audk/MdeModulePkg/Core/Dxe/Mem/Pool.c

701 lines
18 KiB
C

/** @file
UEFI Memory pool management functions.
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "DxeMain.h"
#include "Imem.h"
#define POOL_FREE_SIGNATURE SIGNATURE_32('p','f','r','0')
typedef struct {
UINT32 Signature;
UINT32 Index;
LIST_ENTRY Link;
} POOL_FREE;
#define POOL_HEAD_SIGNATURE SIGNATURE_32('p','h','d','0')
typedef struct {
UINT32 Signature;
UINT32 Reserved;
EFI_MEMORY_TYPE Type;
UINTN Size;
CHAR8 Data[1];
} POOL_HEAD;
#define SIZE_OF_POOL_HEAD OFFSET_OF(POOL_HEAD,Data)
#define POOL_TAIL_SIGNATURE SIGNATURE_32('p','t','a','l')
typedef struct {
UINT32 Signature;
UINT32 Reserved;
UINTN Size;
} POOL_TAIL;
#define POOL_OVERHEAD (SIZE_OF_POOL_HEAD + sizeof(POOL_TAIL))
#define HEAD_TO_TAIL(a) \
((POOL_TAIL *) (((CHAR8 *) (a)) + (a)->Size - sizeof(POOL_TAIL)));
//
// Each element is the sum of the 2 previous ones: this allows us to migrate
// blocks between bins by splitting them up, while not wasting too much memory
// as we would in a strict power-of-2 sequence
//
STATIC CONST UINT16 mPoolSizeTable[] = {
128, 256, 384, 640, 1024, 1664, 2688, 4352, 7040, 11392, 18432, 29824
};
#define SIZE_TO_LIST(a) (GetPoolIndexFromSize (a))
#define LIST_TO_SIZE(a) (mPoolSizeTable [a])
#define MAX_POOL_LIST (sizeof (mPoolSizeTable) / sizeof (mPoolSizeTable[0]))
#define MAX_POOL_SIZE (MAX_ADDRESS - POOL_OVERHEAD)
//
// Globals
//
#define POOL_SIGNATURE SIGNATURE_32('p','l','s','t')
typedef struct {
INTN Signature;
UINTN Used;
EFI_MEMORY_TYPE MemoryType;
LIST_ENTRY FreeList[MAX_POOL_LIST];
LIST_ENTRY Link;
} POOL;
//
// Pool header for each memory type.
//
POOL mPoolHead[EfiMaxMemoryType];
//
// List of pool header to search for the appropriate memory type.
//
LIST_ENTRY mPoolHeadList = INITIALIZE_LIST_HEAD_VARIABLE (mPoolHeadList);
/**
Get pool size table index from the specified size.
@param Size The specified size to get index from pool table.
@return The index of pool size table.
**/
STATIC
UINTN
GetPoolIndexFromSize (
UINTN Size
)
{
UINTN Index;
for (Index = 0; Index < MAX_POOL_LIST; Index++) {
if (mPoolSizeTable [Index] >= Size) {
return Index;
}
}
return MAX_POOL_LIST;
}
/**
Called to initialize the pool.
**/
VOID
CoreInitializePool (
VOID
)
{
UINTN Type;
UINTN Index;
for (Type=0; Type < EfiMaxMemoryType; Type++) {
mPoolHead[Type].Signature = 0;
mPoolHead[Type].Used = 0;
mPoolHead[Type].MemoryType = (EFI_MEMORY_TYPE) Type;
for (Index=0; Index < MAX_POOL_LIST; Index++) {
InitializeListHead (&mPoolHead[Type].FreeList[Index]);
}
}
}
/**
Look up pool head for specified memory type.
@param MemoryType Memory type of which pool head is looked for
@return Pointer of Corresponding pool head.
**/
POOL *
LookupPoolHead (
IN EFI_MEMORY_TYPE MemoryType
)
{
LIST_ENTRY *Link;
POOL *Pool;
UINTN Index;
if ((UINT32)MemoryType < EfiMaxMemoryType) {
return &mPoolHead[MemoryType];
}
//
// MemoryType values in the range 0x80000000..0xFFFFFFFF are reserved for use by UEFI
// OS loaders that are provided by operating system vendors.
// MemoryType values in the range 0x70000000..0x7FFFFFFF are reserved for OEM use.
//
if ((UINT32) MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) {
for (Link = mPoolHeadList.ForwardLink; Link != &mPoolHeadList; Link = Link->ForwardLink) {
Pool = CR(Link, POOL, Link, POOL_SIGNATURE);
if (Pool->MemoryType == MemoryType) {
return Pool;
}
}
Pool = CoreAllocatePoolI (EfiBootServicesData, sizeof (POOL));
if (Pool == NULL) {
return NULL;
}
Pool->Signature = POOL_SIGNATURE;
Pool->Used = 0;
Pool->MemoryType = MemoryType;
for (Index=0; Index < MAX_POOL_LIST; Index++) {
InitializeListHead (&Pool->FreeList[Index]);
}
InsertHeadList (&mPoolHeadList, &Pool->Link);
return Pool;
}
return NULL;
}
/**
Allocate pool of a particular type.
@param PoolType Type of pool to allocate
@param Size The amount of pool to allocate
@param Buffer The address to return a pointer to the allocated
pool
@retval EFI_INVALID_PARAMETER Buffer is NULL.
PoolType is in the range EfiMaxMemoryType..0x6FFFFFFF.
PoolType is EfiPersistentMemory.
@retval EFI_OUT_OF_RESOURCES Size exceeds max pool size or allocation failed.
@retval EFI_SUCCESS Pool successfully allocated.
**/
EFI_STATUS
EFIAPI
CoreInternalAllocatePool (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN Size,
OUT VOID **Buffer
)
{
EFI_STATUS Status;
//
// If it's not a valid type, fail it
//
if ((PoolType >= EfiMaxMemoryType && PoolType < MEMORY_TYPE_OEM_RESERVED_MIN) ||
(PoolType == EfiConventionalMemory) || (PoolType == EfiPersistentMemory)) {
return EFI_INVALID_PARAMETER;
}
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
*Buffer = NULL;
//
// If size is too large, fail it
// Base on the EFI spec, return status of EFI_OUT_OF_RESOURCES
//
if (Size > MAX_POOL_SIZE) {
return EFI_OUT_OF_RESOURCES;
}
//
// Acquire the memory lock and make the allocation
//
Status = CoreAcquireLockOrFail (&gMemoryLock);
if (EFI_ERROR (Status)) {
return EFI_OUT_OF_RESOURCES;
}
*Buffer = CoreAllocatePoolI (PoolType, Size);
CoreReleaseMemoryLock ();
return (*Buffer != NULL) ? EFI_SUCCESS : EFI_OUT_OF_RESOURCES;
}
/**
Allocate pool of a particular type.
@param PoolType Type of pool to allocate
@param Size The amount of pool to allocate
@param Buffer The address to return a pointer to the allocated
pool
@retval EFI_INVALID_PARAMETER Buffer is NULL.
PoolType is in the range EfiMaxMemoryType..0x6FFFFFFF.
PoolType is EfiPersistentMemory.
@retval EFI_OUT_OF_RESOURCES Size exceeds max pool size or allocation failed.
@retval EFI_SUCCESS Pool successfully allocated.
**/
EFI_STATUS
EFIAPI
CoreAllocatePool (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN Size,
OUT VOID **Buffer
)
{
EFI_STATUS Status;
Status = CoreInternalAllocatePool (PoolType, Size, Buffer);
if (!EFI_ERROR (Status)) {
CoreUpdateProfile (
(EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0),
MemoryProfileActionAllocatePool,
PoolType,
Size,
*Buffer,
NULL
);
InstallMemoryAttributesTableOnMemoryAllocation (PoolType);
}
return Status;
}
/**
Internal function to allocate pool of a particular type.
Caller must have the memory lock held
@param PoolType Type of pool to allocate
@param Size The amount of pool to allocate
@return The allocate pool, or NULL
**/
VOID *
CoreAllocatePoolI (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN Size
)
{
POOL *Pool;
POOL_FREE *Free;
POOL_HEAD *Head;
POOL_TAIL *Tail;
CHAR8 *NewPage;
VOID *Buffer;
UINTN Index;
UINTN FSize;
UINTN Offset, MaxOffset;
UINTN NoPages;
UINTN Granularity;
ASSERT_LOCKED (&gMemoryLock);
if (PoolType == EfiACPIReclaimMemory ||
PoolType == EfiACPIMemoryNVS ||
PoolType == EfiRuntimeServicesCode ||
PoolType == EfiRuntimeServicesData) {
Granularity = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;
} else {
Granularity = DEFAULT_PAGE_ALLOCATION;
}
//
// Adjust the size by the pool header & tail overhead
//
//
// Adjusting the Size to be of proper alignment so that
// we don't get an unaligned access fault later when
// pool_Tail is being initialized
//
Size = ALIGN_VARIABLE (Size);
Size += POOL_OVERHEAD;
Index = SIZE_TO_LIST(Size);
Pool = LookupPoolHead (PoolType);
if (Pool== NULL) {
return NULL;
}
Head = NULL;
//
// If allocation is over max size, just allocate pages for the request
// (slow)
//
if (Index >= SIZE_TO_LIST (Granularity)) {
NoPages = EFI_SIZE_TO_PAGES(Size) + EFI_SIZE_TO_PAGES (Granularity) - 1;
NoPages &= ~(UINTN)(EFI_SIZE_TO_PAGES (Granularity) - 1);
Head = CoreAllocatePoolPages (PoolType, NoPages, Granularity);
goto Done;
}
//
// If there's no free pool in the proper list size, go get some more pages
//
if (IsListEmpty (&Pool->FreeList[Index])) {
Offset = LIST_TO_SIZE (Index);
MaxOffset = Granularity;
//
// Check the bins holding larger blocks, and carve one up if needed
//
while (++Index < SIZE_TO_LIST (Granularity)) {
if (!IsListEmpty (&Pool->FreeList[Index])) {
Free = CR (Pool->FreeList[Index].ForwardLink, POOL_FREE, Link, POOL_FREE_SIGNATURE);
RemoveEntryList (&Free->Link);
NewPage = (VOID *) Free;
MaxOffset = LIST_TO_SIZE (Index);
goto Carve;
}
}
//
// Get another page
//
NewPage = CoreAllocatePoolPages(PoolType, EFI_SIZE_TO_PAGES (Granularity), Granularity);
if (NewPage == NULL) {
goto Done;
}
//
// Serve the allocation request from the head of the allocated block
//
Carve:
Head = (POOL_HEAD *) NewPage;
//
// Carve up remaining space into free pool blocks
//
Index--;
while (Offset < MaxOffset) {
ASSERT (Index < MAX_POOL_LIST);
FSize = LIST_TO_SIZE(Index);
while (Offset + FSize <= MaxOffset) {
Free = (POOL_FREE *) &NewPage[Offset];
Free->Signature = POOL_FREE_SIGNATURE;
Free->Index = (UINT32)Index;
InsertHeadList (&Pool->FreeList[Index], &Free->Link);
Offset += FSize;
}
Index -= 1;
}
ASSERT (Offset == MaxOffset);
goto Done;
}
//
// Remove entry from free pool list
//
Free = CR (Pool->FreeList[Index].ForwardLink, POOL_FREE, Link, POOL_FREE_SIGNATURE);
RemoveEntryList (&Free->Link);
Head = (POOL_HEAD *) Free;
Done:
Buffer = NULL;
if (Head != NULL) {
//
// If we have a pool buffer, fill in the header & tail info
//
Head->Signature = POOL_HEAD_SIGNATURE;
Head->Size = Size;
Head->Type = (EFI_MEMORY_TYPE) PoolType;
Tail = HEAD_TO_TAIL (Head);
Tail->Signature = POOL_TAIL_SIGNATURE;
Tail->Size = Size;
Buffer = Head->Data;
DEBUG_CLEAR_MEMORY (Buffer, Size - POOL_OVERHEAD);
DEBUG ((
DEBUG_POOL,
"AllocatePoolI: Type %x, Addr %p (len %lx) %,ld\n", PoolType,
Buffer,
(UINT64)(Size - POOL_OVERHEAD),
(UINT64) Pool->Used
));
//
// Account the allocation
//
Pool->Used += Size;
} else {
DEBUG ((DEBUG_ERROR | DEBUG_POOL, "AllocatePool: failed to allocate %ld bytes\n", (UINT64) Size));
}
return Buffer;
}
/**
Frees pool.
@param Buffer The allocated pool entry to free
@param PoolType Pointer to pool type
@retval EFI_INVALID_PARAMETER Buffer is not a valid value.
@retval EFI_SUCCESS Pool successfully freed.
**/
EFI_STATUS
EFIAPI
CoreInternalFreePool (
IN VOID *Buffer,
OUT EFI_MEMORY_TYPE *PoolType OPTIONAL
)
{
EFI_STATUS Status;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
CoreAcquireMemoryLock ();
Status = CoreFreePoolI (Buffer, PoolType);
CoreReleaseMemoryLock ();
return Status;
}
/**
Frees pool.
@param Buffer The allocated pool entry to free
@retval EFI_INVALID_PARAMETER Buffer is not a valid value.
@retval EFI_SUCCESS Pool successfully freed.
**/
EFI_STATUS
EFIAPI
CoreFreePool (
IN VOID *Buffer
)
{
EFI_STATUS Status;
EFI_MEMORY_TYPE PoolType;
Status = CoreInternalFreePool (Buffer, &PoolType);
if (!EFI_ERROR (Status)) {
CoreUpdateProfile (
(EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0),
MemoryProfileActionFreePool,
PoolType,
0,
Buffer,
NULL
);
InstallMemoryAttributesTableOnMemoryAllocation (PoolType);
}
return Status;
}
/**
Internal function to free a pool entry.
Caller must have the memory lock held
@param Buffer The allocated pool entry to free
@param PoolType Pointer to pool type
@retval EFI_INVALID_PARAMETER Buffer not valid
@retval EFI_SUCCESS Buffer successfully freed.
**/
EFI_STATUS
CoreFreePoolI (
IN VOID *Buffer,
OUT EFI_MEMORY_TYPE *PoolType OPTIONAL
)
{
POOL *Pool;
POOL_HEAD *Head;
POOL_TAIL *Tail;
POOL_FREE *Free;
UINTN Index;
UINTN NoPages;
UINTN Size;
CHAR8 *NewPage;
UINTN Offset;
BOOLEAN AllFree;
UINTN Granularity;
ASSERT(Buffer != NULL);
//
// Get the head & tail of the pool entry
//
Head = CR (Buffer, POOL_HEAD, Data, POOL_HEAD_SIGNATURE);
ASSERT(Head != NULL);
if (Head->Signature != POOL_HEAD_SIGNATURE) {
return EFI_INVALID_PARAMETER;
}
Tail = HEAD_TO_TAIL (Head);
ASSERT(Tail != NULL);
//
// Debug
//
ASSERT (Tail->Signature == POOL_TAIL_SIGNATURE);
ASSERT (Head->Size == Tail->Size);
ASSERT_LOCKED (&gMemoryLock);
if (Tail->Signature != POOL_TAIL_SIGNATURE) {
return EFI_INVALID_PARAMETER;
}
if (Head->Size != Tail->Size) {
return EFI_INVALID_PARAMETER;
}
//
// Determine the pool type and account for it
//
Size = Head->Size;
Pool = LookupPoolHead (Head->Type);
if (Pool == NULL) {
return EFI_INVALID_PARAMETER;
}
Pool->Used -= Size;
DEBUG ((DEBUG_POOL, "FreePool: %p (len %lx) %,ld\n", Head->Data, (UINT64)(Head->Size - POOL_OVERHEAD), (UINT64) Pool->Used));
if (Head->Type == EfiACPIReclaimMemory ||
Head->Type == EfiACPIMemoryNVS ||
Head->Type == EfiRuntimeServicesCode ||
Head->Type == EfiRuntimeServicesData) {
Granularity = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;
} else {
Granularity = DEFAULT_PAGE_ALLOCATION;
}
if (PoolType != NULL) {
*PoolType = Head->Type;
}
//
// Determine the pool list
//
Index = SIZE_TO_LIST(Size);
DEBUG_CLEAR_MEMORY (Head, Size);
//
// If it's not on the list, it must be pool pages
//
if (Index >= SIZE_TO_LIST (Granularity)) {
//
// Return the memory pages back to free memory
//
NoPages = EFI_SIZE_TO_PAGES(Size) + EFI_SIZE_TO_PAGES (Granularity) - 1;
NoPages &= ~(UINTN)(EFI_SIZE_TO_PAGES (Granularity) - 1);
CoreFreePoolPages ((EFI_PHYSICAL_ADDRESS) (UINTN) Head, NoPages);
} else {
//
// Put the pool entry onto the free pool list
//
Free = (POOL_FREE *) Head;
ASSERT(Free != NULL);
Free->Signature = POOL_FREE_SIGNATURE;
Free->Index = (UINT32)Index;
InsertHeadList (&Pool->FreeList[Index], &Free->Link);
//
// See if all the pool entries in the same page as Free are freed pool
// entries
//
NewPage = (CHAR8 *)((UINTN)Free & ~(Granularity - 1));
Free = (POOL_FREE *) &NewPage[0];
ASSERT(Free != NULL);
if (Free->Signature == POOL_FREE_SIGNATURE) {
AllFree = TRUE;
Offset = 0;
while ((Offset < Granularity) && (AllFree)) {
Free = (POOL_FREE *) &NewPage[Offset];
ASSERT(Free != NULL);
if (Free->Signature != POOL_FREE_SIGNATURE) {
AllFree = FALSE;
}
Offset += LIST_TO_SIZE(Free->Index);
}
if (AllFree) {
//
// All of the pool entries in the same page as Free are free pool
// entries
// Remove all of these pool entries from the free loop lists.
//
Free = (POOL_FREE *) &NewPage[0];
ASSERT(Free != NULL);
Offset = 0;
while (Offset < Granularity) {
Free = (POOL_FREE *) &NewPage[Offset];
ASSERT(Free != NULL);
RemoveEntryList (&Free->Link);
Offset += LIST_TO_SIZE(Free->Index);
}
//
// Free the page
//
CoreFreePoolPages ((EFI_PHYSICAL_ADDRESS) (UINTN)NewPage, EFI_SIZE_TO_PAGES (Granularity));
}
}
}
//
// If this is an OS/OEM specific memory type, then check to see if the last
// portion of that memory type has been freed. If it has, then free the
// list entry for that memory type
//
if (((UINT32) Pool->MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) && Pool->Used == 0) {
RemoveEntryList (&Pool->Link);
CoreFreePoolI (Pool, NULL);
}
return EFI_SUCCESS;
}