|
functions to read EBC immediate values from the code stream.
|
|
Since we can't assume alignment, each tries to read in the biggest
|
|
chunks size available, but will revert to smaller reads if necessary.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Offset offset from IP of the code bytes to read.
|
|
|
|
@return Signed data of the requested size from the specified address.
|
|
|
|
**/
|
|
INT16
|
|
VmReadImmed16 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
);
|
|
|
|
/**
|
|
Reads 32-bit immediate value at the offset.
|
|
|
|
This routine is called by the EBC execute
|
|
functions to read EBC immediate values from the code stream.
|
|
Since we can't assume alignment, each tries to read in the biggest
|
|
chunks size available, but will revert to smaller reads if necessary.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Offset offset from IP of the code bytes to read.
|
|
|
|
@return Signed data of the requested size from the specified address.
|
|
|
|
**/
|
|
INT32
|
|
VmReadImmed32 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
);
|
|
|
|
/**
|
|
Reads 64-bit immediate value at the offset.
|
|
|
|
This routine is called by the EBC execute
|
|
functions to read EBC immediate values from the code stream.
|
|
Since we can't assume alignment, each tries to read in the biggest
|
|
chunks size available, but will revert to smaller reads if necessary.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Offset offset from IP of the code bytes to read.
|
|
|
|
@return Signed data of the requested size from the specified address.
|
|
|
|
**/
|
|
INT64
|
|
VmReadImmed64 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
);
|
|
|
|
/**
|
|
Given an address that EBC is going to read from or write to, return
|
|
an appropriate address that accounts for a gap in the stack.
|
|
The stack for this application looks like this (high addr on top)
|
|
[EBC entry point arguments]
|
|
[VM stack]
|
|
[EBC stack]
|
|
The EBC assumes that its arguments are at the top of its stack, which
|
|
is where the VM stack is really. Therefore if the EBC does memory
|
|
accesses into the VM stack area, then we need to convert the address
|
|
to point to the EBC entry point arguments area. Do this here.
|
|
|
|
@param VmPtr A Pointer to VM context.
|
|
@param Addr Address of interest
|
|
|
|
@return The unchanged address if it's not in the VM stack region. Otherwise,
|
|
adjust for the stack gap and return the modified address.
|
|
|
|
**/
|
|
UINTN
|
|
ConvertStackAddr (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
);
|
|
|
|
/**
|
|
Execute all the EBC data manipulation instructions.
|
|
Since the EBC data manipulation instructions all have the same basic form,
|
|
they can share the code that does the fetch of operands and the write-back
|
|
of the result. This function performs the fetch of the operands (even if
|
|
both are not needed to be fetched, like NOT instruction), dispatches to the
|
|
appropriate subfunction, then writes back the returned result.
|
|
|
|
Format:
|
|
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param IsSignedOp Indicates whether the operand is signed or not.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteDataManip (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN BOOLEAN IsSignedOp
|
|
);
|
|
|
|
//
|
|
// Functions that execute VM opcodes
|
|
//
|
|
/**
|
|
Execute the EBC BREAK instruction.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteBREAK (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the JMP instruction.
|
|
|
|
Instruction syntax:
|
|
JMP64{cs|cc} Immed64
|
|
JMP32{cs|cc} {@}R1 {Immed32|Index32}
|
|
|
|
Encoding:
|
|
b0.7 - immediate data present
|
|
b0.6 - 1 = 64 bit immediate data
|
|
0 = 32 bit immediate data
|
|
b1.7 - 1 = conditional
|
|
b1.6 1 = CS (condition set)
|
|
0 = CC (condition clear)
|
|
b1.4 1 = relative address
|
|
0 = absolute address
|
|
b1.3 1 = operand1 indirect
|
|
b1.2-0 operand 1
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteJMP (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC JMP8 instruction.
|
|
|
|
Instruction syntax:
|
|
JMP8{cs|cc} Offset/2
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteJMP8 (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Implements the EBC CALL instruction.
|
|
|
|
Instruction format:
|
|
CALL64 Immed64
|
|
CALL32 {@}R1 {Immed32|Index32}
|
|
CALLEX64 Immed64
|
|
CALLEX16 {@}R1 {Immed32}
|
|
|
|
If Rx == R0, then it's a PC relative call to PC = PC + imm32.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteCALL (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC RET instruction.
|
|
|
|
Instruction syntax:
|
|
RET
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteRET (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC CMP instruction.
|
|
|
|
Instruction syntax:
|
|
CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteCMP (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC CMPI instruction
|
|
|
|
Instruction syntax:
|
|
CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}Rx {Index16}, Immed16|Immed32
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteCMPI (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the MOVxx instructions.
|
|
|
|
Instruction format:
|
|
|
|
MOV[b|w|d|q|n]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}
|
|
MOVqq {@}R1 {Index64}, {@}R2 {Index64}
|
|
|
|
Copies contents of [R2] -> [R1], zero extending where required.
|
|
|
|
First character indicates the size of the move.
|
|
Second character indicates the size of the index(s).
|
|
|
|
Invalid to have R1 direct with index.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVxx (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC MOVI.
|
|
|
|
Instruction syntax:
|
|
|
|
MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, ImmData16|32|64
|
|
|
|
First variable character specifies the move size
|
|
Second variable character specifies size of the immediate data
|
|
|
|
Sign-extend the immediate data to the size of the operation, and zero-extend
|
|
if storing to a register.
|
|
|
|
Operand1 direct with index/immed is invalid.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVI (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC MOV immediate natural. This instruction moves an immediate
|
|
index value into a register or memory location.
|
|
|
|
Instruction syntax:
|
|
|
|
MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVIn (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC MOVREL instruction.
|
|
Dest <- Ip + ImmData
|
|
|
|
Instruction syntax:
|
|
|
|
MOVREL[w|d|q] {@}R1 {Index16}, ImmData16|32|64
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVREL (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC PUSHn instruction
|
|
|
|
Instruction syntax:
|
|
PUSHn {@}R1 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecutePUSHn (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC PUSH instruction.
|
|
|
|
Instruction syntax:
|
|
PUSH[32|64] {@}R1 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecutePUSH (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC POPn instruction.
|
|
|
|
Instruction syntax:
|
|
POPn {@}R1 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecutePOPn (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC POP instruction.
|
|
|
|
Instruction syntax:
|
|
POPn {@}R1 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecutePOP (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute all the EBC signed data manipulation instructions.
|
|
Since the EBC data manipulation instructions all have the same basic form,
|
|
they can share the code that does the fetch of operands and the write-back
|
|
of the result. This function performs the fetch of the operands (even if
|
|
both are not needed to be fetched, like NOT instruction), dispatches to the
|
|
appropriate subfunction, then writes back the returned result.
|
|
|
|
Format:
|
|
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteSignedDataManip (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute all the EBC unsigned data manipulation instructions.
|
|
Since the EBC data manipulation instructions all have the same basic form,
|
|
they can share the code that does the fetch of operands and the write-back
|
|
of the result. This function performs the fetch of the operands (even if
|
|
both are not needed to be fetched, like NOT instruction), dispatches to the
|
|
appropriate subfunction, then writes back the returned result.
|
|
|
|
Format:
|
|
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteUnsignedDataManip (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC LOADSP instruction.
|
|
|
|
Instruction syntax:
|
|
LOADSP SP1, R2
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteLOADSP (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC STORESP instruction.
|
|
|
|
Instruction syntax:
|
|
STORESP Rx, FLAGS|IP
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteSTORESP (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC MOVsnw instruction. This instruction loads a signed
|
|
natural value from memory or register to another memory or register. On
|
|
32-bit machines, the value gets sign-extended to 64 bits if the destination
|
|
is a register.
|
|
|
|
Instruction syntax:
|
|
|
|
MOVsnd {@}R1 {Indx32}, {@}R2 {Index32|Immed32}
|
|
|
|
0:7 1=>operand1 index present
|
|
0:6 1=>operand2 index present
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVsnd (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
/**
|
|
Execute the EBC MOVsnw instruction. This instruction loads a signed
|
|
natural value from memory or register to another memory or register. On
|
|
32-bit machines, the value gets sign-extended to 64 bits if the destination
|
|
is a register.
|
|
|
|
Instruction syntax:
|
|
|
|
MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16}
|
|
|
|
0:7 1=>operand1 index present
|
|
0:6 1=>operand2 index present
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVsnw (
|
|
IN VM_CONTEXT *VmPtr
|
|
);
|
|
|
|
//
|
|
// Data manipulation subfunctions
|
|
//
|
|
/**
|
|
Execute the EBC NOT instruction.s
|
|
|
|
Instruction syntax:
|
|
NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return ~Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteNOT (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC NEG instruction.
|
|
|
|
Instruction syntax:
|
|
NEG[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op2 * -1
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteNEG (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC ADD instruction.
|
|
|
|
Instruction syntax:
|
|
ADD[32|64] {@}R1, {@}R2 {Index16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 + Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteADD (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC SUB instruction.
|
|
|
|
Instruction syntax:
|
|
SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 - Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteSUB (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC MUL instruction.
|
|
|
|
Instruction syntax:
|
|
SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 * Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteMUL (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC MULU instruction
|
|
|
|
Instruction syntax:
|
|
MULU[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return (unsigned)Op1 * (unsigned)Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteMULU (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC DIV instruction.
|
|
|
|
Instruction syntax:
|
|
DIV[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 / Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteDIV (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC DIVU instruction
|
|
|
|
Instruction syntax:
|
|
DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return (unsigned)Op1 / (unsigned)Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteDIVU (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC MOD instruction.
|
|
|
|
Instruction syntax:
|
|
MOD[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 MODULUS Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteMOD (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC MODU instruction.
|
|
|
|
Instruction syntax:
|
|
MODU[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 UNSIGNED_MODULUS Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteMODU (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC AND instruction.
|
|
|
|
Instruction syntax:
|
|
AND[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 AND Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteAND (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC OR instruction.
|
|
|
|
Instruction syntax:
|
|
OR[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 OR Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteOR (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC XOR instruction.
|
|
|
|
Instruction syntax:
|
|
XOR[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 XOR Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteXOR (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC SHL shift left instruction.
|
|
|
|
Instruction syntax:
|
|
SHL[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 << Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteSHL (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC SHR instruction.
|
|
|
|
Instruction syntax:
|
|
SHR[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 >> Op2 (unsigned operands)
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteSHR (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC ASHR instruction.
|
|
|
|
Instruction syntax:
|
|
ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 >> Op2 (signed)
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteASHR (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC EXTNDB instruction to sign-extend a byte value.
|
|
|
|
Instruction syntax:
|
|
EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return (INT64)(INT8)Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteEXTNDB (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC EXTNDW instruction to sign-extend a 16-bit value.
|
|
|
|
Instruction syntax:
|
|
EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return (INT64)(INT16)Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteEXTNDW (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
/**
|
|
Execute the EBC EXTNDD instruction to sign-extend a 32-bit value.
|
|
|
|
Instruction syntax:
|
|
EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return (INT64)(INT32)Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteEXTNDD (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
);
|
|
|
|
//
|
|
// Once we retrieve the operands for the data manipulation instructions,
|
|
// call these functions to perform the operation.
|
|
//
|
|
CONST DATA_MANIP_EXEC_FUNCTION mDataManipDispatchTable[] = {
|
|
ExecuteNOT,
|
|
ExecuteNEG,
|
|
ExecuteADD,
|
|
ExecuteSUB,
|
|
ExecuteMUL,
|
|
ExecuteMULU,
|
|
ExecuteDIV,
|
|
ExecuteDIVU,
|
|
ExecuteMOD,
|
|
ExecuteMODU,
|
|
ExecuteAND,
|
|
ExecuteOR,
|
|
ExecuteXOR,
|
|
ExecuteSHL,
|
|
ExecuteSHR,
|
|
ExecuteASHR,
|
|
ExecuteEXTNDB,
|
|
ExecuteEXTNDW,
|
|
ExecuteEXTNDD,
|
|
};
|
|
|
|
CONST VM_TABLE_ENTRY mVmOpcodeTable[] = {
|
|
{ ExecuteBREAK }, // opcode 0x00
|
|
{ ExecuteJMP }, // opcode 0x01
|
|
{ ExecuteJMP8 }, // opcode 0x02
|
|
{ ExecuteCALL }, // opcode 0x03
|
|
{ ExecuteRET }, // opcode 0x04
|
|
{ ExecuteCMP }, // opcode 0x05 CMPeq
|
|
{ ExecuteCMP }, // opcode 0x06 CMPlte
|
|
{ ExecuteCMP }, // opcode 0x07 CMPgte
|
|
{ ExecuteCMP }, // opcode 0x08 CMPulte
|
|
{ ExecuteCMP }, // opcode 0x09 CMPugte
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x0A NOT
|
|
{ ExecuteSignedDataManip }, // opcode 0x0B NEG
|
|
{ ExecuteSignedDataManip }, // opcode 0x0C ADD
|
|
{ ExecuteSignedDataManip }, // opcode 0x0D SUB
|
|
{ ExecuteSignedDataManip }, // opcode 0x0E MUL
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x0F MULU
|
|
{ ExecuteSignedDataManip }, // opcode 0x10 DIV
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x11 DIVU
|
|
{ ExecuteSignedDataManip }, // opcode 0x12 MOD
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x13 MODU
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x14 AND
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x15 OR
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x16 XOR
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x17 SHL
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x18 SHR
|
|
{ ExecuteSignedDataManip }, // opcode 0x19 ASHR
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x1A EXTNDB
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x1B EXTNDW
|
|
{ ExecuteUnsignedDataManip }, // opcode 0x1C EXTNDD
|
|
{ ExecuteMOVxx }, // opcode 0x1D MOVBW
|
|
{ ExecuteMOVxx }, // opcode 0x1E MOVWW
|
|
{ ExecuteMOVxx }, // opcode 0x1F MOVDW
|
|
{ ExecuteMOVxx }, // opcode 0x20 MOVQW
|
|
{ ExecuteMOVxx }, // opcode 0x21 MOVBD
|
|
{ ExecuteMOVxx }, // opcode 0x22 MOVWD
|
|
{ ExecuteMOVxx }, // opcode 0x23 MOVDD
|
|
{ ExecuteMOVxx }, // opcode 0x24 MOVQD
|
|
{ ExecuteMOVsnw }, // opcode 0x25 MOVsnw
|
|
{ ExecuteMOVsnd }, // opcode 0x26 MOVsnd
|
|
{ NULL }, // opcode 0x27
|
|
{ ExecuteMOVxx }, // opcode 0x28 MOVqq
|
|
{ ExecuteLOADSP }, // opcode 0x29 LOADSP SP1, R2
|
|
{ ExecuteSTORESP }, // opcode 0x2A STORESP R1, SP2
|
|
{ ExecutePUSH }, // opcode 0x2B PUSH {@}R1 [imm16]
|
|
{ ExecutePOP }, // opcode 0x2C POP {@}R1 [imm16]
|
|
{ ExecuteCMPI }, // opcode 0x2D CMPIEQ
|
|
{ ExecuteCMPI }, // opcode 0x2E CMPILTE
|
|
{ ExecuteCMPI }, // opcode 0x2F CMPIGTE
|
|
{ ExecuteCMPI }, // opcode 0x30 CMPIULTE
|
|
{ ExecuteCMPI }, // opcode 0x31 CMPIUGTE
|
|
{ ExecuteMOVxx }, // opcode 0x32 MOVN
|
|
{ ExecuteMOVxx }, // opcode 0x33 MOVND
|
|
{ NULL }, // opcode 0x34
|
|
{ ExecutePUSHn }, // opcode 0x35
|
|
{ ExecutePOPn }, // opcode 0x36
|
|
{ ExecuteMOVI }, // opcode 0x37 - mov immediate data
|
|
{ ExecuteMOVIn }, // opcode 0x38 - mov immediate natural
|
|
{ ExecuteMOVREL }, // opcode 0x39 - move data relative to PC
|
|
{ NULL }, // opcode 0x3a
|
|
{ NULL }, // opcode 0x3b
|
|
{ NULL }, // opcode 0x3c
|
|
{ NULL }, // opcode 0x3d
|
|
{ NULL }, // opcode 0x3e
|
|
{ NULL } // opcode 0x3f
|
|
};
|
|
|
|
//
|
|
// Length of JMP instructions, depending on upper two bits of opcode.
|
|
//
|
|
CONST UINT8 mJMPLen[] = { 2, 2, 6, 10 };
|
|
|
|
/**
|
|
Given a pointer to a new VM context, execute one or more instructions. This
|
|
function is only used for test purposes via the EBC VM test protocol.
|
|
|
|
@param This A pointer to the EFI_EBC_VM_TEST_PROTOCOL structure.
|
|
@param VmPtr A pointer to a VM context.
|
|
@param InstructionCount A pointer to a UINTN value holding the number of
|
|
instructions to execute. If it holds value of 0,
|
|
then the instruction to be executed is 1.
|
|
|
|
@retval EFI_UNSUPPORTED At least one of the opcodes is not supported.
|
|
@retval EFI_SUCCESS All of the instructions are executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
EbcExecuteInstructions (
|
|
IN EFI_EBC_VM_TEST_PROTOCOL *This,
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN OUT UINTN *InstructionCount
|
|
)
|
|
{
|
|
UINTN ExecFunc;
|
|
EFI_STATUS Status;
|
|
UINTN InstructionsLeft;
|
|
UINTN SavedInstructionCount;
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
if (*InstructionCount == 0) {
|
|
InstructionsLeft = 1;
|
|
} else {
|
|
InstructionsLeft = *InstructionCount;
|
|
}
|
|
|
|
SavedInstructionCount = *InstructionCount;
|
|
*InstructionCount = 0;
|
|
|
|
//
|
|
// Index into the opcode table using the opcode byte for this instruction.
|
|
// This gives you the execute function, which we first test for null, then
|
|
// call it if it's not null.
|
|
//
|
|
while (InstructionsLeft != 0) {
|
|
ExecFunc = (UINTN) mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction;
|
|
if (ExecFunc == (UINTN) NULL) {
|
|
EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE, EXCEPTION_FLAG_FATAL, VmPtr);
|
|
return EFI_UNSUPPORTED;
|
|
} else {
|
|
mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr);
|
|
*InstructionCount = *InstructionCount + 1;
|
|
}
|
|
|
|
//
|
|
// Decrement counter if applicable
|
|
//
|
|
if (SavedInstructionCount != 0) {
|
|
InstructionsLeft--;
|
|
}
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute an EBC image from an entry point or from a published protocol.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED At least one of the opcodes is not supported.
|
|
@retval EFI_SUCCESS All of the instructions are executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EbcExecute (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINTN ExecFunc;
|
|
UINT8 StackCorrupted;
|
|
EFI_STATUS Status;
|
|
EFI_EBC_SIMPLE_DEBUGGER_PROTOCOL *EbcSimpleDebugger;
|
|
|
|
mVmPtr = VmPtr;
|
|
EbcSimpleDebugger = NULL;
|
|
Status = EFI_SUCCESS;
|
|
StackCorrupted = 0;
|
|
|
|
//
|
|
// Make sure the magic value has been put on the stack before we got here.
|
|
//
|
|
if (*VmPtr->StackMagicPtr != (UINTN) VM_STACK_KEY_VALUE) {
|
|
StackCorrupted = 1;
|
|
}
|
|
|
|
VmPtr->FramePtr = (VOID *) ((UINT8 *) (UINTN) VmPtr->Gpr[0] + 8);
|
|
|
|
//
|
|
// Try to get the debug support for EBC
|
|
//
|
|
DEBUG_CODE_BEGIN ();
|
|
Status = gBS->LocateProtocol (
|
|
&gEfiEbcSimpleDebuggerProtocolGuid,
|
|
NULL,
|
|
(VOID **) &EbcSimpleDebugger
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
EbcSimpleDebugger = NULL;
|
|
}
|
|
DEBUG_CODE_END ();
|
|
|
|
//
|
|
// Save the start IP for debug. For example, if we take an exception we
|
|
// can print out the location of the exception relative to the entry point,
|
|
// which could then be used in a disassembly listing to find the problem.
|
|
//
|
|
VmPtr->EntryPoint = (VOID *) VmPtr->Ip;
|
|
|
|
//
|
|
// We'll wait for this flag to know when we're done. The RET
|
|
// instruction sets it if it runs out of stack.
|
|
//
|
|
VmPtr->StopFlags = 0;
|
|
while ((VmPtr->StopFlags & STOPFLAG_APP_DONE) == 0) {
|
|
//
|
|
// If we've found a simple debugger protocol, call it
|
|
//
|
|
DEBUG_CODE_BEGIN ();
|
|
if (EbcSimpleDebugger != NULL) {
|
|
EbcSimpleDebugger->Debugger (EbcSimpleDebugger, VmPtr);
|
|
}
|
|
DEBUG_CODE_END ();
|
|
|
|
//
|
|
// Use the opcode bits to index into the opcode dispatch table. If the
|
|
// function pointer is null then generate an exception.
|
|
//
|
|
ExecFunc = (UINTN) mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction;
|
|
if (ExecFunc == (UINTN) NULL) {
|
|
EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE, EXCEPTION_FLAG_FATAL, VmPtr);
|
|
Status = EFI_UNSUPPORTED;
|
|
goto Done;
|
|
}
|
|
|
|
EbcDebuggerHookExecuteStart (VmPtr);
|
|
|
|
//
|
|
// The EBC VM is a strongly ordered processor, so perform a fence operation before
|
|
// and after each instruction is executed.
|
|
//
|
|
MemoryFence ();
|
|
|
|
mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr);
|
|
|
|
MemoryFence ();
|
|
|
|
EbcDebuggerHookExecuteEnd (VmPtr);
|
|
|
|
//
|
|
// If the step flag is set, signal an exception and continue. We don't
|
|
// clear it here. Assuming the debugger is responsible for clearing it.
|
|
//
|
|
if (VMFLAG_ISSET (VmPtr, VMFLAGS_STEP)) {
|
|
EbcDebugSignalException (EXCEPT_EBC_STEP, EXCEPTION_FLAG_NONE, VmPtr);
|
|
}
|
|
//
|
|
// Make sure stack has not been corrupted. Only report it once though.
|
|
//
|
|
if ((StackCorrupted == 0) && (*VmPtr->StackMagicPtr != (UINTN) VM_STACK_KEY_VALUE)) {
|
|
EbcDebugSignalException (EXCEPT_EBC_STACK_FAULT, EXCEPTION_FLAG_FATAL, VmPtr);
|
|
StackCorrupted = 1;
|
|
}
|
|
if ((StackCorrupted == 0) && ((UINT64)VmPtr->Gpr[0] <= (UINT64)(UINTN) VmPtr->StackTop)) {
|
|
EbcDebugSignalException (EXCEPT_EBC_STACK_FAULT, EXCEPTION_FLAG_FATAL, VmPtr);
|
|
StackCorrupted = 1;
|
|
}
|
|
}
|
|
|
|
Done:
|
|
mVmPtr = NULL;
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the MOVxx instructions.
|
|
|
|
Instruction format:
|
|
|
|
MOV[b|w|d|q|n]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}
|
|
MOVqq {@}R1 {Index64}, {@}R2 {Index64}
|
|
|
|
Copies contents of [R2] -> [R1], zero extending where required.
|
|
|
|
First character indicates the size of the move.
|
|
Second character indicates the size of the index(s).
|
|
|
|
Invalid to have R1 direct with index.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVxx (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 OpcMasked;
|
|
UINT8 Operands;
|
|
UINT8 Size;
|
|
UINT8 MoveSize;
|
|
INT16 Index16;
|
|
INT32 Index32;
|
|
INT64 Index64Op1;
|
|
INT64 Index64Op2;
|
|
UINT64 Data64;
|
|
UINT64 DataMask;
|
|
UINTN Source;
|
|
|
|
Opcode = GETOPCODE (VmPtr);
|
|
OpcMasked = (UINT8) (Opcode & OPCODE_M_OPCODE);
|
|
|
|
//
|
|
// Get the operands byte so we can get R1 and R2
|
|
//
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
//
|
|
// Assume no indexes
|
|
//
|
|
Index64Op1 = 0;
|
|
Index64Op2 = 0;
|
|
Data64 = 0;
|
|
|
|
//
|
|
// Determine if we have an index/immediate data. Base instruction size
|
|
// is 2 (opcode + operands). Add to this size each index specified.
|
|
//
|
|
Size = 2;
|
|
if ((Opcode & (OPCODE_M_IMMED_OP1 | OPCODE_M_IMMED_OP2)) != 0) {
|
|
//
|
|
// Determine size of the index from the opcode. Then get it.
|
|
//
|
|
if ((OpcMasked <= OPCODE_MOVQW) || (OpcMasked == OPCODE_MOVNW)) {
|
|
//
|
|
// MOVBW, MOVWW, MOVDW, MOVQW, and MOVNW have 16-bit immediate index.
|
|
// Get one or both index values.
|
|
//
|
|
if ((Opcode & OPCODE_M_IMMED_OP1) != 0) {
|
|
Index16 = VmReadIndex16 (VmPtr, 2);
|
|
Index64Op1 = (INT64) Index16;
|
|
Size += sizeof (UINT16);
|
|
}
|
|
|
|
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
|
|
Index16 = VmReadIndex16 (VmPtr, Size);
|
|
Index64Op2 = (INT64) Index16;
|
|
Size += sizeof (UINT16);
|
|
}
|
|
} else if ((OpcMasked <= OPCODE_MOVQD) || (OpcMasked == OPCODE_MOVND)) {
|
|
//
|
|
// MOVBD, MOVWD, MOVDD, MOVQD, and MOVND have 32-bit immediate index
|
|
//
|
|
if ((Opcode & OPCODE_M_IMMED_OP1) != 0) {
|
|
Index32 = VmReadIndex32 (VmPtr, 2);
|
|
Index64Op1 = (INT64) Index32;
|
|
Size += sizeof (UINT32);
|
|
}
|
|
|
|
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
|
|
Index32 = VmReadIndex32 (VmPtr, Size);
|
|
Index64Op2 = (INT64) Index32;
|
|
Size += sizeof (UINT32);
|
|
}
|
|
} else if (OpcMasked == OPCODE_MOVQQ) {
|
|
//
|
|
// MOVqq -- only form with a 64-bit index
|
|
//
|
|
if ((Opcode & OPCODE_M_IMMED_OP1) != 0) {
|
|
Index64Op1 = VmReadIndex64 (VmPtr, 2);
|
|
Size += sizeof (UINT64);
|
|
}
|
|
|
|
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
|
|
Index64Op2 = VmReadIndex64 (VmPtr, Size);
|
|
Size += sizeof (UINT64);
|
|
}
|
|
} else {
|
|
//
|
|
// Obsolete MOVBQ, MOVWQ, MOVDQ, and MOVNQ have 64-bit immediate index
|
|
//
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
}
|
|
//
|
|
// Determine the size of the move, and create a mask for it so we can
|
|
// clear unused bits.
|
|
//
|
|
if ((OpcMasked == OPCODE_MOVBW) || (OpcMasked == OPCODE_MOVBD)) {
|
|
MoveSize = DATA_SIZE_8;
|
|
DataMask = 0xFF;
|
|
} else if ((OpcMasked == OPCODE_MOVWW) || (OpcMasked == OPCODE_MOVWD)) {
|
|
MoveSize = DATA_SIZE_16;
|
|
DataMask = 0xFFFF;
|
|
} else if ((OpcMasked == OPCODE_MOVDW) || (OpcMasked == OPCODE_MOVDD)) {
|
|
MoveSize = DATA_SIZE_32;
|
|
DataMask = 0xFFFFFFFF;
|
|
} else if ((OpcMasked == OPCODE_MOVQW) || (OpcMasked == OPCODE_MOVQD) || (OpcMasked == OPCODE_MOVQQ)) {
|
|
MoveSize = DATA_SIZE_64;
|
|
DataMask = (UINT64)~0;
|
|
} else if ((OpcMasked == OPCODE_MOVNW) || (OpcMasked == OPCODE_MOVND)) {
|
|
MoveSize = DATA_SIZE_N;
|
|
DataMask = (UINT64)~0 >> (64 - 8 * sizeof (UINTN));
|
|
} else {
|
|
//
|
|
// We were dispatched to this function and we don't recognize the opcode
|
|
//
|
|
EbcDebugSignalException (EXCEPT_EBC_UNDEFINED, EXCEPTION_FLAG_FATAL, VmPtr);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// Now get the source address
|
|
//
|
|
if (OPERAND2_INDIRECT (Operands)) {
|
|
//
|
|
// Indirect form @R2. Compute address of operand2
|
|
//
|
|
Source = (UINTN) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index64Op2);
|
|
//
|
|
// Now get the data from the source. Always 0-extend and let the compiler
|
|
// sign-extend where required.
|
|
//
|
|
switch (MoveSize) {
|
|
case DATA_SIZE_8:
|
|
Data64 = (UINT64) (UINT8) VmReadMem8 (VmPtr, Source);
|
|
break;
|
|
|
|
case DATA_SIZE_16:
|
|
Data64 = (UINT64) (UINT16) VmReadMem16 (VmPtr, Source);
|
|
break;
|
|
|
|
case DATA_SIZE_32:
|
|
Data64 = (UINT64) (UINT32) VmReadMem32 (VmPtr, Source);
|
|
break;
|
|
|
|
case DATA_SIZE_64:
|
|
Data64 = (UINT64) VmReadMem64 (VmPtr, Source);
|
|
break;
|
|
|
|
case DATA_SIZE_N:
|
|
Data64 = (UINT64) (UINTN) VmReadMemN (VmPtr, Source);
|
|
break;
|
|
|
|
default:
|
|
//
|
|
// not reached
|
|
//
|
|
break;
|
|
}
|
|
} else {
|
|
//
|
|
// Not indirect source: MOVxx {@}Rx, Ry [Index]
|
|
//
|
|
Data64 = (UINT64) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index64Op2);
|
|
//
|
|
// Did Operand2 have an index? If so, treat as two signed values since
|
|
// indexes are signed values.
|
|
//
|
|
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
|
|
//
|
|
// NOTE: need to find a way to fix this, most likely by changing the VM
|
|
// implementation to remove the stack gap. To do that, we'd need to
|
|
// allocate stack space for the VM and actually set the system
|
|
// stack pointer to the allocated buffer when the VM starts.
|
|
//
|
|
// Special case -- if someone took the address of a function parameter
|
|
// then we need to make sure it's not in the stack gap. We can identify
|
|
// this situation if (Operand2 register == 0) && (Operand2 is direct)
|
|
// && (Index applies to Operand2) && (Index > 0) && (Operand1 register != 0)
|
|
// Situations that to be aware of:
|
|
// * stack adjustments at beginning and end of functions R0 = R0 += stacksize
|
|
//
|
|
if ((OPERAND2_REGNUM (Operands) == 0) &&
|
|
(!OPERAND2_INDIRECT (Operands)) &&
|
|
(Index64Op2 > 0) &&
|
|
(OPERAND1_REGNUM (Operands) == 0) &&
|
|
(OPERAND1_INDIRECT (Operands))
|
|
) {
|
|
Data64 = (UINT64) ConvertStackAddr (VmPtr, (UINTN) (INT64) Data64);
|
|
}
|
|
}
|
|
}
|
|
//
|
|
// Now write it back
|
|
//
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
//
|
|
// Reuse the Source variable to now be dest.
|
|
//
|
|
Source = (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index64Op1);
|
|
//
|
|
// Do the write based on the size
|
|
//
|
|
switch (MoveSize) {
|
|
case DATA_SIZE_8:
|
|
VmWriteMem8 (VmPtr, Source, (UINT8) Data64);
|
|
break;
|
|
|
|
case DATA_SIZE_16:
|
|
VmWriteMem16 (VmPtr, Source, (UINT16) Data64);
|
|
break;
|
|
|
|
case DATA_SIZE_32:
|
|
VmWriteMem32 (VmPtr, Source, (UINT32) Data64);
|
|
break;
|
|
|
|
case DATA_SIZE_64:
|
|
VmWriteMem64 (VmPtr, Source, Data64);
|
|
break;
|
|
|
|
case DATA_SIZE_N:
|
|
VmWriteMemN (VmPtr, Source, (UINTN) Data64);
|
|
break;
|
|
|
|
default:
|
|
//
|
|
// not reached
|
|
//
|
|
break;
|
|
}
|
|
} else {
|
|
//
|
|
// Operand1 direct.
|
|
// Make sure we didn't have an index on operand1.
|
|
//
|
|
if ((Opcode & OPCODE_M_IMMED_OP1) != 0) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// Direct storage in register. Clear unused bits and store back to
|
|
// register.
|
|
//
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Data64 & DataMask;
|
|
}
|
|
//
|
|
// Advance the instruction pointer
|
|
//
|
|
VmPtr->Ip += Size;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC BREAK instruction.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteBREAK (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT8 Operands;
|
|
VOID *EbcEntryPoint;
|
|
VOID *Thunk;
|
|
UINT64 U64EbcEntryPoint;
|
|
INT32 Offset;
|
|
|
|
Thunk = NULL;
|
|
Operands = GETOPERANDS (VmPtr);
|
|
switch (Operands) {
|
|
//
|
|
// Runaway program break. Generate an exception and terminate
|
|
//
|
|
case 0:
|
|
EbcDebugSignalException (EXCEPT_EBC_BAD_BREAK, EXCEPTION_FLAG_FATAL, VmPtr);
|
|
break;
|
|
|
|
//
|
|
// Get VM version -- return VM revision number in R7
|
|
//
|
|
case 1:
|
|
//
|
|
// Bits:
|
|
// 63-17 = 0
|
|
// 16-8 = Major version
|
|
// 7-0 = Minor version
|
|
//
|
|
VmPtr->Gpr[7] = GetVmVersion ();
|
|
break;
|
|
|
|
//
|
|
// Debugger breakpoint
|
|
//
|
|
case 3:
|
|
VmPtr->StopFlags |= STOPFLAG_BREAKPOINT;
|
|
//
|
|
// See if someone has registered a handler
|
|
//
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_BREAKPOINT,
|
|
EXCEPTION_FLAG_NONE,
|
|
VmPtr
|
|
);
|
|
break;
|
|
|
|
//
|
|
// System call, which there are none, so NOP it.
|
|
//
|
|
case 4:
|
|
break;
|
|
|
|
//
|
|
// Create a thunk for EBC code. R7 points to a 32-bit (in a 64-bit slot)
|
|
// "offset from self" pointer to the EBC entry point.
|
|
// After we're done, *(UINT64 *)R7 will be the address of the new thunk.
|
|
//
|
|
case 5:
|
|
Offset = (INT32) VmReadMem32 (VmPtr, (UINTN) VmPtr->Gpr[7]);
|
|
U64EbcEntryPoint = (UINT64) (VmPtr->Gpr[7] + Offset + 4);
|
|
EbcEntryPoint = (VOID *) (UINTN) U64EbcEntryPoint;
|
|
|
|
//
|
|
// Now create a new thunk
|
|
//
|
|
Status = EbcCreateThunks (VmPtr->ImageHandle, EbcEntryPoint, &Thunk, 0);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// Finally replace the EBC entry point memory with the thunk address
|
|
//
|
|
VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[7], (UINT64) (UINTN) Thunk);
|
|
break;
|
|
|
|
//
|
|
// Compiler setting version per value in R7
|
|
//
|
|
case 6:
|
|
VmPtr->CompilerVersion = (UINT32) VmPtr->Gpr[7];
|
|
//
|
|
// Check compiler version against VM version?
|
|
//
|
|
break;
|
|
|
|
//
|
|
// Unhandled break code. Signal exception.
|
|
//
|
|
default:
|
|
EbcDebugSignalException (EXCEPT_EBC_BAD_BREAK, EXCEPTION_FLAG_FATAL, VmPtr);
|
|
break;
|
|
}
|
|
//
|
|
// Advance IP
|
|
//
|
|
VmPtr->Ip += 2;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the JMP instruction.
|
|
|
|
Instruction syntax:
|
|
JMP64{cs|cc} Immed64
|
|
JMP32{cs|cc} {@}R1 {Immed32|Index32}
|
|
|
|
Encoding:
|
|
b0.7 - immediate data present
|
|
b0.6 - 1 = 64 bit immediate data
|
|
0 = 32 bit immediate data
|
|
b1.7 - 1 = conditional
|
|
b1.6 1 = CS (condition set)
|
|
0 = CC (condition clear)
|
|
b1.4 1 = relative address
|
|
0 = absolute address
|
|
b1.3 1 = operand1 indirect
|
|
b1.2-0 operand 1
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteJMP (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 CompareSet;
|
|
UINT8 ConditionFlag;
|
|
UINT8 Size;
|
|
UINT8 Operand;
|
|
UINT64 Data64;
|
|
INT32 Index32;
|
|
UINTN Addr;
|
|
|
|
Operand = GETOPERANDS (VmPtr);
|
|
Opcode = GETOPCODE (VmPtr);
|
|
|
|
//
|
|
// Get instruction length from the opcode. The upper two bits are used here
|
|
// to index into the length array.
|
|
//
|
|
Size = mJMPLen[(Opcode >> 6) & 0x03];
|
|
|
|
//
|
|
// Decode instruction conditions
|
|
// If we haven't met the condition, then simply advance the IP and return.
|
|
//
|
|
CompareSet = (UINT8) (((Operand & JMP_M_CS) != 0) ? 1 : 0);
|
|
ConditionFlag = (UINT8) VMFLAG_ISSET (VmPtr, VMFLAGS_CC);
|
|
if ((Operand & CONDITION_M_CONDITIONAL) != 0) {
|
|
if (CompareSet != ConditionFlag) {
|
|
EbcDebuggerHookJMPStart (VmPtr);
|
|
VmPtr->Ip += Size;
|
|
EbcDebuggerHookJMPEnd (VmPtr);
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
//
|
|
// Check for 64-bit form and do it right away since it's the most
|
|
// straight-forward form.
|
|
//
|
|
if ((Opcode & OPCODE_M_IMMDATA64) != 0) {
|
|
//
|
|
// Double check for immediate-data, which is required. If not there,
|
|
// then signal an exception
|
|
//
|
|
if ((Opcode & OPCODE_M_IMMDATA) == 0) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_ERROR,
|
|
VmPtr
|
|
);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// 64-bit immediate data is full address. Read the immediate data,
|
|
// check for alignment, and jump absolute.
|
|
//
|
|
Data64 = (UINT64) VmReadImmed64 (VmPtr, 2);
|
|
if (!IS_ALIGNED ((UINTN) Data64, sizeof (UINT16))) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_ALIGNMENT_CHECK,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
//
|
|
// Take jump -- relative or absolute
|
|
//
|
|
EbcDebuggerHookJMPStart (VmPtr);
|
|
if ((Operand & JMP_M_RELATIVE) != 0) {
|
|
VmPtr->Ip += (UINTN) Data64 + Size;
|
|
} else {
|
|
VmPtr->Ip = (VMIP) (UINTN) Data64;
|
|
}
|
|
EbcDebuggerHookJMPEnd (VmPtr);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
//
|
|
// 32-bit forms:
|
|
// Get the index if there is one. May be either an index, or an immediate
|
|
// offset depending on indirect operand.
|
|
// JMP32 @R1 Index32 -- immediate data is an index
|
|
// JMP32 R1 Immed32 -- immedate data is an offset
|
|
//
|
|
if ((Opcode & OPCODE_M_IMMDATA) != 0) {
|
|
if (OPERAND1_INDIRECT (Operand)) {
|
|
Index32 = VmReadIndex32 (VmPtr, 2);
|
|
} else {
|
|
Index32 = VmReadImmed32 (VmPtr, 2);
|
|
}
|
|
} else {
|
|
Index32 = 0;
|
|
}
|
|
//
|
|
// Get the register data. If R == 0, then special case where it's ignored.
|
|
//
|
|
if (OPERAND1_REGNUM (Operand) == 0) {
|
|
Data64 = 0;
|
|
} else {
|
|
Data64 = (UINT64) OPERAND1_REGDATA (VmPtr, Operand);
|
|
}
|
|
//
|
|
// Decode the forms
|
|
//
|
|
if (OPERAND1_INDIRECT (Operand)) {
|
|
//
|
|
// Form: JMP32 @Rx {Index32}
|
|
//
|
|
Addr = VmReadMemN (VmPtr, (UINTN) Data64 + Index32);
|
|
if (!IS_ALIGNED ((UINTN) Addr, sizeof (UINT16))) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_ALIGNMENT_CHECK,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
EbcDebuggerHookJMPStart (VmPtr);
|
|
if ((Operand & JMP_M_RELATIVE) != 0) {
|
|
VmPtr->Ip += (UINTN) Addr + Size;
|
|
} else {
|
|
VmPtr->Ip = (VMIP) Addr;
|
|
}
|
|
EbcDebuggerHookJMPEnd (VmPtr);
|
|
|
|
} else {
|
|
//
|
|
// Form: JMP32 Rx {Immed32}
|
|
//
|
|
Addr = (UINTN) (Data64 + Index32);
|
|
if (!IS_ALIGNED ((UINTN) Addr, sizeof (UINT16))) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_ALIGNMENT_CHECK,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
EbcDebuggerHookJMPStart (VmPtr);
|
|
if ((Operand & JMP_M_RELATIVE) != 0) {
|
|
VmPtr->Ip += (UINTN) Addr + Size;
|
|
} else {
|
|
VmPtr->Ip = (VMIP) Addr;
|
|
}
|
|
EbcDebuggerHookJMPEnd (VmPtr);
|
|
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC JMP8 instruction.
|
|
|
|
Instruction syntax:
|
|
JMP8{cs|cc} Offset/2
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteJMP8 (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 ConditionFlag;
|
|
UINT8 CompareSet;
|
|
INT8 Offset;
|
|
|
|
//
|
|
// Decode instruction.
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
CompareSet = (UINT8) (((Opcode & JMP_M_CS) != 0) ? 1 : 0);
|
|
ConditionFlag = (UINT8) VMFLAG_ISSET (VmPtr, VMFLAGS_CC);
|
|
|
|
//
|
|
// If we haven't met the condition, then simply advance the IP and return
|
|
//
|
|
if ((Opcode & CONDITION_M_CONDITIONAL) != 0) {
|
|
if (CompareSet != ConditionFlag) {
|
|
EbcDebuggerHookJMP8Start (VmPtr);
|
|
VmPtr->Ip += 2;
|
|
EbcDebuggerHookJMP8End (VmPtr);
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
//
|
|
// Get the offset from the instruction stream. It's relative to the
|
|
// following instruction, and divided by 2.
|
|
//
|
|
Offset = VmReadImmed8 (VmPtr, 1);
|
|
//
|
|
// Want to check for offset == -2 and then raise an exception?
|
|
//
|
|
EbcDebuggerHookJMP8Start (VmPtr);
|
|
VmPtr->Ip += (Offset * 2) + 2;
|
|
EbcDebuggerHookJMP8End (VmPtr);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC MOVI.
|
|
|
|
Instruction syntax:
|
|
|
|
MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, ImmData16|32|64
|
|
|
|
First variable character specifies the move size
|
|
Second variable character specifies size of the immediate data
|
|
|
|
Sign-extend the immediate data to the size of the operation, and zero-extend
|
|
if storing to a register.
|
|
|
|
Operand1 direct with index/immed is invalid.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVI (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
UINT8 Size;
|
|
INT16 Index16;
|
|
INT64 ImmData64;
|
|
UINT64 Op1;
|
|
UINT64 Mask64;
|
|
|
|
//
|
|
// Get the opcode and operands byte so we can get R1 and R2
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
//
|
|
// Get the index (16-bit) if present
|
|
//
|
|
if ((Operands & MOVI_M_IMMDATA) != 0) {
|
|
Index16 = VmReadIndex16 (VmPtr, 2);
|
|
Size = 4;
|
|
} else {
|
|
Index16 = 0;
|
|
Size = 2;
|
|
}
|
|
//
|
|
// Extract the immediate data. Sign-extend always.
|
|
//
|
|
if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) {
|
|
ImmData64 = (INT64) (INT16) VmReadImmed16 (VmPtr, Size);
|
|
Size += 2;
|
|
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) {
|
|
ImmData64 = (INT64) (INT32) VmReadImmed32 (VmPtr, Size);
|
|
Size += 4;
|
|
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) {
|
|
ImmData64 = (INT64) VmReadImmed64 (VmPtr, Size);
|
|
Size += 8;
|
|
} else {
|
|
//
|
|
// Invalid encoding
|
|
//
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// Now write back the result
|
|
//
|
|
if (!OPERAND1_INDIRECT (Operands)) {
|
|
//
|
|
// Operand1 direct. Make sure it didn't have an index.
|
|
//
|
|
if ((Operands & MOVI_M_IMMDATA) != 0) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// Writing directly to a register. Clear unused bits.
|
|
//
|
|
if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH8) {
|
|
Mask64 = 0x000000FF;
|
|
} else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH16) {
|
|
Mask64 = 0x0000FFFF;
|
|
} else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH32) {
|
|
Mask64 = 0x00000000FFFFFFFF;
|
|
} else {
|
|
Mask64 = (UINT64)~0;
|
|
}
|
|
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = ImmData64 & Mask64;
|
|
} else {
|
|
//
|
|
// Get the address then write back based on size of the move
|
|
//
|
|
Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16;
|
|
if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH8) {
|
|
VmWriteMem8 (VmPtr, (UINTN) Op1, (UINT8) ImmData64);
|
|
} else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH16) {
|
|
VmWriteMem16 (VmPtr, (UINTN) Op1, (UINT16) ImmData64);
|
|
} else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH32) {
|
|
VmWriteMem32 (VmPtr, (UINTN) Op1, (UINT32) ImmData64);
|
|
} else {
|
|
VmWriteMem64 (VmPtr, (UINTN) Op1, (UINT64) ImmData64);
|
|
}
|
|
}
|
|
//
|
|
// Advance the instruction pointer
|
|
//
|
|
VmPtr->Ip += Size;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC MOV immediate natural. This instruction moves an immediate
|
|
index value into a register or memory location.
|
|
|
|
Instruction syntax:
|
|
|
|
MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVIn (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
UINT8 Size;
|
|
INT16 Index16;
|
|
INT16 ImmedIndex16;
|
|
INT32 ImmedIndex32;
|
|
INT64 ImmedIndex64;
|
|
UINT64 Op1;
|
|
|
|
//
|
|
// Get the opcode and operands byte so we can get R1 and R2
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
//
|
|
// Get the operand1 index (16-bit) if present
|
|
//
|
|
if ((Operands & MOVI_M_IMMDATA) != 0) {
|
|
Index16 = VmReadIndex16 (VmPtr, 2);
|
|
Size = 4;
|
|
} else {
|
|
Index16 = 0;
|
|
Size = 2;
|
|
}
|
|
//
|
|
// Extract the immediate data and convert to a 64-bit index.
|
|
//
|
|
if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) {
|
|
ImmedIndex16 = VmReadIndex16 (VmPtr, Size);
|
|
ImmedIndex64 = (INT64) ImmedIndex16;
|
|
Size += 2;
|
|
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) {
|
|
ImmedIndex32 = VmReadIndex32 (VmPtr, Size);
|
|
ImmedIndex64 = (INT64) ImmedIndex32;
|
|
Size += 4;
|
|
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) {
|
|
ImmedIndex64 = VmReadIndex64 (VmPtr, Size);
|
|
Size += 8;
|
|
} else {
|
|
//
|
|
// Invalid encoding
|
|
//
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// Now write back the result
|
|
//
|
|
if (!OPERAND1_INDIRECT (Operands)) {
|
|
//
|
|
// Check for MOVIn R1 Index16, Immed (not indirect, with index), which
|
|
// is illegal
|
|
//
|
|
if ((Operands & MOVI_M_IMMDATA) != 0) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = ImmedIndex64;
|
|
} else {
|
|
//
|
|
// Get the address
|
|
//
|
|
Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16;
|
|
VmWriteMemN (VmPtr, (UINTN) Op1, (UINTN)(INTN) ImmedIndex64);
|
|
}
|
|
//
|
|
// Advance the instruction pointer
|
|
//
|
|
VmPtr->Ip += Size;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC MOVREL instruction.
|
|
Dest <- Ip + ImmData
|
|
|
|
Instruction syntax:
|
|
|
|
MOVREL[w|d|q] {@}R1 {Index16}, ImmData16|32|64
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVREL (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
UINT8 Size;
|
|
INT16 Index16;
|
|
INT64 ImmData64;
|
|
UINT64 Op1;
|
|
UINT64 Op2;
|
|
|
|
//
|
|
// Get the opcode and operands byte so we can get R1 and R2
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
//
|
|
// Get the Operand 1 index (16-bit) if present
|
|
//
|
|
if ((Operands & MOVI_M_IMMDATA) != 0) {
|
|
Index16 = VmReadIndex16 (VmPtr, 2);
|
|
Size = 4;
|
|
} else {
|
|
Index16 = 0;
|
|
Size = 2;
|
|
}
|
|
//
|
|
// Get the immediate data.
|
|
//
|
|
if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) {
|
|
ImmData64 = (INT64) VmReadImmed16 (VmPtr, Size);
|
|
Size += 2;
|
|
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) {
|
|
ImmData64 = (INT64) VmReadImmed32 (VmPtr, Size);
|
|
Size += 4;
|
|
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) {
|
|
ImmData64 = VmReadImmed64 (VmPtr, Size);
|
|
Size += 8;
|
|
} else {
|
|
//
|
|
// Invalid encoding
|
|
//
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// Compute the value and write back the result
|
|
//
|
|
Op2 = (UINT64) ((INT64) ((UINT64) (UINTN) VmPtr->Ip) + (INT64) ImmData64 + Size);
|
|
if (!OPERAND1_INDIRECT (Operands)) {
|
|
//
|
|
// Check for illegal combination of operand1 direct with immediate data
|
|
//
|
|
if ((Operands & MOVI_M_IMMDATA) != 0) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (VM_REGISTER) Op2;
|
|
} else {
|
|
//
|
|
// Get the address = [Rx] + Index16
|
|
// Write back the result. Always a natural size write, since
|
|
// we're talking addresses here.
|
|
//
|
|
Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16;
|
|
VmWriteMemN (VmPtr, (UINTN) Op1, (UINTN) Op2);
|
|
}
|
|
//
|
|
// Advance the instruction pointer
|
|
//
|
|
VmPtr->Ip += Size;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC MOVsnw instruction. This instruction loads a signed
|
|
natural value from memory or register to another memory or register. On
|
|
32-bit machines, the value gets sign-extended to 64 bits if the destination
|
|
is a register.
|
|
|
|
Instruction syntax:
|
|
|
|
MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16}
|
|
|
|
0:7 1=>operand1 index present
|
|
0:6 1=>operand2 index present
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVsnw (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
UINT8 Size;
|
|
INT16 Op1Index;
|
|
INT16 Op2Index;
|
|
UINT64 Op2;
|
|
|
|
//
|
|
// Get the opcode and operand bytes
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
Op1Index = Op2Index = 0;
|
|
|
|
//
|
|
// Get the indexes if present.
|
|
//
|
|
Size = 2;
|
|
if ((Opcode & OPCODE_M_IMMED_OP1) !=0) {
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
Op1Index = VmReadIndex16 (VmPtr, 2);
|
|
} else {
|
|
//
|
|
// Illegal form operand1 direct with index: MOVsnw R1 Index16, {@}R2
|
|
//
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
Size += sizeof (UINT16);
|
|
}
|
|
|
|
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
|
|
if (OPERAND2_INDIRECT (Operands)) {
|
|
Op2Index = VmReadIndex16 (VmPtr, Size);
|
|
} else {
|
|
Op2Index = VmReadImmed16 (VmPtr, Size);
|
|
}
|
|
|
|
Size += sizeof (UINT16);
|
|
}
|
|
//
|
|
// Get the data from the source.
|
|
//
|
|
Op2 = (UINT64)(INT64)(INTN)(VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Op2Index);
|
|
if (OPERAND2_INDIRECT (Operands)) {
|
|
Op2 = (UINT64)(INT64)(INTN)VmReadMemN (VmPtr, (UINTN) Op2);
|
|
}
|
|
//
|
|
// Now write back the result.
|
|
//
|
|
if (!OPERAND1_INDIRECT (Operands)) {
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2;
|
|
} else {
|
|
VmWriteMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Op1Index), (UINTN) Op2);
|
|
}
|
|
//
|
|
// Advance the instruction pointer
|
|
//
|
|
VmPtr->Ip += Size;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC MOVsnw instruction. This instruction loads a signed
|
|
natural value from memory or register to another memory or register. On
|
|
32-bit machines, the value gets sign-extended to 64 bits if the destination
|
|
is a register.
|
|
|
|
Instruction syntax:
|
|
|
|
MOVsnd {@}R1 {Indx32}, {@}R2 {Index32|Immed32}
|
|
|
|
0:7 1=>operand1 index present
|
|
0:6 1=>operand2 index present
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteMOVsnd (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
UINT8 Size;
|
|
INT32 Op1Index;
|
|
INT32 Op2Index;
|
|
UINT64 Op2;
|
|
|
|
//
|
|
// Get the opcode and operand bytes
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
Op1Index = Op2Index = 0;
|
|
|
|
//
|
|
// Get the indexes if present.
|
|
//
|
|
Size = 2;
|
|
if ((Opcode & OPCODE_M_IMMED_OP1) != 0) {
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
Op1Index = VmReadIndex32 (VmPtr, 2);
|
|
} else {
|
|
//
|
|
// Illegal form operand1 direct with index: MOVsnd R1 Index16,..
|
|
//
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
Size += sizeof (UINT32);
|
|
}
|
|
|
|
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
|
|
if (OPERAND2_INDIRECT (Operands)) {
|
|
Op2Index = VmReadIndex32 (VmPtr, Size);
|
|
} else {
|
|
Op2Index = VmReadImmed32 (VmPtr, Size);
|
|
}
|
|
|
|
Size += sizeof (UINT32);
|
|
}
|
|
//
|
|
// Get the data from the source.
|
|
//
|
|
Op2 = (UINT64)(INT64)(INTN)(INT64)(VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Op2Index);
|
|
if (OPERAND2_INDIRECT (Operands)) {
|
|
Op2 = (UINT64)(INT64)(INTN)(INT64)VmReadMemN (VmPtr, (UINTN) Op2);
|
|
}
|
|
//
|
|
// Now write back the result.
|
|
//
|
|
if (!OPERAND1_INDIRECT (Operands)) {
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2;
|
|
} else {
|
|
VmWriteMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Op1Index), (UINTN) Op2);
|
|
}
|
|
//
|
|
// Advance the instruction pointer
|
|
//
|
|
VmPtr->Ip += Size;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC PUSHn instruction
|
|
|
|
Instruction syntax:
|
|
PUSHn {@}R1 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecutePUSHn (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
INT16 Index16;
|
|
UINTN DataN;
|
|
|
|
//
|
|
// Get opcode and operands
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
//
|
|
// Get index if present
|
|
//
|
|
if ((Opcode & PUSHPOP_M_IMMDATA) != 0) {
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
Index16 = VmReadIndex16 (VmPtr, 2);
|
|
} else {
|
|
Index16 = VmReadImmed16 (VmPtr, 2);
|
|
}
|
|
|
|
VmPtr->Ip += 4;
|
|
} else {
|
|
Index16 = 0;
|
|
VmPtr->Ip += 2;
|
|
}
|
|
//
|
|
// Get the data to push
|
|
//
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
DataN = VmReadMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16));
|
|
} else {
|
|
DataN = (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16);
|
|
}
|
|
//
|
|
// Adjust the stack down.
|
|
//
|
|
VmPtr->Gpr[0] -= sizeof (UINTN);
|
|
VmWriteMemN (VmPtr, (UINTN) VmPtr->Gpr[0], DataN);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC PUSH instruction.
|
|
|
|
Instruction syntax:
|
|
PUSH[32|64] {@}R1 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecutePUSH (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
UINT32 Data32;
|
|
UINT64 Data64;
|
|
INT16 Index16;
|
|
|
|
//
|
|
// Get opcode and operands
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
//
|
|
// Get immediate index if present, then advance the IP.
|
|
//
|
|
if ((Opcode & PUSHPOP_M_IMMDATA) != 0) {
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
Index16 = VmReadIndex16 (VmPtr, 2);
|
|
} else {
|
|
Index16 = VmReadImmed16 (VmPtr, 2);
|
|
}
|
|
|
|
VmPtr->Ip += 4;
|
|
} else {
|
|
Index16 = 0;
|
|
VmPtr->Ip += 2;
|
|
}
|
|
//
|
|
// Get the data to push
|
|
//
|
|
if ((Opcode & PUSHPOP_M_64) != 0) {
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
Data64 = VmReadMem64 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16));
|
|
} else {
|
|
Data64 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16;
|
|
}
|
|
//
|
|
// Adjust the stack down, then write back the data
|
|
//
|
|
VmPtr->Gpr[0] -= sizeof (UINT64);
|
|
VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[0], Data64);
|
|
} else {
|
|
//
|
|
// 32-bit data
|
|
//
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
Data32 = VmReadMem32 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16));
|
|
} else {
|
|
Data32 = (UINT32) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16;
|
|
}
|
|
//
|
|
// Adjust the stack down and write the data
|
|
//
|
|
VmPtr->Gpr[0] -= sizeof (UINT32);
|
|
VmWriteMem32 (VmPtr, (UINTN) VmPtr->Gpr[0], Data32);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC POPn instruction.
|
|
|
|
Instruction syntax:
|
|
POPn {@}R1 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecutePOPn (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
INT16 Index16;
|
|
UINTN DataN;
|
|
|
|
//
|
|
// Get opcode and operands
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
//
|
|
// Get immediate data if present, and advance the IP
|
|
//
|
|
if ((Opcode & PUSHPOP_M_IMMDATA) != 0) {
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
Index16 = VmReadIndex16 (VmPtr, 2);
|
|
} else {
|
|
Index16 = VmReadImmed16 (VmPtr, 2);
|
|
}
|
|
|
|
VmPtr->Ip += 4;
|
|
} else {
|
|
Index16 = 0;
|
|
VmPtr->Ip += 2;
|
|
}
|
|
//
|
|
// Read the data off the stack, then adjust the stack pointer
|
|
//
|
|
DataN = VmReadMemN (VmPtr, (UINTN) VmPtr->Gpr[0]);
|
|
VmPtr->Gpr[0] += sizeof (UINTN);
|
|
//
|
|
// Do the write-back
|
|
//
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
VmWriteMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), DataN);
|
|
} else {
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (INT64) (UINT64) (UINTN) (DataN + Index16);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC POP instruction.
|
|
|
|
Instruction syntax:
|
|
POPn {@}R1 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecutePOP (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
INT16 Index16;
|
|
INT32 Data32;
|
|
UINT64 Data64;
|
|
|
|
//
|
|
// Get opcode and operands
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
//
|
|
// Get immediate data if present, and advance the IP.
|
|
//
|
|
if ((Opcode & PUSHPOP_M_IMMDATA) != 0) {
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
Index16 = VmReadIndex16 (VmPtr, 2);
|
|
} else {
|
|
Index16 = VmReadImmed16 (VmPtr, 2);
|
|
}
|
|
|
|
VmPtr->Ip += 4;
|
|
} else {
|
|
Index16 = 0;
|
|
VmPtr->Ip += 2;
|
|
}
|
|
//
|
|
// Get the data off the stack, then write it to the appropriate location
|
|
//
|
|
if ((Opcode & PUSHPOP_M_64) != 0) {
|
|
//
|
|
// Read the data off the stack, then adjust the stack pointer
|
|
//
|
|
Data64 = VmReadMem64 (VmPtr, (UINTN) VmPtr->Gpr[0]);
|
|
VmPtr->Gpr[0] += sizeof (UINT64);
|
|
//
|
|
// Do the write-back
|
|
//
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
VmWriteMem64 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), Data64);
|
|
} else {
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Data64 + Index16;
|
|
}
|
|
} else {
|
|
//
|
|
// 32-bit pop. Read it off the stack and adjust the stack pointer
|
|
//
|
|
Data32 = (INT32) VmReadMem32 (VmPtr, (UINTN) VmPtr->Gpr[0]);
|
|
VmPtr->Gpr[0] += sizeof (UINT32);
|
|
//
|
|
// Do the write-back
|
|
//
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
VmWriteMem32 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), Data32);
|
|
} else {
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (INT64) Data32 + Index16;
|
|
}
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Implements the EBC CALL instruction.
|
|
|
|
Instruction format:
|
|
CALL64 Immed64
|
|
CALL32 {@}R1 {Immed32|Index32}
|
|
CALLEX64 Immed64
|
|
CALLEX16 {@}R1 {Immed32}
|
|
|
|
If Rx == R0, then it's a PC relative call to PC = PC + imm32.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteCALL (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
INT32 Immed32;
|
|
UINT8 Size;
|
|
INT64 Immed64;
|
|
VOID *FramePtr;
|
|
|
|
//
|
|
// Get opcode and operands
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
if ((Operands & OPERAND_M_NATIVE_CALL) != 0) {
|
|
EbcDebuggerHookCALLEXStart (VmPtr);
|
|
} else {
|
|
EbcDebuggerHookCALLStart (VmPtr);
|
|
}
|
|
|
|
//
|
|
// Assign these as well to avoid compiler warnings
|
|
//
|
|
Immed64 = 0;
|
|
Immed32 = 0;
|
|
|
|
FramePtr = VmPtr->FramePtr;
|
|
//
|
|
// Determine the instruction size, and get immediate data if present
|
|
//
|
|
if ((Opcode & OPCODE_M_IMMDATA) != 0) {
|
|
if ((Opcode & OPCODE_M_IMMDATA64) != 0) {
|
|
Immed64 = VmReadImmed64 (VmPtr, 2);
|
|
Size = 10;
|
|
} else {
|
|
//
|
|
// If register operand is indirect, then the immediate data is an index
|
|
//
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
Immed32 = VmReadIndex32 (VmPtr, 2);
|
|
} else {
|
|
Immed32 = VmReadImmed32 (VmPtr, 2);
|
|
}
|
|
|
|
Size = 6;
|
|
}
|
|
} else {
|
|
Size = 2;
|
|
}
|
|
//
|
|
// If it's a call to EBC, adjust the stack pointer down 16 bytes and
|
|
// put our return address and frame pointer on the VM stack.
|
|
//
|
|
if ((Operands & OPERAND_M_NATIVE_CALL) == 0) {
|
|
VmPtr->Gpr[0] -= 8;
|
|
VmWriteMemN (VmPtr, (UINTN) VmPtr->Gpr[0], (UINTN) FramePtr);
|
|
VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->Gpr[0];
|
|
VmPtr->Gpr[0] -= 8;
|
|
VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[0], (UINT64) (UINTN) (VmPtr->Ip + Size));
|
|
}
|
|
//
|
|
// If 64-bit data, then absolute jump only
|
|
//
|
|
if ((Opcode & OPCODE_M_IMMDATA64) != 0) {
|
|
//
|
|
// Native or EBC call?
|
|
//
|
|
if ((Operands & OPERAND_M_NATIVE_CALL) == 0) {
|
|
VmPtr->Ip = (VMIP) (UINTN) Immed64;
|
|
} else {
|
|
//
|
|
// Call external function, get the return value, and advance the IP
|
|
//
|
|
EbcLLCALLEX (VmPtr, (UINTN) Immed64, (UINTN) VmPtr->Gpr[0], FramePtr, Size);
|
|
}
|
|
} else {
|
|
//
|
|
// Get the register data. If operand1 == 0, then ignore register and
|
|
// take immediate data as relative or absolute address.
|
|
// Compiler should take care of upper bits if 32-bit machine.
|
|
//
|
|
if (OPERAND1_REGNUM (Operands) != 0) {
|
|
Immed64 = (UINT64) (UINTN) VmPtr->Gpr[OPERAND1_REGNUM (Operands)];
|
|
}
|
|
//
|
|
// Get final address
|
|
//
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
Immed64 = (INT64) (UINT64) (UINTN) VmReadMemN (VmPtr, (UINTN) (Immed64 + Immed32));
|
|
} else {
|
|
Immed64 += Immed32;
|
|
}
|
|
//
|
|
// Now determine if external call, and then if relative or absolute
|
|
//
|
|
if ((Operands & OPERAND_M_NATIVE_CALL) == 0) {
|
|
//
|
|
// EBC call. Relative or absolute? If relative, then it's relative to the
|
|
// start of the next instruction.
|
|
//
|
|
if ((Operands & OPERAND_M_RELATIVE_ADDR) != 0) {
|
|
VmPtr->Ip += Immed64 + Size;
|
|
} else {
|
|
VmPtr->Ip = (VMIP) (UINTN) Immed64;
|
|
}
|
|
} else {
|
|
//
|
|
// Native call. Relative or absolute?
|
|
//
|
|
if ((Operands & OPERAND_M_RELATIVE_ADDR) != 0) {
|
|
EbcLLCALLEX (VmPtr, (UINTN) (Immed64 + VmPtr->Ip + Size), (UINTN) VmPtr->Gpr[0], FramePtr, Size);
|
|
} else {
|
|
if ((VmPtr->StopFlags & STOPFLAG_BREAK_ON_CALLEX) != 0) {
|
|
CpuBreakpoint ();
|
|
}
|
|
|
|
EbcLLCALLEX (VmPtr, (UINTN) Immed64, (UINTN) VmPtr->Gpr[0], FramePtr, Size);
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((Operands & OPERAND_M_NATIVE_CALL) != 0) {
|
|
EbcDebuggerHookCALLEXEnd (VmPtr);
|
|
} else {
|
|
EbcDebuggerHookCALLEnd (VmPtr);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC RET instruction.
|
|
|
|
Instruction syntax:
|
|
RET
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteRET (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
|
|
EbcDebuggerHookRETStart (VmPtr);
|
|
|
|
//
|
|
// If we're at the top of the stack, then simply set the done
|
|
// flag and return
|
|
//
|
|
if (VmPtr->StackRetAddr == (UINT64) VmPtr->Gpr[0]) {
|
|
VmPtr->StopFlags |= STOPFLAG_APP_DONE;
|
|
} else {
|
|
//
|
|
// Pull the return address off the VM app's stack and set the IP
|
|
// to it
|
|
//
|
|
if (!IS_ALIGNED ((UINTN) VmPtr->Gpr[0], sizeof (UINT16))) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_ALIGNMENT_CHECK,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
}
|
|
//
|
|
// Restore the IP and frame pointer from the stack
|
|
//
|
|
VmPtr->Ip = (VMIP) (UINTN) VmReadMem64 (VmPtr, (UINTN) VmPtr->Gpr[0]);
|
|
VmPtr->Gpr[0] += 8;
|
|
VmPtr->FramePtr = (VOID *) VmReadMemN (VmPtr, (UINTN) VmPtr->Gpr[0]);
|
|
VmPtr->Gpr[0] += 8;
|
|
}
|
|
|
|
|
|
EbcDebuggerHookRETEnd (VmPtr);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC CMP instruction.
|
|
|
|
Instruction syntax:
|
|
CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteCMP (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
UINT8 Size;
|
|
INT16 Index16;
|
|
UINT32 Flag;
|
|
INT64 Op2;
|
|
INT64 Op1;
|
|
|
|
//
|
|
// Get opcode and operands
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
//
|
|
// Get the register data we're going to compare to
|
|
//
|
|
Op1 = VmPtr->Gpr[OPERAND1_REGNUM (Operands)];
|
|
//
|
|
// Get immediate data
|
|
//
|
|
if ((Opcode & OPCODE_M_IMMDATA) != 0) {
|
|
if (OPERAND2_INDIRECT (Operands)) {
|
|
Index16 = VmReadIndex16 (VmPtr, 2);
|
|
} else {
|
|
Index16 = VmReadImmed16 (VmPtr, 2);
|
|
}
|
|
|
|
Size = 4;
|
|
} else {
|
|
Index16 = 0;
|
|
Size = 2;
|
|
}
|
|
//
|
|
// Now get Op2
|
|
//
|
|
if (OPERAND2_INDIRECT (Operands)) {
|
|
if ((Opcode & OPCODE_M_64BIT) != 0) {
|
|
Op2 = (INT64) VmReadMem64 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16));
|
|
} else {
|
|
//
|
|
// 32-bit operations. 0-extend the values for all cases.
|
|
//
|
|
Op2 = (INT64) (UINT64) ((UINT32) VmReadMem32 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16)));
|
|
}
|
|
} else {
|
|
Op2 = VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16;
|
|
}
|
|
//
|
|
// Now do the compare
|
|
//
|
|
Flag = 0;
|
|
if ((Opcode & OPCODE_M_64BIT) != 0) {
|
|
//
|
|
// 64-bit compares
|
|
//
|
|
switch (Opcode & OPCODE_M_OPCODE) {
|
|
case OPCODE_CMPEQ:
|
|
if (Op1 == Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPLTE:
|
|
if (Op1 <= Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPGTE:
|
|
if (Op1 >= Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPULTE:
|
|
if ((UINT64) Op1 <= (UINT64) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPUGTE:
|
|
if ((UINT64) Op1 >= (UINT64) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ASSERT (0);
|
|
}
|
|
} else {
|
|
//
|
|
// 32-bit compares
|
|
//
|
|
switch (Opcode & OPCODE_M_OPCODE) {
|
|
case OPCODE_CMPEQ:
|
|
if ((INT32) Op1 == (INT32) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPLTE:
|
|
if ((INT32) Op1 <= (INT32) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPGTE:
|
|
if ((INT32) Op1 >= (INT32) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPULTE:
|
|
if ((UINT32) Op1 <= (UINT32) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPUGTE:
|
|
if ((UINT32) Op1 >= (UINT32) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ASSERT (0);
|
|
}
|
|
}
|
|
//
|
|
// Now set the flag accordingly for the comparison
|
|
//
|
|
if (Flag != 0) {
|
|
VMFLAG_SET (VmPtr, VMFLAGS_CC);
|
|
} else {
|
|
VMFLAG_CLEAR (VmPtr, (UINT64)VMFLAGS_CC);
|
|
}
|
|
//
|
|
// Advance the IP
|
|
//
|
|
VmPtr->Ip += Size;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC CMPI instruction
|
|
|
|
Instruction syntax:
|
|
CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}Rx {Index16}, Immed16|Immed32
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteCMPI (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
UINT8 Operands;
|
|
UINT8 Size;
|
|
INT64 Op1;
|
|
INT64 Op2;
|
|
INT16 Index16;
|
|
UINT32 Flag;
|
|
|
|
//
|
|
// Get opcode and operands
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
//
|
|
// Get operand1 index if present
|
|
//
|
|
Size = 2;
|
|
if ((Operands & OPERAND_M_CMPI_INDEX) != 0) {
|
|
Index16 = VmReadIndex16 (VmPtr, 2);
|
|
Size += 2;
|
|
} else {
|
|
Index16 = 0;
|
|
}
|
|
//
|
|
// Get operand1 data we're going to compare to
|
|
//
|
|
Op1 = (INT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)];
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
//
|
|
// Indirect operand1. Fetch 32 or 64-bit value based on compare size.
|
|
//
|
|
if ((Opcode & OPCODE_M_CMPI64) != 0) {
|
|
Op1 = (INT64) VmReadMem64 (VmPtr, (UINTN) Op1 + Index16);
|
|
} else {
|
|
Op1 = (INT64) VmReadMem32 (VmPtr, (UINTN) Op1 + Index16);
|
|
}
|
|
} else {
|
|
//
|
|
// Better not have been an index with direct. That is, CMPI R1 Index,...
|
|
// is illegal.
|
|
//
|
|
if ((Operands & OPERAND_M_CMPI_INDEX) != 0) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_ERROR,
|
|
VmPtr
|
|
);
|
|
VmPtr->Ip += Size;
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
}
|
|
//
|
|
// Get immediate data -- 16- or 32-bit sign extended
|
|
//
|
|
if ((Opcode & OPCODE_M_CMPI32_DATA) != 0) {
|
|
Op2 = (INT64) VmReadImmed32 (VmPtr, Size);
|
|
Size += 4;
|
|
} else {
|
|
//
|
|
// 16-bit immediate data. Sign extend always.
|
|
//
|
|
Op2 = (INT64) ((INT16) VmReadImmed16 (VmPtr, Size));
|
|
Size += 2;
|
|
}
|
|
//
|
|
// Now do the compare
|
|
//
|
|
Flag = 0;
|
|
if ((Opcode & OPCODE_M_CMPI64) != 0) {
|
|
//
|
|
// 64 bit comparison
|
|
//
|
|
switch (Opcode & OPCODE_M_OPCODE) {
|
|
case OPCODE_CMPIEQ:
|
|
if (Op1 == (INT64) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPILTE:
|
|
if (Op1 <= (INT64) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPIGTE:
|
|
if (Op1 >= (INT64) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPIULTE:
|
|
if ((UINT64) Op1 <= (UINT64) ((UINT32) Op2)) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPIUGTE:
|
|
if ((UINT64) Op1 >= (UINT64) ((UINT32) Op2)) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ASSERT (0);
|
|
}
|
|
} else {
|
|
//
|
|
// 32-bit comparisons
|
|
//
|
|
switch (Opcode & OPCODE_M_OPCODE) {
|
|
case OPCODE_CMPIEQ:
|
|
if ((INT32) Op1 == Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPILTE:
|
|
if ((INT32) Op1 <= Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPIGTE:
|
|
if ((INT32) Op1 >= Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPIULTE:
|
|
if ((UINT32) Op1 <= (UINT32) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
case OPCODE_CMPIUGTE:
|
|
if ((UINT32) Op1 >= (UINT32) Op2) {
|
|
Flag = 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ASSERT (0);
|
|
}
|
|
}
|
|
//
|
|
// Now set the flag accordingly for the comparison
|
|
//
|
|
if (Flag != 0) {
|
|
VMFLAG_SET (VmPtr, VMFLAGS_CC);
|
|
} else {
|
|
VMFLAG_CLEAR (VmPtr, (UINT64)VMFLAGS_CC);
|
|
}
|
|
//
|
|
// Advance the IP
|
|
//
|
|
VmPtr->Ip += Size;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC NOT instruction.s
|
|
|
|
Instruction syntax:
|
|
NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return ~Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteNOT (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
return ~Op2;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC NEG instruction.
|
|
|
|
Instruction syntax:
|
|
NEG[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op2 * -1
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteNEG (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
return ~Op2 + 1;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC ADD instruction.
|
|
|
|
Instruction syntax:
|
|
ADD[32|64] {@}R1, {@}R2 {Index16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 + Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteADD (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
return Op1 + Op2;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC SUB instruction.
|
|
|
|
Instruction syntax:
|
|
SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 - Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteSUB (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
|
|
return (UINT64) ((INT64) ((INT64) Op1 - (INT64) Op2));
|
|
} else {
|
|
return (UINT64) ((INT64) ((INT32) ((INT32) Op1 - (INT32) Op2)));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC MUL instruction.
|
|
|
|
Instruction syntax:
|
|
SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 * Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteMUL (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
|
|
return MultS64x64 ((INT64)Op1, (INT64)Op2);
|
|
} else {
|
|
return (UINT64) ((INT64) ((INT32) ((INT32) Op1 * (INT32) Op2)));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC MULU instruction
|
|
|
|
Instruction syntax:
|
|
MULU[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return (unsigned)Op1 * (unsigned)Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteMULU (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
|
|
return MultU64x64 (Op1, Op2);
|
|
} else {
|
|
return (UINT64) ((UINT32) ((UINT32) Op1 * (UINT32) Op2));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC DIV instruction.
|
|
|
|
Instruction syntax:
|
|
DIV[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 / Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteDIV (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
INT64 Remainder;
|
|
|
|
//
|
|
// Check for divide-by-0
|
|
//
|
|
if (Op2 == 0) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_DIVIDE_ERROR,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
|
|
return 0;
|
|
} else {
|
|
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
|
|
return (UINT64) (DivS64x64Remainder (Op1, Op2, &Remainder));
|
|
} else {
|
|
return (UINT64) ((INT64) ((INT32) Op1 / (INT32) Op2));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC DIVU instruction
|
|
|
|
Instruction syntax:
|
|
DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return (unsigned)Op1 / (unsigned)Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteDIVU (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
UINT64 Remainder;
|
|
|
|
//
|
|
// Check for divide-by-0
|
|
//
|
|
if (Op2 == 0) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_DIVIDE_ERROR,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return 0;
|
|
} else {
|
|
//
|
|
// Get the destination register
|
|
//
|
|
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
|
|
return (UINT64) (DivU64x64Remainder (Op1, Op2, &Remainder));
|
|
} else {
|
|
return (UINT64) ((UINT32) Op1 / (UINT32) Op2);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC MOD instruction.
|
|
|
|
Instruction syntax:
|
|
MOD[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 MODULUS Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteMOD (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
INT64 Remainder;
|
|
|
|
//
|
|
// Check for divide-by-0
|
|
//
|
|
if (Op2 == 0) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_DIVIDE_ERROR,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return 0;
|
|
} else {
|
|
DivS64x64Remainder ((INT64)Op1, (INT64)Op2, &Remainder);
|
|
return Remainder;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC MODU instruction.
|
|
|
|
Instruction syntax:
|
|
MODU[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 UNSIGNED_MODULUS Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteMODU (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
UINT64 Remainder;
|
|
|
|
//
|
|
// Check for divide-by-0
|
|
//
|
|
if (Op2 == 0) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_DIVIDE_ERROR,
|
|
EXCEPTION_FLAG_FATAL,
|
|
VmPtr
|
|
);
|
|
return 0;
|
|
} else {
|
|
DivU64x64Remainder (Op1, Op2, &Remainder);
|
|
return Remainder;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC AND instruction.
|
|
|
|
Instruction syntax:
|
|
AND[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 AND Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteAND (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
return Op1 & Op2;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC OR instruction.
|
|
|
|
Instruction syntax:
|
|
OR[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 OR Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteOR (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
return Op1 | Op2;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC XOR instruction.
|
|
|
|
Instruction syntax:
|
|
XOR[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 XOR Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteXOR (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
return Op1 ^ Op2;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC SHL shift left instruction.
|
|
|
|
Instruction syntax:
|
|
SHL[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 << Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteSHL (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
|
|
return LShiftU64 (Op1, (UINTN)Op2);
|
|
} else {
|
|
return (UINT64) ((UINT32) ((UINT32) Op1 << (UINT32) Op2));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC SHR instruction.
|
|
|
|
Instruction syntax:
|
|
SHR[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 >> Op2 (unsigned operands)
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteSHR (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
|
|
return RShiftU64 (Op1, (UINTN)Op2);
|
|
} else {
|
|
return (UINT64) ((UINT32) Op1 >> (UINT32) Op2);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC ASHR instruction.
|
|
|
|
Instruction syntax:
|
|
ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return Op1 >> Op2 (signed)
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteASHR (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
|
|
return ARShiftU64 (Op1, (UINTN)Op2);
|
|
} else {
|
|
return (UINT64) ((INT64) ((INT32) Op1 >> (UINT32) Op2));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC EXTNDB instruction to sign-extend a byte value.
|
|
|
|
Instruction syntax:
|
|
EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return (INT64)(INT8)Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteEXTNDB (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
INT8 Data8;
|
|
INT64 Data64;
|
|
//
|
|
// Convert to byte, then return as 64-bit signed value to let compiler
|
|
// sign-extend the value
|
|
//
|
|
Data8 = (INT8) Op2;
|
|
Data64 = (INT64) Data8;
|
|
|
|
return (UINT64) Data64;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC EXTNDW instruction to sign-extend a 16-bit value.
|
|
|
|
Instruction syntax:
|
|
EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return (INT64)(INT16)Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteEXTNDW (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
INT16 Data16;
|
|
INT64 Data64;
|
|
//
|
|
// Convert to word, then return as 64-bit signed value to let compiler
|
|
// sign-extend the value
|
|
//
|
|
Data16 = (INT16) Op2;
|
|
Data64 = (INT64) Data16;
|
|
|
|
return (UINT64) Data64;
|
|
}
|
|
//
|
|
// Execute the EBC EXTNDD instruction.
|
|
//
|
|
// Format: EXTNDD {@}Rx, {@}Ry [Index16|Immed16]
|
|
// EXTNDD Dest, Source
|
|
//
|
|
// Operation: Dest <- SignExtended((DWORD)Source))
|
|
//
|
|
|
|
/**
|
|
Execute the EBC EXTNDD instruction to sign-extend a 32-bit value.
|
|
|
|
Instruction syntax:
|
|
EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16}
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Op1 Operand 1 from the instruction
|
|
@param Op2 Operand 2 from the instruction
|
|
|
|
@return (INT64)(INT32)Op2
|
|
|
|
**/
|
|
UINT64
|
|
ExecuteEXTNDD (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT64 Op1,
|
|
IN UINT64 Op2
|
|
)
|
|
{
|
|
INT32 Data32;
|
|
INT64 Data64;
|
|
//
|
|
// Convert to 32-bit value, then return as 64-bit signed value to let compiler
|
|
// sign-extend the value
|
|
//
|
|
Data32 = (INT32) Op2;
|
|
Data64 = (INT64) Data32;
|
|
|
|
return (UINT64) Data64;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute all the EBC signed data manipulation instructions.
|
|
Since the EBC data manipulation instructions all have the same basic form,
|
|
they can share the code that does the fetch of operands and the write-back
|
|
of the result. This function performs the fetch of the operands (even if
|
|
both are not needed to be fetched, like NOT instruction), dispatches to the
|
|
appropriate subfunction, then writes back the returned result.
|
|
|
|
Format:
|
|
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteSignedDataManip (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
//
|
|
// Just call the data manipulation function with a flag indicating this
|
|
// is a signed operation.
|
|
//
|
|
return ExecuteDataManip (VmPtr, TRUE);
|
|
}
|
|
|
|
|
|
/**
|
|
Execute all the EBC unsigned data manipulation instructions.
|
|
Since the EBC data manipulation instructions all have the same basic form,
|
|
they can share the code that does the fetch of operands and the write-back
|
|
of the result. This function performs the fetch of the operands (even if
|
|
both are not needed to be fetched, like NOT instruction), dispatches to the
|
|
appropriate subfunction, then writes back the returned result.
|
|
|
|
Format:
|
|
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteUnsignedDataManip (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
//
|
|
// Just call the data manipulation function with a flag indicating this
|
|
// is not a signed operation.
|
|
//
|
|
return ExecuteDataManip (VmPtr, FALSE);
|
|
}
|
|
|
|
|
|
/**
|
|
Execute all the EBC data manipulation instructions.
|
|
Since the EBC data manipulation instructions all have the same basic form,
|
|
they can share the code that does the fetch of operands and the write-back
|
|
of the result. This function performs the fetch of the operands (even if
|
|
both are not needed to be fetched, like NOT instruction), dispatches to the
|
|
appropriate subfunction, then writes back the returned result.
|
|
|
|
Format:
|
|
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param IsSignedOp Indicates whether the operand is signed or not.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteDataManip (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN BOOLEAN IsSignedOp
|
|
)
|
|
{
|
|
UINT8 Opcode;
|
|
INT16 Index16;
|
|
UINT8 Operands;
|
|
UINT8 Size;
|
|
UINT64 Op1;
|
|
UINT64 Op2;
|
|
INTN DataManipDispatchTableIndex;
|
|
|
|
//
|
|
// Get opcode and operands
|
|
//
|
|
Opcode = GETOPCODE (VmPtr);
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
//
|
|
// Determine if we have immediate data by the opcode
|
|
//
|
|
if ((Opcode & DATAMANIP_M_IMMDATA) != 0) {
|
|
//
|
|
// Index16 if Ry is indirect, or Immed16 if Ry direct.
|
|
//
|
|
if (OPERAND2_INDIRECT (Operands)) {
|
|
Index16 = VmReadIndex16 (VmPtr, 2);
|
|
} else {
|
|
Index16 = VmReadImmed16 (VmPtr, 2);
|
|
}
|
|
|
|
Size = 4;
|
|
} else {
|
|
Index16 = 0;
|
|
Size = 2;
|
|
}
|
|
//
|
|
// Now get operand2 (source). It's of format {@}R2 {Index16|Immed16}
|
|
//
|
|
Op2 = (UINT64) VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16;
|
|
if (OPERAND2_INDIRECT (Operands)) {
|
|
//
|
|
// Indirect form: @R2 Index16. Fetch as 32- or 64-bit data
|
|
//
|
|
if ((Opcode & DATAMANIP_M_64) != 0) {
|
|
Op2 = VmReadMem64 (VmPtr, (UINTN) Op2);
|
|
} else {
|
|
//
|
|
// Read as signed value where appropriate.
|
|
//
|
|
if (IsSignedOp) {
|
|
Op2 = (UINT64) (INT64) ((INT32) VmReadMem32 (VmPtr, (UINTN) Op2));
|
|
} else {
|
|
Op2 = (UINT64) VmReadMem32 (VmPtr, (UINTN) Op2);
|
|
}
|
|
}
|
|
} else {
|
|
if ((Opcode & DATAMANIP_M_64) == 0) {
|
|
if (IsSignedOp) {
|
|
Op2 = (UINT64) (INT64) ((INT32) Op2);
|
|
} else {
|
|
Op2 = (UINT64) ((UINT32) Op2);
|
|
}
|
|
}
|
|
}
|
|
//
|
|
// Get operand1 (destination and sometimes also an actual operand)
|
|
// of form {@}R1
|
|
//
|
|
Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)];
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
if ((Opcode & DATAMANIP_M_64) != 0) {
|
|
Op1 = VmReadMem64 (VmPtr, (UINTN) Op1);
|
|
} else {
|
|
if (IsSignedOp) {
|
|
Op1 = (UINT64) (INT64) ((INT32) VmReadMem32 (VmPtr, (UINTN) Op1));
|
|
} else {
|
|
Op1 = (UINT64) VmReadMem32 (VmPtr, (UINTN) Op1);
|
|
}
|
|
}
|
|
} else {
|
|
if ((Opcode & DATAMANIP_M_64) == 0) {
|
|
if (IsSignedOp) {
|
|
Op1 = (UINT64) (INT64) ((INT32) Op1);
|
|
} else {
|
|
Op1 = (UINT64) ((UINT32) Op1);
|
|
}
|
|
}
|
|
}
|
|
//
|
|
// Dispatch to the computation function
|
|
//
|
|
DataManipDispatchTableIndex = (Opcode & OPCODE_M_OPCODE) - OPCODE_NOT;
|
|
if ((DataManipDispatchTableIndex < 0) ||
|
|
(DataManipDispatchTableIndex >= ARRAY_SIZE (mDataManipDispatchTable))) {
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INVALID_OPCODE,
|
|
EXCEPTION_FLAG_ERROR,
|
|
VmPtr
|
|
);
|
|
//
|
|
// Advance and return
|
|
//
|
|
VmPtr->Ip += Size;
|
|
return EFI_UNSUPPORTED;
|
|
} else {
|
|
Op2 = mDataManipDispatchTable[DataManipDispatchTableIndex](VmPtr, Op1, Op2);
|
|
}
|
|
//
|
|
// Write back the result.
|
|
//
|
|
if (OPERAND1_INDIRECT (Operands)) {
|
|
Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)];
|
|
if ((Opcode & DATAMANIP_M_64) != 0) {
|
|
VmWriteMem64 (VmPtr, (UINTN) Op1, Op2);
|
|
} else {
|
|
VmWriteMem32 (VmPtr, (UINTN) Op1, (UINT32) Op2);
|
|
}
|
|
} else {
|
|
//
|
|
// Storage back to a register. Write back, clearing upper bits (as per
|
|
// the specification) if 32-bit operation.
|
|
//
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2;
|
|
if ((Opcode & DATAMANIP_M_64) == 0) {
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] &= 0xFFFFFFFF;
|
|
}
|
|
}
|
|
//
|
|
// Advance the instruction pointer
|
|
//
|
|
VmPtr->Ip += Size;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC LOADSP instruction.
|
|
|
|
Instruction syntax:
|
|
LOADSP SP1, R2
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteLOADSP (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Operands;
|
|
|
|
//
|
|
// Get the operands
|
|
//
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
//
|
|
// Do the operation
|
|
//
|
|
switch (OPERAND1_REGNUM (Operands)) {
|
|
//
|
|
// Set flags
|
|
//
|
|
case 0:
|
|
//
|
|
// Spec states that this instruction will not modify reserved bits in
|
|
// the flags register.
|
|
//
|
|
VmPtr->Flags = (VmPtr->Flags &~VMFLAGS_ALL_VALID) | (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] & VMFLAGS_ALL_VALID);
|
|
break;
|
|
|
|
default:
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_WARNING,
|
|
VmPtr
|
|
);
|
|
VmPtr->Ip += 2;
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
VmPtr->Ip += 2;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Execute the EBC STORESP instruction.
|
|
|
|
Instruction syntax:
|
|
STORESP Rx, FLAGS|IP
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
|
|
@retval EFI_UNSUPPORTED The opcodes/operands is not supported.
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
ExecuteSTORESP (
|
|
IN VM_CONTEXT *VmPtr
|
|
)
|
|
{
|
|
UINT8 Operands;
|
|
|
|
//
|
|
// Get the operands
|
|
//
|
|
Operands = GETOPERANDS (VmPtr);
|
|
|
|
//
|
|
// Do the operation
|
|
//
|
|
switch (OPERAND2_REGNUM (Operands)) {
|
|
//
|
|
// Get flags
|
|
//
|
|
case 0:
|
|
//
|
|
// Retrieve the value in the flags register, then clear reserved bits
|
|
//
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (UINT64) (VmPtr->Flags & VMFLAGS_ALL_VALID);
|
|
break;
|
|
|
|
//
|
|
// Get IP -- address of following instruction
|
|
//
|
|
case 1:
|
|
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (UINT64) (UINTN) VmPtr->Ip + 2;
|
|
break;
|
|
|
|
default:
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_INSTRUCTION_ENCODING,
|
|
EXCEPTION_FLAG_WARNING,
|
|
VmPtr
|
|
);
|
|
VmPtr->Ip += 2;
|
|
return EFI_UNSUPPORTED;
|
|
break;
|
|
}
|
|
|
|
VmPtr->Ip += 2;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Decode a 16-bit index to determine the offset. Given an index value:
|
|
|
|
b15 - sign bit
|
|
b14:12 - number of bits in this index assigned to natural units (=a)
|
|
ba:11 - constant units = ConstUnits
|
|
b0:a - natural units = NaturalUnits
|
|
|
|
Given this info, the offset can be computed by:
|
|
offset = sign_bit * (ConstUnits + NaturalUnits * sizeof(UINTN))
|
|
|
|
Max offset is achieved with index = 0x7FFF giving an offset of
|
|
0x27B (32-bit machine) or 0x477 (64-bit machine).
|
|
Min offset is achieved with index =
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param CodeOffset Offset from IP of the location of the 16-bit index
|
|
to decode.
|
|
|
|
@return The decoded offset.
|
|
|
|
**/
|
|
INT16
|
|
VmReadIndex16 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 CodeOffset
|
|
)
|
|
{
|
|
UINT16 Index;
|
|
INT16 Offset;
|
|
INT16 ConstUnits;
|
|
INT16 NaturalUnits;
|
|
INT16 NBits;
|
|
INT16 Mask;
|
|
|
|
//
|
|
// First read the index from the code stream
|
|
//
|
|
Index = VmReadCode16 (VmPtr, CodeOffset);
|
|
|
|
//
|
|
// Get the mask for NaturalUnits. First get the number of bits from the index.
|
|
//
|
|
NBits = (INT16) ((Index & 0x7000) >> 12);
|
|
|
|
//
|
|
// Scale it for 16-bit indexes
|
|
//
|
|
NBits *= 2;
|
|
|
|
//
|
|
// Now using the number of bits, create a mask.
|
|
//
|
|
Mask = (INT16) ((INT16)~0 << NBits);
|
|
|
|
//
|
|
// Now using the mask, extract NaturalUnits from the lower bits of the index.
|
|
//
|
|
NaturalUnits = (INT16) (Index &~Mask);
|
|
|
|
//
|
|
// Now compute ConstUnits
|
|
//
|
|
ConstUnits = (INT16) (((Index &~0xF000) & Mask) >> NBits);
|
|
|
|
Offset = (INT16) (NaturalUnits * sizeof (UINTN) + ConstUnits);
|
|
|
|
//
|
|
// Now set the sign
|
|
//
|
|
if ((Index & 0x8000) != 0) {
|
|
//
|
|
// Do it the hard way to work around a bogus compiler warning
|
|
//
|
|
// Offset = -1 * Offset;
|
|
//
|
|
Offset = (INT16) ((INT32) Offset * -1);
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
|
|
/**
|
|
Decode a 32-bit index to determine the offset.
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param CodeOffset Offset from IP of the location of the 32-bit index
|
|
to decode.
|
|
|
|
@return Converted index per EBC VM specification.
|
|
|
|
**/
|
|
INT32
|
|
VmReadIndex32 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 CodeOffset
|
|
)
|
|
{
|
|
UINT32 Index;
|
|
INT32 Offset;
|
|
INT32 ConstUnits;
|
|
INT32 NaturalUnits;
|
|
INT32 NBits;
|
|
INT32 Mask;
|
|
|
|
Index = VmReadImmed32 (VmPtr, CodeOffset);
|
|
|
|
//
|
|
// Get the mask for NaturalUnits. First get the number of bits from the index.
|
|
//
|
|
NBits = (Index & 0x70000000) >> 28;
|
|
|
|
//
|
|
// Scale it for 32-bit indexes
|
|
//
|
|
NBits *= 4;
|
|
|
|
//
|
|
// Now using the number of bits, create a mask.
|
|
//
|
|
Mask = (INT32)~0 << NBits;
|
|
|
|
//
|
|
// Now using the mask, extract NaturalUnits from the lower bits of the index.
|
|
//
|
|
NaturalUnits = Index &~Mask;
|
|
|
|
//
|
|
// Now compute ConstUnits
|
|
//
|
|
ConstUnits = ((Index &~0xF0000000) & Mask) >> NBits;
|
|
|
|
Offset = NaturalUnits * sizeof (UINTN) + ConstUnits;
|
|
|
|
//
|
|
// Now set the sign
|
|
//
|
|
if ((Index & 0x80000000) != 0) {
|
|
Offset = Offset * -1;
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
|
|
/**
|
|
Decode a 64-bit index to determine the offset.
|
|
|
|
@param VmPtr A pointer to VM context.s
|
|
@param CodeOffset Offset from IP of the location of the 64-bit index
|
|
to decode.
|
|
|
|
@return Converted index per EBC VM specification
|
|
|
|
**/
|
|
INT64
|
|
VmReadIndex64 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 CodeOffset
|
|
)
|
|
{
|
|
UINT64 Index;
|
|
INT64 Offset;
|
|
INT64 ConstUnits;
|
|
INT64 NaturalUnits;
|
|
INT64 NBits;
|
|
INT64 Mask;
|
|
|
|
Index = VmReadCode64 (VmPtr, CodeOffset);
|
|
|
|
//
|
|
// Get the mask for NaturalUnits. First get the number of bits from the index.
|
|
//
|
|
NBits = RShiftU64 ((Index & 0x7000000000000000ULL), 60);
|
|
|
|
//
|
|
// Scale it for 64-bit indexes (multiply by 8 by shifting left 3)
|
|
//
|
|
NBits = LShiftU64 ((UINT64)NBits, 3);
|
|
|
|
//
|
|
// Now using the number of bits, create a mask.
|
|
//
|
|
Mask = (LShiftU64 ((UINT64)~0, (UINTN)NBits));
|
|
|
|
//
|
|
// Now using the mask, extract NaturalUnits from the lower bits of the index.
|
|
//
|
|
NaturalUnits = Index &~Mask;
|
|
|
|
//
|
|
// Now compute ConstUnits
|
|
//
|
|
ConstUnits = ARShiftU64 (((Index &~0xF000000000000000ULL) & Mask), (UINTN)NBits);
|
|
|
|
Offset = MultU64x64 ((UINT64) NaturalUnits, sizeof (UINTN)) + ConstUnits;
|
|
|
|
//
|
|
// Now set the sign
|
|
//
|
|
if ((Index & 0x8000000000000000ULL) != 0) {
|
|
Offset = MultS64x64 (Offset, -1);
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
|
|
/**
|
|
Writes 8-bit data to memory address.
|
|
|
|
This routine is called by the EBC data
|
|
movement instructions that write to memory. Since these writes
|
|
may be to the stack, which looks like (high address on top) this,
|
|
|
|
[EBC entry point arguments]
|
|
[VM stack]
|
|
[EBC stack]
|
|
|
|
we need to detect all attempts to write to the EBC entry point argument
|
|
stack area and adjust the address (which will initially point into the
|
|
VM stack) to point into the EBC entry point arguments.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Addr Address to write to.
|
|
@param Data Value to write to Addr.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
@retval Other Some error occurs when writing data to the address.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VmWriteMem8 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr,
|
|
IN UINT8 Data
|
|
)
|
|
{
|
|
//
|
|
// Convert the address if it's in the stack gap
|
|
//
|
|
Addr = ConvertStackAddr (VmPtr, Addr);
|
|
*(UINT8 *) Addr = Data;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Writes 16-bit data to memory address.
|
|
|
|
This routine is called by the EBC data
|
|
movement instructions that write to memory. Since these writes
|
|
may be to the stack, which looks like (high address on top) this,
|
|
|
|
[EBC entry point arguments]
|
|
[VM stack]
|
|
[EBC stack]
|
|
|
|
we need to detect all attempts to write to the EBC entry point argument
|
|
stack area and adjust the address (which will initially point into the
|
|
VM stack) to point into the EBC entry point arguments.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Addr Address to write to.
|
|
@param Data Value to write to Addr.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
@retval Other Some error occurs when writing data to the address.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VmWriteMem16 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr,
|
|
IN UINT16 Data
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// Convert the address if it's in the stack gap
|
|
//
|
|
Addr = ConvertStackAddr (VmPtr, Addr);
|
|
|
|
//
|
|
// Do a simple write if aligned
|
|
//
|
|
if (IS_ALIGNED (Addr, sizeof (UINT16))) {
|
|
*(UINT16 *) Addr = Data;
|
|
} else {
|
|
//
|
|
// Write as two bytes
|
|
//
|
|
MemoryFence ();
|
|
if ((Status = VmWriteMem8 (VmPtr, Addr, (UINT8) Data)) != EFI_SUCCESS) {
|
|
return Status;
|
|
}
|
|
|
|
MemoryFence ();
|
|
if ((Status = VmWriteMem8 (VmPtr, Addr + 1, (UINT8) (Data >> 8))) != EFI_SUCCESS) {
|
|
return Status;
|
|
}
|
|
|
|
MemoryFence ();
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Writes 32-bit data to memory address.
|
|
|
|
This routine is called by the EBC data
|
|
movement instructions that write to memory. Since these writes
|
|
may be to the stack, which looks like (high address on top) this,
|
|
|
|
[EBC entry point arguments]
|
|
[VM stack]
|
|
[EBC stack]
|
|
|
|
we need to detect all attempts to write to the EBC entry point argument
|
|
stack area and adjust the address (which will initially point into the
|
|
VM stack) to point into the EBC entry point arguments.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Addr Address to write to.
|
|
@param Data Value to write to Addr.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
@retval Other Some error occurs when writing data to the address.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VmWriteMem32 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr,
|
|
IN UINT32 Data
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// Convert the address if it's in the stack gap
|
|
//
|
|
Addr = ConvertStackAddr (VmPtr, Addr);
|
|
|
|
//
|
|
// Do a simple write if aligned
|
|
//
|
|
if (IS_ALIGNED (Addr, sizeof (UINT32))) {
|
|
*(UINT32 *) Addr = Data;
|
|
} else {
|
|
//
|
|
// Write as two words
|
|
//
|
|
MemoryFence ();
|
|
if ((Status = VmWriteMem16 (VmPtr, Addr, (UINT16) Data)) != EFI_SUCCESS) {
|
|
return Status;
|
|
}
|
|
|
|
MemoryFence ();
|
|
if ((Status = VmWriteMem16 (VmPtr, Addr + sizeof (UINT16), (UINT16) (Data >> 16))) != EFI_SUCCESS) {
|
|
return Status;
|
|
}
|
|
|
|
MemoryFence ();
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Writes 64-bit data to memory address.
|
|
|
|
This routine is called by the EBC data
|
|
movement instructions that write to memory. Since these writes
|
|
may be to the stack, which looks like (high address on top) this,
|
|
|
|
[EBC entry point arguments]
|
|
[VM stack]
|
|
[EBC stack]
|
|
|
|
we need to detect all attempts to write to the EBC entry point argument
|
|
stack area and adjust the address (which will initially point into the
|
|
VM stack) to point into the EBC entry point arguments.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Addr Address to write to.
|
|
@param Data Value to write to Addr.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
@retval Other Some error occurs when writing data to the address.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VmWriteMem64 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr,
|
|
IN UINT64 Data
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// Convert the address if it's in the stack gap
|
|
//
|
|
Addr = ConvertStackAddr (VmPtr, Addr);
|
|
|
|
//
|
|
// Do a simple write if aligned
|
|
//
|
|
if (IS_ALIGNED (Addr, sizeof (UINT64))) {
|
|
*(UINT64 *) Addr = Data;
|
|
} else {
|
|
//
|
|
// Write as two 32-bit words
|
|
//
|
|
MemoryFence ();
|
|
if ((Status = VmWriteMem32 (VmPtr, Addr, (UINT32) Data)) != EFI_SUCCESS) {
|
|
return Status;
|
|
}
|
|
|
|
MemoryFence ();
|
|
if ((Status = VmWriteMem32 (VmPtr, Addr + sizeof (UINT32), (UINT32) RShiftU64(Data, 32))) != EFI_SUCCESS) {
|
|
return Status;
|
|
}
|
|
|
|
MemoryFence ();
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Writes UINTN data to memory address.
|
|
|
|
This routine is called by the EBC data
|
|
movement instructions that write to memory. Since these writes
|
|
may be to the stack, which looks like (high address on top) this,
|
|
|
|
[EBC entry point arguments]
|
|
[VM stack]
|
|
[EBC stack]
|
|
|
|
we need to detect all attempts to write to the EBC entry point argument
|
|
stack area and adjust the address (which will initially point into the
|
|
VM stack) to point into the EBC entry point arguments.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Addr Address to write to.
|
|
@param Data Value to write to Addr.
|
|
|
|
@retval EFI_SUCCESS The instruction is executed successfully.
|
|
@retval Other Some error occurs when writing data to the address.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VmWriteMemN (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr,
|
|
IN UINTN Data
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN Index;
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
//
|
|
// Convert the address if it's in the stack gap
|
|
//
|
|
Addr = ConvertStackAddr (VmPtr, Addr);
|
|
|
|
//
|
|
// Do a simple write if aligned
|
|
//
|
|
if (IS_ALIGNED (Addr, sizeof (UINTN))) {
|
|
*(UINTN *) Addr = Data;
|
|
} else {
|
|
for (Index = 0; Index < sizeof (UINTN) / sizeof (UINT32); Index++) {
|
|
MemoryFence ();
|
|
Status = VmWriteMem32 (VmPtr, Addr + Index * sizeof (UINT32), (UINT32) Data);
|
|
MemoryFence ();
|
|
Data = (UINTN) RShiftU64 ((UINT64)Data, 32);
|
|
}
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
/**
|
|
Reads 8-bit immediate value at the offset.
|
|
|
|
This routine is called by the EBC execute
|
|
functions to read EBC immediate values from the code stream.
|
|
Since we can't assume alignment, each tries to read in the biggest
|
|
chunks size available, but will revert to smaller reads if necessary.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Offset offset from IP of the code bytes to read.
|
|
|
|
@return Signed data of the requested size from the specified address.
|
|
|
|
**/
|
|
INT8
|
|
VmReadImmed8 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
)
|
|
{
|
|
//
|
|
// Simply return the data in flat memory space
|
|
//
|
|
return * (INT8 *) (VmPtr->Ip + Offset);
|
|
}
|
|
|
|
/**
|
|
Reads 16-bit immediate value at the offset.
|
|
|
|
This routine is called by the EBC execute
|
|
functions to read EBC immediate values from the code stream.
|
|
Since we can't assume alignment, each tries to read in the biggest
|
|
chunks size available, but will revert to smaller reads if necessary.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Offset offset from IP of the code bytes to read.
|
|
|
|
@return Signed data of the requested size from the specified address.
|
|
|
|
**/
|
|
INT16
|
|
VmReadImmed16 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
)
|
|
{
|
|
//
|
|
// Read direct if aligned
|
|
//
|
|
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (INT16))) {
|
|
return * (INT16 *) (VmPtr->Ip + Offset);
|
|
} else {
|
|
//
|
|
// All code word reads should be aligned
|
|
//
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_ALIGNMENT_CHECK,
|
|
EXCEPTION_FLAG_WARNING,
|
|
VmPtr
|
|
);
|
|
}
|
|
//
|
|
// Return unaligned data
|
|
//
|
|
return (INT16) (*(UINT8 *) (VmPtr->Ip + Offset) + (*(UINT8 *) (VmPtr->Ip + Offset + 1) << 8));
|
|
}
|
|
|
|
|
|
/**
|
|
Reads 32-bit immediate value at the offset.
|
|
|
|
This routine is called by the EBC execute
|
|
functions to read EBC immediate values from the code stream.
|
|
Since we can't assume alignment, each tries to read in the biggest
|
|
chunks size available, but will revert to smaller reads if necessary.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Offset offset from IP of the code bytes to read.
|
|
|
|
@return Signed data of the requested size from the specified address.
|
|
|
|
**/
|
|
INT32
|
|
VmReadImmed32 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
)
|
|
{
|
|
UINT32 Data;
|
|
|
|
//
|
|
// Read direct if aligned
|
|
//
|
|
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT32))) {
|
|
return * (INT32 *) (VmPtr->Ip + Offset);
|
|
}
|
|
//
|
|
// Return unaligned data
|
|
//
|
|
Data = (UINT32) VmReadCode16 (VmPtr, Offset);
|
|
Data |= (UINT32)(VmReadCode16 (VmPtr, Offset + 2) << 16);
|
|
return Data;
|
|
}
|
|
|
|
|
|
/**
|
|
Reads 64-bit immediate value at the offset.
|
|
|
|
This routine is called by the EBC execute
|
|
functions to read EBC immediate values from the code stream.
|
|
Since we can't assume alignment, each tries to read in the biggest
|
|
chunks size available, but will revert to smaller reads if necessary.
|
|
|
|
@param VmPtr A pointer to a VM context.
|
|
@param Offset offset from IP of the code bytes to read.
|
|
|
|
@return Signed data of the requested size from the specified address.
|
|
|
|
**/
|
|
INT64
|
|
VmReadImmed64 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
)
|
|
{
|
|
UINT64 Data64;
|
|
UINT32 Data32;
|
|
UINT8 *Ptr;
|
|
|
|
//
|
|
// Read direct if aligned
|
|
//
|
|
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT64))) {
|
|
return * (UINT64 *) (VmPtr->Ip + Offset);
|
|
}
|
|
//
|
|
// Return unaligned data.
|
|
//
|
|
Ptr = (UINT8 *) &Data64;
|
|
Data32 = VmReadCode32 (VmPtr, Offset);
|
|
*(UINT32 *) Ptr = Data32;
|
|
Ptr += sizeof (Data32);
|
|
Data32 = VmReadCode32 (VmPtr, Offset + sizeof (UINT32));
|
|
*(UINT32 *) Ptr = Data32;
|
|
return Data64;
|
|
}
|
|
|
|
|
|
/**
|
|
Reads 16-bit unsigned data from the code stream.
|
|
|
|
This routine provides the ability to read raw unsigned data from the code
|
|
stream.
|
|
|
|
@param VmPtr A pointer to VM context
|
|
@param Offset Offset from current IP to the raw data to read.
|
|
|
|
@return The raw unsigned 16-bit value from the code stream.
|
|
|
|
**/
|
|
UINT16
|
|
VmReadCode16 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
)
|
|
{
|
|
//
|
|
// Read direct if aligned
|
|
//
|
|
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT16))) {
|
|
return * (UINT16 *) (VmPtr->Ip + Offset);
|
|
} else {
|
|
//
|
|
// All code word reads should be aligned
|
|
//
|
|
EbcDebugSignalException (
|
|
EXCEPT_EBC_ALIGNMENT_CHECK,
|
|
EXCEPTION_FLAG_WARNING,
|
|
VmPtr
|
|
);
|
|
}
|
|
//
|
|
// Return unaligned data
|
|
//
|
|
return (UINT16) (*(UINT8 *) (VmPtr->Ip + Offset) + (*(UINT8 *) (VmPtr->Ip + Offset + 1) << 8));
|
|
}
|
|
|
|
|
|
/**
|
|
Reads 32-bit unsigned data from the code stream.
|
|
|
|
This routine provides the ability to read raw unsigned data from the code
|
|
stream.
|
|
|
|
@param VmPtr A pointer to VM context
|
|
@param Offset Offset from current IP to the raw data to read.
|
|
|
|
@return The raw unsigned 32-bit value from the code stream.
|
|
|
|
**/
|
|
UINT32
|
|
VmReadCode32 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
)
|
|
{
|
|
UINT32 Data;
|
|
//
|
|
// Read direct if aligned
|
|
//
|
|
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT32))) {
|
|
return * (UINT32 *) (VmPtr->Ip + Offset);
|
|
}
|
|
//
|
|
// Return unaligned data
|
|
//
|
|
Data = (UINT32) VmReadCode16 (VmPtr, Offset);
|
|
Data |= (VmReadCode16 (VmPtr, Offset + 2) << 16);
|
|
return Data;
|
|
}
|
|
|
|
|
|
/**
|
|
Reads 64-bit unsigned data from the code stream.
|
|
|
|
This routine provides the ability to read raw unsigned data from the code
|
|
stream.
|
|
|
|
@param VmPtr A pointer to VM context
|
|
@param Offset Offset from current IP to the raw data to read.
|
|
|
|
@return The raw unsigned 64-bit value from the code stream.
|
|
|
|
**/
|
|
UINT64
|
|
VmReadCode64 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINT32 Offset
|
|
)
|
|
{
|
|
UINT64 Data64;
|
|
UINT32 Data32;
|
|
UINT8 *Ptr;
|
|
|
|
//
|
|
// Read direct if aligned
|
|
//
|
|
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT64))) {
|
|
return * (UINT64 *) (VmPtr->Ip + Offset);
|
|
}
|
|
//
|
|
// Return unaligned data.
|
|
//
|
|
Ptr = (UINT8 *) &Data64;
|
|
Data32 = VmReadCode32 (VmPtr, Offset);
|
|
*(UINT32 *) Ptr = Data32;
|
|
Ptr += sizeof (Data32);
|
|
Data32 = VmReadCode32 (VmPtr, Offset + sizeof (UINT32));
|
|
*(UINT32 *) Ptr = Data32;
|
|
return Data64;
|
|
}
|
|
|
|
|
|
/**
|
|
Reads 8-bit data form the memory address.
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param Addr The memory address.
|
|
|
|
@return The 8-bit value from the memory address.
|
|
|
|
**/
|
|
UINT8
|
|
VmReadMem8 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
)
|
|
{
|
|
//
|
|
// Convert the address if it's in the stack gap
|
|
//
|
|
Addr = ConvertStackAddr (VmPtr, Addr);
|
|
//
|
|
// Simply return the data in flat memory space
|
|
//
|
|
return * (UINT8 *) Addr;
|
|
}
|
|
|
|
/**
|
|
Reads 16-bit data form the memory address.
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param Addr The memory address.
|
|
|
|
@return The 16-bit value from the memory address.
|
|
|
|
**/
|
|
UINT16
|
|
VmReadMem16 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
)
|
|
{
|
|
//
|
|
// Convert the address if it's in the stack gap
|
|
//
|
|
Addr = ConvertStackAddr (VmPtr, Addr);
|
|
//
|
|
// Read direct if aligned
|
|
//
|
|
if (IS_ALIGNED (Addr, sizeof (UINT16))) {
|
|
return * (UINT16 *) Addr;
|
|
}
|
|
//
|
|
// Return unaligned data
|
|
//
|
|
return (UINT16) (*(UINT8 *) Addr + (*(UINT8 *) (Addr + 1) << 8));
|
|
}
|
|
|
|
/**
|
|
Reads 32-bit data form the memory address.
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param Addr The memory address.
|
|
|
|
@return The 32-bit value from the memory address.
|
|
|
|
**/
|
|
UINT32
|
|
VmReadMem32 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
)
|
|
{
|
|
UINT32 Data;
|
|
|
|
//
|
|
// Convert the address if it's in the stack gap
|
|
//
|
|
Addr = ConvertStackAddr (VmPtr, Addr);
|
|
//
|
|
// Read direct if aligned
|
|
//
|
|
if (IS_ALIGNED (Addr, sizeof (UINT32))) {
|
|
return * (UINT32 *) Addr;
|
|
}
|
|
//
|
|
// Return unaligned data
|
|
//
|
|
Data = (UINT32) VmReadMem16 (VmPtr, Addr);
|
|
Data |= (VmReadMem16 (VmPtr, Addr + 2) << 16);
|
|
return Data;
|
|
}
|
|
|
|
/**
|
|
Reads 64-bit data form the memory address.
|
|
|
|
@param VmPtr A pointer to VM context.
|
|
@param Addr The memory address.
|
|
|
|
@return The 64-bit value from the memory address.
|
|
|
|
**/
|
|
UINT64
|
|
VmReadMem64 (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
)
|
|
{
|
|
UINT64 Data;
|
|
UINT32 Data32;
|
|
|
|
//
|
|
// Convert the address if it's in the stack gap
|
|
//
|
|
Addr = ConvertStackAddr (VmPtr, Addr);
|
|
|
|
//
|
|
// Read direct if aligned
|
|
//
|
|
if (IS_ALIGNED (Addr, sizeof (UINT64))) {
|
|
return * (UINT64 *) Addr;
|
|
}
|
|
//
|
|
// Return unaligned data. Assume little endian.
|
|
//
|
|
Data32 = VmReadMem32 (VmPtr, Addr);
|
|
Data = (UINT64) VmReadMem32 (VmPtr, Addr + sizeof (UINT32));
|
|
Data = LShiftU64 (Data, 32) | Data32;
|
|
return Data;
|
|
}
|
|
|
|
|
|
/**
|
|
Given an address that EBC is going to read from or write to, return
|
|
an appropriate address that accounts for a gap in the stack.
|
|
The stack for this application looks like this (high addr on top)
|
|
[EBC entry point arguments]
|
|
[VM stack]
|
|
[EBC stack]
|
|
The EBC assumes that its arguments are at the top of its stack, which
|
|
is where the VM stack is really. Therefore if the EBC does memory
|
|
accesses into the VM stack area, then we need to convert the address
|
|
to point to the EBC entry point arguments area. Do this here.
|
|
|
|
@param VmPtr A Pointer to VM context.
|
|
@param Addr Address of interest
|
|
|
|
@return The unchanged address if it's not in the VM stack region. Otherwise,
|
|
adjust for the stack gap and return the modified address.
|
|
|
|
**/
|
|
UINTN
|
|
ConvertStackAddr (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
)
|
|
{
|
|
ASSERT(((Addr < VmPtr->LowStackTop) || (Addr > VmPtr->HighStackBottom)));
|
|
return Addr;
|
|
}
|
|
|
|
|
|
/**
|
|
Read a natural value from memory. May or may not be aligned.
|
|
|
|
@param VmPtr current VM context
|
|
@param Addr the address to read from
|
|
|
|
@return The natural value at address Addr.
|
|
|
|
**/
|
|
UINTN
|
|
VmReadMemN (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN Addr
|
|
)
|
|
{
|
|
UINTN Data;
|
|
volatile UINT32 Size;
|
|
UINT8 *FromPtr;
|
|
UINT8 *ToPtr;
|
|
//
|
|
// Convert the address if it's in the stack gap
|
|
//
|
|
Addr = ConvertStackAddr (VmPtr, Addr);
|
|
//
|
|
// Read direct if aligned
|
|
//
|
|
if (IS_ALIGNED (Addr, sizeof (UINTN))) {
|
|
return * (UINTN *) Addr;
|
|
}
|
|
//
|
|
// Return unaligned data
|
|
//
|
|
Data = 0;
|
|
FromPtr = (UINT8 *) Addr;
|
|
ToPtr = (UINT8 *) &Data;
|
|
|
|
for (Size = 0; Size < sizeof (Data); Size++) {
|
|
*ToPtr = *FromPtr;
|
|
ToPtr++;
|
|
FromPtr++;
|
|
}
|
|
|
|
return Data;
|
|
}
|
|
|
|
/**
|
|
Returns the version of the EBC virtual machine.
|
|
|
|
@return The 64-bit version of EBC virtual machine.
|
|
|
|
**/
|
|
UINT64
|
|
GetVmVersion (
|
|
VOID
|
|
)
|
|
{
|
|
return (UINT64) (((VM_MAJOR_VERSION & 0xFFFF) << 16) | ((VM_MINOR_VERSION & 0xFFFF)));
|
|
}
|