audk/MdeModulePkg/Core/Pei/Dispatcher/Dispatcher.c

803 lines
30 KiB
C

/** @file
EFI PEI Core dispatch services
Copyright (c) 2006 - 2009, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "PeiMain.h"
///
/// CAR is filled with this initial value during SEC phase
///
#define INIT_CAR_VALUE 0x5AA55AA5
typedef struct {
EFI_STATUS_CODE_DATA DataHeader;
EFI_HANDLE Handle;
} PEIM_FILE_HANDLE_EXTENDED_DATA;
/**
Discover all Peims and optional Apriori file in one FV. There is at most one
Apriori file in one FV.
@param Private - Pointer to the private data passed in from caller
@param VolumeHandle - Fv handle.
**/
VOID
DiscoverPeimsAndOrderWithApriori (
IN PEI_CORE_INSTANCE *Private,
IN EFI_PEI_FV_HANDLE VolumeHandle
)
{
EFI_STATUS Status;
EFI_PEI_FV_HANDLE FileHandle;
EFI_PEI_FILE_HANDLE AprioriFileHandle;
EFI_GUID *Apriori;
UINTN Index;
UINTN Index2;
UINTN PeimIndex;
UINTN PeimCount;
EFI_GUID *Guid;
EFI_PEI_FV_HANDLE TempFileHandles[FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)];
EFI_GUID FileGuid[FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)];
//
// Walk the FV and find all the PEIMs and the Apriori file.
//
AprioriFileHandle = NULL;
Private->CurrentFvFileHandles[0] = NULL;
Guid = NULL;
FileHandle = NULL;
//
// If the current Fv has been scanned, directly get its cachable record.
//
if (Private->Fv[Private->CurrentPeimFvCount].ScanFv) {
CopyMem (Private->CurrentFvFileHandles, Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, sizeof (Private->CurrentFvFileHandles));
return;
}
//
// Go ahead to scan this Fv, and cache FileHandles within it.
//
for (PeimCount = 0; PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv); PeimCount++) {
Status = PeiFindFileEx (
VolumeHandle,
NULL,
PEI_CORE_INTERNAL_FFS_FILE_DISPATCH_TYPE,
&FileHandle,
&AprioriFileHandle
);
if (Status != EFI_SUCCESS) {
break;
}
Private->CurrentFvFileHandles[PeimCount] = FileHandle;
}
Private->AprioriCount = 0;
if (AprioriFileHandle != NULL) {
//
// Read the Apriori file
//
Status = PeiServicesFfsFindSectionData (EFI_SECTION_RAW, AprioriFileHandle, (VOID **) &Apriori);
if (!EFI_ERROR (Status)) {
//
// Calculate the number of PEIMs in the A Priori list
//
Private->AprioriCount = *(UINT32 *)(((EFI_FFS_FILE_HEADER *)AprioriFileHandle)->Size) & 0x00FFFFFF;
Private->AprioriCount -= sizeof (EFI_FFS_FILE_HEADER) - sizeof (EFI_COMMON_SECTION_HEADER);
Private->AprioriCount /= sizeof (EFI_GUID);
ZeroMem (FileGuid, sizeof (FileGuid));
for (Index = 0; Index < PeimCount; Index++) {
//
// Make an array of file name guids that matches the FileHandle array so we can convert
// quickly from file name to file handle
//
CopyMem (&FileGuid[Index], &((EFI_FFS_FILE_HEADER *)Private->CurrentFvFileHandles[Index])->Name,sizeof(EFI_GUID));
}
//
// Walk through FileGuid array to find out who is invalid PEIM guid in Apriori file.
// Add avalible PEIMs in Apriori file into TempFileHandles array at first.
//
Index2 = 0;
for (Index = 0; Index2 < Private->AprioriCount; Index++) {
while (Index2 < Private->AprioriCount) {
Guid = ScanGuid (FileGuid, PeimCount * sizeof (EFI_GUID), &Apriori[Index2++]);
if (Guid != NULL) {
break;
}
}
if (Guid == NULL) {
break;
}
PeimIndex = ((UINTN)Guid - (UINTN)&FileGuid[0])/sizeof (EFI_GUID);
TempFileHandles[Index] = Private->CurrentFvFileHandles[PeimIndex];
//
// Since we have copied the file handle we can remove it from this list.
//
Private->CurrentFvFileHandles[PeimIndex] = NULL;
}
//
// Update valid Aprioricount
//
Private->AprioriCount = Index;
//
// Add in any PEIMs not in the Apriori file
//
for (;Index < PeimCount; Index++) {
for (Index2 = 0; Index2 < PeimCount; Index2++) {
if (Private->CurrentFvFileHandles[Index2] != NULL) {
TempFileHandles[Index] = Private->CurrentFvFileHandles[Index2];
Private->CurrentFvFileHandles[Index2] = NULL;
break;
}
}
}
//
//Index the end of array contains re-range Pei moudle.
//
TempFileHandles[Index] = NULL;
//
// Private->CurrentFvFileHandles is currently in PEIM in the FV order.
// We need to update it to start with files in the A Priori list and
// then the remaining files in PEIM order.
//
CopyMem (Private->CurrentFvFileHandles, TempFileHandles, sizeof (Private->CurrentFvFileHandles));
}
}
//
// Cache the current Fv File Handle. So that we don't have to scan the Fv again.
// Instead, we can retrieve the file handles within this Fv from cachable data.
//
Private->Fv[Private->CurrentPeimFvCount].ScanFv = TRUE;
CopyMem (Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, Private->CurrentFvFileHandles, sizeof (Private->CurrentFvFileHandles));
}
/**
Shadow PeiCore module from flash to installed memory.
@param PeiServices An indirect pointer to the EFI_PEI_SERVICES table published by the PEI Foundation.
@param PrivateInMem PeiCore's private data structure
@return PeiCore function address after shadowing.
**/
VOID*
ShadowPeiCore(
IN CONST EFI_PEI_SERVICES **PeiServices,
IN PEI_CORE_INSTANCE *PrivateInMem
)
{
EFI_PEI_FILE_HANDLE PeiCoreFileHandle;
EFI_PHYSICAL_ADDRESS EntryPoint;
EFI_STATUS Status;
UINT32 AuthenticationState;
PeiCoreFileHandle = NULL;
//
// Find the PEI Core in the BFV
//
Status = PeiFindFileEx (
(EFI_PEI_FV_HANDLE)PrivateInMem->Fv[0].FvHeader,
NULL,
EFI_FV_FILETYPE_PEI_CORE,
&PeiCoreFileHandle,
NULL
);
ASSERT_EFI_ERROR (Status);
//
// Shadow PEI Core into memory so it will run faster
//
Status = PeiLoadImage (
PeiServices,
*((EFI_PEI_FILE_HANDLE*)&PeiCoreFileHandle),
&EntryPoint,
&AuthenticationState
);
ASSERT_EFI_ERROR (Status);
//
// Compute the PeiCore's function address after shaowed PeiCore.
// _ModuleEntryPoint is PeiCore main function entry
//
return (VOID*) ((UINTN) EntryPoint + (UINTN) PeiCore - (UINTN) _ModuleEntryPoint);
}
/**
Conduct PEIM dispatch.
@param SecCoreData Points to a data structure containing information about the PEI core's operating
environment, such as the size and location of temporary RAM, the stack location and
the BFV location.
@param Private Pointer to the private data passed in from caller
**/
VOID
PeiDispatcher (
IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
IN PEI_CORE_INSTANCE *Private
)
{
EFI_STATUS Status;
UINT32 Index1;
UINT32 Index2;
CONST EFI_PEI_SERVICES **PeiServices;
EFI_PEI_FV_HANDLE VolumeHandle;
EFI_PEI_FILE_HANDLE PeimFileHandle;
UINTN FvCount;
UINTN PeimCount;
UINT32 AuthenticationState;
EFI_PHYSICAL_ADDRESS EntryPoint;
EFI_PEIM_ENTRY_POINT2 PeimEntryPoint;
UINTN SaveCurrentPeimCount;
UINTN SaveCurrentFvCount;
EFI_PEI_FILE_HANDLE SaveCurrentFileHandle;
PEIM_FILE_HANDLE_EXTENDED_DATA ExtendedData;
EFI_PHYSICAL_ADDRESS NewPermenentMemoryBase;
TEMPORARY_RAM_SUPPORT_PPI *TemporaryRamSupportPpi;
EFI_HOB_HANDOFF_INFO_TABLE *OldHandOffTable;
EFI_HOB_HANDOFF_INFO_TABLE *NewHandOffTable;
INTN StackOffset;
INTN HeapOffset;
PEI_CORE_INSTANCE *PrivateInMem;
UINT64 NewPeiStackSize;
UINT64 OldPeiStackSize;
UINT64 StackGap;
EFI_FV_FILE_INFO FvFileInfo;
UINTN OldCheckingTop;
UINTN OldCheckingBottom;
PeiServices = (CONST EFI_PEI_SERVICES **) &Private->PS;
PeimEntryPoint = NULL;
PeimFileHandle = NULL;
EntryPoint = 0;
if ((Private->PeiMemoryInstalled) && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
//
// Once real memory is available, shadow the RegisterForShadow modules. And meanwhile
// update the modules' status from PEIM_STATE_REGISITER_FOR_SHADOW to PEIM_STATE_DONE.
//
SaveCurrentPeimCount = Private->CurrentPeimCount;
SaveCurrentFvCount = Private->CurrentPeimFvCount;
SaveCurrentFileHandle = Private->CurrentFileHandle;
for (Index1 = 0; Index1 <= SaveCurrentFvCount; Index1++) {
for (Index2 = 0; (Index2 < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->Fv[Index1].FvFileHandles[Index2] != NULL); Index2++) {
if (Private->Fv[Index1].PeimState[Index2] == PEIM_STATE_REGISITER_FOR_SHADOW) {
PeimFileHandle = Private->Fv[Index1].FvFileHandles[Index2];
Status = PeiLoadImage (
(CONST EFI_PEI_SERVICES **) &Private->PS,
PeimFileHandle,
&EntryPoint,
&AuthenticationState
);
if (Status == EFI_SUCCESS) {
//
// PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
//
Private->Fv[Index1].PeimState[Index2]++;
Private->CurrentFileHandle = PeimFileHandle;
Private->CurrentPeimFvCount = Index1;
Private->CurrentPeimCount = Index2;
//
// Call the PEIM entry point
//
PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
PERF_START (0, "PEIM", NULL, 0);
PeimEntryPoint(PeimFileHandle, (const EFI_PEI_SERVICES **) &Private->PS);
PERF_END (0, "PEIM", NULL, 0);
}
//
// Process the Notify list and dispatch any notifies for
// newly installed PPIs.
//
ProcessNotifyList (Private);
}
}
}
Private->CurrentFileHandle = SaveCurrentFileHandle;
Private->CurrentPeimFvCount = SaveCurrentFvCount;
Private->CurrentPeimCount = SaveCurrentPeimCount;
}
//
// This is the main dispatch loop. It will search known FVs for PEIMs and
// attempt to dispatch them. If any PEIM gets dispatched through a single
// pass of the dispatcher, it will start over from the Bfv again to see
// if any new PEIMs dependencies got satisfied. With a well ordered
// FV where PEIMs are found in the order their dependencies are also
// satisfied, this dipatcher should run only once.
//
do {
//
// In case that reenter PeiCore happens, the last pass record is still available.
//
if (!Private->PeimDispatcherReenter) {
Private->PeimNeedingDispatch = FALSE;
Private->PeimDispatchOnThisPass = FALSE;
} else {
Private->PeimDispatcherReenter = FALSE;
}
for (FvCount = Private->CurrentPeimFvCount; FvCount < Private->FvCount; FvCount++) {
Private->CurrentPeimFvCount = FvCount;
//
// Get this Fv Handle by PeiService FvFindNextVolume.
//
PeiFvFindNextVolume (PeiServices, FvCount, &VolumeHandle);
if (Private->CurrentPeimCount == 0) {
//
// When going through each FV, at first, search Apriori file to
// reorder all PEIMs to ensure the PEIMs in Apriori file to get
// dispatch at first.
//
DiscoverPeimsAndOrderWithApriori (Private, VolumeHandle);
}
//
// Start to dispatch all modules within the current Fv.
//
for (PeimCount = Private->CurrentPeimCount;
(PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->CurrentFvFileHandles[PeimCount] != NULL);
PeimCount++) {
Private->CurrentPeimCount = PeimCount;
PeimFileHandle = Private->CurrentFileHandle = Private->CurrentFvFileHandles[PeimCount];
if (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_NOT_DISPATCHED) {
if (!DepexSatisfied (Private, PeimFileHandle, PeimCount)) {
Private->PeimNeedingDispatch = TRUE;
} else {
Status = PeiFfsGetFileInfo (PeimFileHandle, &FvFileInfo);
ASSERT_EFI_ERROR (Status);
if (FvFileInfo.FileType == EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) {
//
// For Fv type file, Produce new FV PPI and FV hob
//
Status = ProcessFvFile (PeiServices, PeimFileHandle, &AuthenticationState);
} else {
//
// For PEIM driver, Load its entry point
//
Status = PeiLoadImage (
PeiServices,
PeimFileHandle,
&EntryPoint,
&AuthenticationState
);
}
if ((Status == EFI_SUCCESS)) {
//
// The PEIM has its dependencies satisfied, and its entry point
// has been found, so invoke it.
//
PERF_START (0, "PEIM", NULL, 0);
ExtendedData.Handle = (EFI_HANDLE)PeimFileHandle;
REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
EFI_PROGRESS_CODE,
FixedPcdGet32(PcdStatusCodeValuePeimDispatch),
(VOID *)(&ExtendedData),
sizeof (ExtendedData)
);
Status = VerifyPeim (Private, VolumeHandle, PeimFileHandle);
if (Status != EFI_SECURITY_VIOLATION && (AuthenticationState == 0)) {
//
// PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED
//
Private->Fv[FvCount].PeimState[PeimCount]++;
if (FvFileInfo.FileType != EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) {
//
// Call the PEIM entry point for PEIM driver
//
PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
}
Private->PeimDispatchOnThisPass = TRUE;
}
REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
EFI_PROGRESS_CODE,
FixedPcdGet32(PcdStatusCodeValuePeimDispatch),
(VOID *)(&ExtendedData),
sizeof (ExtendedData)
);
PERF_END (0, "PEIM", NULL, 0);
}
if (Private->SwitchStackSignal) {
//
// Before switch stack from CAR to permenent memory, caculate the heap and stack
// usage in temporary memory for debuging.
//
DEBUG_CODE_BEGIN ();
UINT32 *StackPointer;
for (StackPointer = (UINT32*)SecCoreData->StackBase;
(StackPointer < (UINT32*)((UINTN)SecCoreData->StackBase + SecCoreData->StackSize)) \
&& (*StackPointer == INIT_CAR_VALUE);
StackPointer ++);
DEBUG ((EFI_D_INFO, "Total Cache as RAM: %d bytes.\n", (UINT32)SecCoreData->TemporaryRamSize));
DEBUG ((EFI_D_INFO, " CAR stack ever used: %d bytes.\n",
(SecCoreData->StackSize - ((UINTN) StackPointer - (UINTN)SecCoreData->StackBase))
));
DEBUG ((EFI_D_INFO, " CAR heap used: %d bytes.\n",
((UINTN) Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom -
(UINTN) Private->HobList.Raw)
));
DEBUG_CODE_END ();
//
// Reserve the size of new stack at bottom of physical memory
//
OldPeiStackSize = (UINT64) SecCoreData->StackSize;
NewPeiStackSize = (RShiftU64 (Private->PhysicalMemoryLength, 1) + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
if (FixedPcdGet32(PcdPeiCoreMaxPeiStackSize) > (UINT32) NewPeiStackSize) {
Private->StackSize = NewPeiStackSize;
} else {
Private->StackSize = FixedPcdGet32(PcdPeiCoreMaxPeiStackSize);
}
//
// In theory, the size of new stack in permenent memory should large than
// size of old stack in temporary memory.
// But if new stack is smaller than the size of old stack, we also reserve
// the size of old stack at bottom of permenent memory.
//
DEBUG ((EFI_D_INFO, "Old Stack size %d, New stack size %d\n", (INT32) OldPeiStackSize, (INT32) Private->StackSize));
ASSERT (Private->StackSize >= OldPeiStackSize);
StackGap = Private->StackSize - OldPeiStackSize;
//
// Update HandOffHob for new installed permenent memory
//
OldHandOffTable = Private->HobList.HandoffInformationTable;
OldCheckingBottom = (UINTN)(SecCoreData->TemporaryRamBase);
OldCheckingTop = (UINTN)(OldCheckingBottom + SecCoreData->TemporaryRamSize);
//
// The whole temporary memory will be migrated to physical memory.
// CAUTION: The new base is computed accounding to gap of new stack.
//
NewPermenentMemoryBase = Private->PhysicalMemoryBegin + StackGap;
//
// Caculate stack offset and heap offset between CAR and new permement
// memory seperately.
//
StackOffset = (UINTN) NewPermenentMemoryBase - (UINTN) SecCoreData->StackBase;
HeapOffset = (INTN) ((UINTN) Private->PhysicalMemoryBegin + Private->StackSize - \
(UINTN) SecCoreData->PeiTemporaryRamBase);
DEBUG ((EFI_D_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (INT64)HeapOffset, (INT64)StackOffset));
//
// Caculate new HandOffTable and PrivateData address in permenet memory's stack
//
NewHandOffTable = (EFI_HOB_HANDOFF_INFO_TABLE *)((UINTN)OldHandOffTable + HeapOffset);
PrivateInMem = (PEI_CORE_INSTANCE *)((UINTN) (VOID*) Private + StackOffset);
//
// TemporaryRamSupportPpi is produced by platform's SEC
//
Status = PeiLocatePpi (
(CONST EFI_PEI_SERVICES **) PeiServices,
&gEfiTemporaryRamSupportPpiGuid,
0,
NULL,
(VOID**)&TemporaryRamSupportPpi
);
if (!EFI_ERROR (Status)) {
//
// Temporary Ram support Ppi is provided by platform, it will copy
// temporary memory to permenent memory and do stack switching.
// After invoken temporary Ram support, following code's stack is in
// memory but not in CAR.
//
TemporaryRamSupportPpi->TemporaryRamMigration (
(CONST EFI_PEI_SERVICES **) PeiServices,
(EFI_PHYSICAL_ADDRESS)(UINTN) SecCoreData->TemporaryRamBase,
(EFI_PHYSICAL_ADDRESS)(UINTN) NewPermenentMemoryBase,
SecCoreData->TemporaryRamSize
);
} else {
//
// In IA32/x64/Itanium architecture, we need platform provide
// TEMPORAY_RAM_MIGRATION_PPI.
//
ASSERT (FALSE);
}
//
//
// Fixup the PeiCore's private data
//
PrivateInMem->PS = &PrivateInMem->ServiceTableShadow;
PrivateInMem->CpuIo = &PrivateInMem->ServiceTableShadow.CpuIo;
PrivateInMem->HobList.Raw = (VOID*) ((UINTN) PrivateInMem->HobList.Raw + HeapOffset);
PrivateInMem->StackBase = (EFI_PHYSICAL_ADDRESS)(((UINTN)PrivateInMem->PhysicalMemoryBegin + EFI_PAGE_MASK) & ~EFI_PAGE_MASK);
PeiServices = (CONST EFI_PEI_SERVICES **) &PrivateInMem->PS;
//
// Fixup for PeiService's address
//
SetPeiServicesTablePointer(PeiServices);
//
// Update HandOffHob for new installed permenent memory
//
NewHandOffTable->EfiEndOfHobList =
(EFI_PHYSICAL_ADDRESS)((UINTN) NewHandOffTable->EfiEndOfHobList + HeapOffset);
NewHandOffTable->EfiMemoryTop = PrivateInMem->PhysicalMemoryBegin +
PrivateInMem->PhysicalMemoryLength;
NewHandOffTable->EfiMemoryBottom = PrivateInMem->PhysicalMemoryBegin;
NewHandOffTable->EfiFreeMemoryTop = PrivateInMem->FreePhysicalMemoryTop;
NewHandOffTable->EfiFreeMemoryBottom = NewHandOffTable->EfiEndOfHobList +
sizeof (EFI_HOB_GENERIC_HEADER);
//
// We need convert the PPI desciptor's pointer
//
ConvertPpiPointers (PrivateInMem,
OldCheckingBottom,
OldCheckingTop,
HeapOffset
);
DEBUG ((EFI_D_INFO, "Stack Hob: BaseAddress=0x%lX Length=0x%lX\n",
PrivateInMem->StackBase,
PrivateInMem->StackSize));
BuildStackHob (PrivateInMem->StackBase, PrivateInMem->StackSize);
//
// After the whole temporary memory is migrated, then we can allocate page in
// permenent memory.
//
PrivateInMem->PeiMemoryInstalled = TRUE;
//
// Indicate that PeiCore reenter
//
PrivateInMem->PeimDispatcherReenter = TRUE;
//
// Shadow PEI Core. When permanent memory is avaiable, shadow
// PEI Core and PEIMs to get high performance.
//
PrivateInMem->ShadowedPeiCore = ShadowPeiCore (
PeiServices,
PrivateInMem
);
//
// Process the Notify list and dispatch any notifies for
// newly installed PPIs.
//
ProcessNotifyList (PrivateInMem);
//
// Entry PEI Phase 2
//
PeiCore (SecCoreData, NULL, PrivateInMem);
//
// Code should not come here
//
ASSERT_EFI_ERROR(FALSE);
}
//
// Process the Notify list and dispatch any notifies for
// newly installed PPIs.
//
ProcessNotifyList (Private);
if ((Private->PeiMemoryInstalled) && (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_REGISITER_FOR_SHADOW) && \
(Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
//
// If memory is availble we shadow images by default for performance reasons.
// We call the entry point a 2nd time so the module knows it's shadowed.
//
//PERF_START (PeiServices, L"PEIM", PeimFileHandle, 0);
PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
//PERF_END (PeiServices, L"PEIM", PeimFileHandle, 0);
//
// PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
//
Private->Fv[FvCount].PeimState[PeimCount]++;
//
// Process the Notify list and dispatch any notifies for
// newly installed PPIs.
//
ProcessNotifyList (Private);
}
}
}
}
//
// We set to NULL here to optimize the 2nd entry to this routine after
// memory is found. This reprevents rescanning of the FV. We set to
// NULL here so we start at the begining of the next FV
//
Private->CurrentFileHandle = NULL;
Private->CurrentPeimCount = 0;
//
// Before walking through the next FV,Private->CurrentFvFileHandles[]should set to NULL
//
SetMem (Private->CurrentFvFileHandles, sizeof (Private->CurrentFvFileHandles), 0);
}
//
// Before making another pass, we should set Private->CurrentPeimFvCount =0 to go
// through all the FV.
//
Private->CurrentPeimFvCount = 0;
//
// PeimNeedingDispatch being TRUE means we found a PEIM that did not get
// dispatched. So we need to make another pass
//
// PeimDispatchOnThisPass being TRUE means we dispatched a PEIM on this
// pass. If we did not dispatch a PEIM there is no point in trying again
// as it will fail the next time too (nothing has changed).
//
} while (Private->PeimNeedingDispatch && Private->PeimDispatchOnThisPass);
}
/**
Initialize the Dispatcher's data members
@param PrivateData PeiCore's private data structure
@param OldCoreData Old data from SecCore
NULL if being run in non-permament memory mode.
@param SecCoreData Points to a data structure containing information about the PEI core's operating
environment, such as the size and location of temporary RAM, the stack location and
the BFV location.
@return None.
**/
VOID
InitializeDispatcherData (
IN PEI_CORE_INSTANCE *PrivateData,
IN PEI_CORE_INSTANCE *OldCoreData,
IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData
)
{
if (OldCoreData == NULL) {
PrivateData->PeimDispatcherReenter = FALSE;
PeiInitializeFv (PrivateData, SecCoreData);
}
return;
}
/**
This routine parses the Dependency Expression, if available, and
decides if the module can be executed.
@param Private PeiCore's private data structure
@param FileHandle PEIM's file handle
@param PeimCount Peim count in all dispatched PEIMs.
@retval TRUE Can be dispatched
@retval FALSE Cannot be dispatched
**/
BOOLEAN
DepexSatisfied (
IN PEI_CORE_INSTANCE *Private,
IN EFI_PEI_FILE_HANDLE FileHandle,
IN UINTN PeimCount
)
{
EFI_STATUS Status;
VOID *DepexData;
if (PeimCount < Private->AprioriCount) {
//
// If its in the A priori file then we set Depex to TRUE
//
return TRUE;
}
//
// Depex section not in the encapsulated section.
//
Status = PeiServicesFfsFindSectionData (
EFI_SECTION_PEI_DEPEX,
FileHandle,
(VOID **)&DepexData
);
if (EFI_ERROR (Status)) {
//
// If there is no DEPEX, assume the module can be executed
//
return TRUE;
}
//
// Evaluate a given DEPEX
//
return PeimDispatchReadiness (&Private->PS, DepexData);
}
/**
This routine enable a PEIM to register itself to shadow when PEI Foundation
discovery permanent memory.
@param FileHandle File handle of a PEIM.
@retval EFI_NOT_FOUND The file handle doesn't point to PEIM itself.
@retval EFI_ALREADY_STARTED Indicate that the PEIM has been registered itself.
@retval EFI_SUCCESS Successfully to register itself.
**/
EFI_STATUS
EFIAPI
PeiRegisterForShadow (
IN EFI_PEI_FILE_HANDLE FileHandle
)
{
PEI_CORE_INSTANCE *Private;
Private = PEI_CORE_INSTANCE_FROM_PS_THIS (GetPeiServicesTablePointer ());
if (Private->CurrentFileHandle != FileHandle) {
//
// The FileHandle must be for the current PEIM
//
return EFI_NOT_FOUND;
}
if (Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] >= PEIM_STATE_REGISITER_FOR_SHADOW) {
//
// If the PEIM has already entered the PEIM_STATE_REGISTER_FOR_SHADOW or PEIM_STATE_DONE then it's already been started
//
return EFI_ALREADY_STARTED;
}
Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] = PEIM_STATE_REGISITER_FOR_SHADOW;
return EFI_SUCCESS;
}