audk/MdeModulePkg/Core/DxeIplPeim/DxeLoad.c

689 lines
21 KiB
C

/**@file
Last PEIM.
Responsibility of this module is to load the DXE Core from a Firmware Volume.
Copyright (c) 2006 - 2007 Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "DxeIpl.h"
#include <Ppi/GuidedSectionExtraction.h>
EFI_STATUS
CustomGuidedSectionExtract (
IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This,
IN CONST VOID *InputSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize,
OUT UINT32 *AuthenticationStatus
);
STATIC
EFI_STATUS
EFIAPI
Decompress (
IN CONST EFI_PEI_DECOMPRESS_PPI *This,
IN CONST EFI_COMPRESSION_SECTION *InputSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize
);
BOOLEAN gInMemory = FALSE;
//
// Module Globals used in the DXE to PEI handoff
// These must be module globals, so the stack can be switched
//
static EFI_DXE_IPL_PPI mDxeIplPpi = {
DxeLoadCore
};
STATIC EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI mCustomGuidedSectionExtractionPpi = {
CustomGuidedSectionExtract
};
STATIC EFI_PEI_DECOMPRESS_PPI mDecompressPpi = {
Decompress
};
static EFI_PEI_PPI_DESCRIPTOR mPpiList[] = {
{
EFI_PEI_PPI_DESCRIPTOR_PPI,
&gEfiDxeIplPpiGuid,
&mDxeIplPpi
},
{
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiDecompressPpiGuid,
&mDecompressPpi
}
};
static EFI_PEI_PPI_DESCRIPTOR mPpiSignal = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiEndOfPeiSignalPpiGuid,
NULL
};
/**
Initializes the Dxe Ipl PPI
@param FfsHandle The handle of FFS file.
@param PeiServices General purpose services available to
every PEIM.
@return EFI_SUCESS
*/
EFI_STATUS
EFIAPI
PeimInitializeDxeIpl (
IN EFI_PEI_FILE_HANDLE FfsHandle,
IN EFI_PEI_SERVICES **PeiServices
)
{
EFI_STATUS Status;
EFI_BOOT_MODE BootMode;
EFI_GUID *ExtractHandlerGuidTable;
UINTN ExtractHandlerNumber;
EFI_PEI_PPI_DESCRIPTOR *GuidPpi;
Status = PeiServicesGetBootMode (&BootMode);
ASSERT_EFI_ERROR (Status);
if (BootMode != BOOT_ON_S3_RESUME) {
Status = PeiServicesRegisterForShadow (FfsHandle);
if (Status == EFI_SUCCESS) {
//
// EFI_SUCESS means the first time call register for shadow
//
return Status;
} else if (Status == EFI_ALREADY_STARTED) {
gInMemory = TRUE;
//
// Get custom extract guided section method guid list
//
ExtractHandlerNumber = ExtractGuidedSectionGetGuidList (&ExtractHandlerGuidTable);
//
// Install custom extraction guid ppi
//
if (ExtractHandlerNumber > 0) {
GuidPpi = NULL;
GuidPpi = (EFI_PEI_PPI_DESCRIPTOR *) AllocatePool (ExtractHandlerNumber * sizeof (EFI_PEI_PPI_DESCRIPTOR));
ASSERT (GuidPpi != NULL);
while (ExtractHandlerNumber-- > 0) {
GuidPpi->Flags = EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST;
GuidPpi->Ppi = &mCustomGuidedSectionExtractionPpi;
GuidPpi->Guid = &(ExtractHandlerGuidTable [ExtractHandlerNumber]);
Status = PeiServicesInstallPpi (GuidPpi++);
ASSERT_EFI_ERROR(Status);
}
}
} else {
ASSERT (FALSE);
}
}
//
// Install DxeIpl and Decompress PPIs.
//
Status = PeiServicesInstallPpi (mPpiList);
ASSERT_EFI_ERROR(Status);
return Status;
}
/**
Main entry point to last PEIM
@param This Entry point for DXE IPL PPI
@param PeiServices General purpose services available to every PEIM.
@param HobList Address to the Pei HOB list
@return EFI_SUCCESS DXE core was successfully loaded.
@return EFI_OUT_OF_RESOURCES There are not enough resources to load DXE core.
**/
EFI_STATUS
EFIAPI
DxeLoadCore (
IN EFI_DXE_IPL_PPI *This,
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_HOB_POINTERS HobList
)
{
EFI_STATUS Status;
EFI_GUID DxeCoreFileName;
EFI_PHYSICAL_ADDRESS DxeCoreAddress;
UINT64 DxeCoreSize;
EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint;
EFI_BOOT_MODE BootMode;
EFI_PEI_FILE_HANDLE FileHandle;
EFI_PEI_READ_ONLY_VARIABLE2_PPI *Variable;
UINTN DataSize;
EFI_MEMORY_TYPE_INFORMATION MemoryData [EfiMaxMemoryType + 1];
//
// if in S3 Resume, restore configure
//
Status = PeiServicesGetBootMode (&BootMode);
ASSERT_EFI_ERROR(Status);
if (BootMode == BOOT_ON_S3_RESUME) {
Status = AcpiS3ResumeOs();
ASSERT_EFI_ERROR (Status);
} else if (BootMode == BOOT_IN_RECOVERY_MODE) {
Status = PeiRecoverFirmware ();
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "Load Recovery Capsule Failed.(Status = %r)\n", Status));
CpuDeadLoop ();
}
//
// Now should have a HOB with the DXE core w/ the old HOB destroyed
//
}
Status = PeiServicesLocatePpi (
&gEfiPeiReadOnlyVariable2PpiGuid,
0,
NULL,
(VOID **)&Variable
);
ASSERT_EFI_ERROR (Status);
DataSize = sizeof (MemoryData);
Status = Variable->GetVariable (
Variable,
EFI_MEMORY_TYPE_INFORMATION_VARIABLE_NAME,
&gEfiMemoryTypeInformationGuid,
NULL,
&DataSize,
&MemoryData
);
if (!EFI_ERROR (Status)) {
//
// Build the GUID'd HOB for DXE
//
BuildGuidDataHob (
&gEfiMemoryTypeInformationGuid,
MemoryData,
DataSize
);
}
//
// Look in all the FVs present in PEI and find the DXE Core
//
FileHandle = NULL;
Status = DxeIplFindDxeCore (&FileHandle);
ASSERT_EFI_ERROR (Status);
CopyMem(&DxeCoreFileName, &(((EFI_FFS_FILE_HEADER*)FileHandle)->Name), sizeof (EFI_GUID));
//
// Load the DXE Core from a Firmware Volume, may use LoadFile ppi to do this for save code size.
//
Status = PeiLoadFile (
FileHandle,
&DxeCoreAddress,
&DxeCoreSize,
&DxeCoreEntryPoint
);
ASSERT_EFI_ERROR (Status);
//
// Add HOB for the DXE Core
//
BuildModuleHob (
&DxeCoreFileName,
DxeCoreAddress,
EFI_SIZE_TO_PAGES ((UINT32) DxeCoreSize) * EFI_PAGE_SIZE,
DxeCoreEntryPoint
);
//
// Report Status Code EFI_SW_PEI_PC_HANDOFF_TO_NEXT
//
REPORT_STATUS_CODE (
EFI_PROGRESS_CODE,
PcdGet32(PcdStatusCodeValuePeiHandoffToDxe)
);
DEBUG_CODE_BEGIN ();
EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION PtrPeImage;
PtrPeImage.Pe32 = (EFI_IMAGE_NT_HEADERS32 *) ((UINTN) DxeCoreAddress + ((EFI_IMAGE_DOS_HEADER *) (UINTN) DxeCoreAddress)->e_lfanew);
if (PtrPeImage.Pe32->FileHeader.Machine != IMAGE_FILE_MACHINE_IA64) {
DEBUG ((EFI_D_INFO | EFI_D_LOAD, "Loading DXE CORE at 0x%10p EntryPoint=0x%10p\n", (VOID *)(UINTN)DxeCoreAddress, (VOID *)(UINTN)DxeCoreEntryPoint));
} else {
//
// For IPF Image, the real entry point should be print.
//
DEBUG ((EFI_D_INFO | EFI_D_LOAD, "Loading DXE CORE at 0x%10p EntryPoint=0x%10p\n", (VOID *)(UINTN)DxeCoreAddress, (VOID *)(UINTN)(*(UINT64 *)(UINTN)DxeCoreEntryPoint)));
}
DEBUG_CODE_END ();
//
// Transfer control to the DXE Core
// The handoff state is simply a pointer to the HOB list
//
HandOffToDxeCore (DxeCoreEntryPoint, HobList, &mPpiSignal);
//
// If we get here, then the DXE Core returned. This is an error
// Dxe Core should not return.
//
ASSERT (FALSE);
CpuDeadLoop ();
return EFI_OUT_OF_RESOURCES;
}
/**
Find DxeCore driver from all First Volumes.
@param FileHandle Pointer to FFS file to search.
@return EFI_SUCESS Success to find the FFS in specificed FV
@return others Fail to find the FFS in specificed FV
*/
EFI_STATUS
DxeIplFindDxeCore (
OUT EFI_PEI_FILE_HANDLE *FileHandle
)
{
EFI_STATUS Status;
EFI_STATUS FileStatus;
UINTN Instance;
EFI_PEI_FV_HANDLE VolumeHandle;
Instance = 0;
*FileHandle = NULL;
do {
Status = PeiServicesFfsFindNextVolume (Instance++, &VolumeHandle);
if (!EFI_ERROR (Status)) {
FileStatus = PeiServicesFfsFindNextFile (EFI_FV_FILETYPE_DXE_CORE, VolumeHandle, FileHandle);
if (!EFI_ERROR (FileStatus)) {
return FileStatus;
}
}
} while (!EFI_ERROR (Status));
return EFI_NOT_FOUND;
}
/**
Loads and relocates a PE/COFF image into memory.
@param FileHandle The image file handle
@param ImageAddress The base address of the relocated PE/COFF image
@param ImageSize The size of the relocated PE/COFF image
@param EntryPoint The entry point of the relocated PE/COFF image
@return EFI_SUCCESS The file was loaded and relocated
@return EFI_OUT_OF_RESOURCES There was not enough memory to load and relocate the PE/COFF file
**/
EFI_STATUS
PeiLoadFile (
IN EFI_PEI_FILE_HANDLE FileHandle,
OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
OUT UINT64 *ImageSize,
OUT EFI_PHYSICAL_ADDRESS *EntryPoint
)
{
EFI_STATUS Status;
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
VOID *Pe32Data;
//
// First try to find the PE32 section in this ffs file.
//
Status = PeiServicesFfsFindSectionData (
EFI_SECTION_PE32,
FileHandle,
&Pe32Data
);
if (EFI_ERROR (Status)) {
//
// NO image types we support so exit.
//
return Status;
}
ZeroMem (&ImageContext, sizeof (ImageContext));
ImageContext.Handle = Pe32Data;
Status = GetImageReadFunction (&ImageContext);
ASSERT_EFI_ERROR (Status);
Status = PeCoffLoaderGetImageInfo (&ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Allocate Memory for the image
//
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) AllocatePages (EFI_SIZE_TO_PAGES ((UINT32) ImageContext.ImageSize));
ASSERT (ImageContext.ImageAddress != 0);
//
// Load the image to our new buffer
//
Status = PeCoffLoaderLoadImage (&ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Relocate the image in our new buffer
//
Status = PeCoffLoaderRelocateImage (&ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Flush the instruction cache so the image data is written before we execute it
//
InvalidateInstructionCacheRange ((VOID *)(UINTN)ImageContext.ImageAddress, (UINTN)ImageContext.ImageSize);
*ImageAddress = ImageContext.ImageAddress;
*ImageSize = ImageContext.ImageSize;
*EntryPoint = ImageContext.EntryPoint;
return EFI_SUCCESS;
}
/**
The ExtractSection() function processes the input section and
returns a pointer to the section contents. If the section being
extracted does not require processing (if the section
GuidedSectionHeader.Attributes has the
EFI_GUIDED_SECTION_PROCESSING_REQUIRED field cleared), then
OutputBuffer is just updated to point to the start of the
section's contents. Otherwise, *Buffer must be allocated
from PEI permanent memory.
@param This Indicates the
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI instance.
Buffer containing the input GUIDed section to be
processed. OutputBuffer OutputBuffer is
allocated from PEI permanent memory and contains
the new section stream.
@param OutputSize A pointer to a caller-allocated
UINTN in which the size of *OutputBuffer
allocation is stored. If the function
returns anything other than EFI_SUCCESS,
the value of OutputSize is undefined.
@param AuthenticationStatus A pointer to a caller-allocated
UINT32 that indicates the
authentication status of the
output buffer. If the input
section's GuidedSectionHeader.
Attributes field has the
EFI_GUIDED_SECTION_AUTH_STATUS_VALID
bit as clear,
AuthenticationStatus must return
zero. These bits reflect the
status of the extraction
operation. If the function
returns anything other than
EFI_SUCCESS, the value of
AuthenticationStatus is
undefined.
@retval EFI_SUCCESS The InputSection was
successfully processed and the
section contents were returned.
@retval EFI_OUT_OF_RESOURCES The system has insufficient
resources to process the request.
@reteval EFI_INVALID_PARAMETER The GUID in InputSection does
not match this instance of the
GUIDed Section Extraction PPI.
**/
EFI_STATUS
CustomGuidedSectionExtract (
IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This,
IN CONST VOID *InputSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize,
OUT UINT32 *AuthenticationStatus
)
{
EFI_STATUS Status;
UINT8 *ScratchBuffer;
UINT32 ScratchBufferSize;
UINT32 OutputBufferSize;
UINT16 SectionAttribute;
//
// Init local variable
//
ScratchBuffer = NULL;
//
// Call GetInfo to get the size and attribute of input guided section data.
//
Status = ExtractGuidedSectionGetInfo (
InputSection,
&OutputBufferSize,
&ScratchBufferSize,
&SectionAttribute
);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "GetInfo from guided section Failed - %r\n", Status));
return Status;
}
if (ScratchBufferSize != 0) {
//
// Allocate scratch buffer
//
ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize));
if (ScratchBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
}
if ((SectionAttribute & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) && OutputBufferSize > 0) {
//
// Allocate output buffer
//
*OutputBuffer = AllocatePages (EFI_SIZE_TO_PAGES (OutputBufferSize) + 1);
if (*OutputBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
DEBUG ((EFI_D_INFO, "Customed Guided section Memory Size required is 0x%x and address is 0x%p\n", OutputBufferSize, *OutputBuffer));
//
// *OutputBuffer still is one section. Adjust *OutputBuffer offset,
// skip EFI section header to make section data at page alignment.
//
*OutputBuffer = (VOID *)((UINT8 *) *OutputBuffer + EFI_PAGE_SIZE - sizeof (EFI_COMMON_SECTION_HEADER));
}
Status = ExtractGuidedSectionDecode (
InputSection,
OutputBuffer,
ScratchBuffer,
AuthenticationStatus
);
if (EFI_ERROR (Status)) {
//
// Decode failed
//
DEBUG ((EFI_D_ERROR, "Extract guided section Failed - %r\n", Status));
return Status;
}
*OutputSize = (UINTN) OutputBufferSize;
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
EFIAPI
Decompress (
IN CONST EFI_PEI_DECOMPRESS_PPI *This,
IN CONST EFI_COMPRESSION_SECTION *CompressionSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize
)
{
EFI_STATUS Status;
UINT8 *DstBuffer;
UINT8 *ScratchBuffer;
UINTN DstBufferSize;
UINT32 ScratchBufferSize;
EFI_COMMON_SECTION_HEADER *Section;
UINTN SectionLength;
if (CompressionSection->CommonHeader.Type != EFI_SECTION_COMPRESSION) {
ASSERT (FALSE);
return EFI_INVALID_PARAMETER;
}
Section = (EFI_COMMON_SECTION_HEADER *) CompressionSection;
SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff;
//
// This is a compression set, expand it
//
switch (CompressionSection->CompressionType) {
case EFI_STANDARD_COMPRESSION:
//
// Load EFI standard compression.
// For compressed data, decompress them to dstbuffer.
//
Status = UefiDecompressGetInfo (
(UINT8 *) ((EFI_COMPRESSION_SECTION *) Section + 1),
(UINT32) SectionLength - sizeof (EFI_COMPRESSION_SECTION),
(UINT32 *) &DstBufferSize,
&ScratchBufferSize
);
if (EFI_ERROR (Status)) {
//
// GetInfo failed
//
DEBUG ((EFI_D_ERROR, "Decompress GetInfo Failed - %r\n", Status));
return EFI_NOT_FOUND;
}
//
// Allocate scratch buffer
//
ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize));
if (ScratchBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Allocate destination buffer, extra one page for adjustment
//
DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize) + 1);
if (DstBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// DstBuffer still is one section. Adjust DstBuffer offset, skip EFI section header
// to make section data at page alignment.
//
DstBuffer = DstBuffer + EFI_PAGE_SIZE - sizeof (EFI_COMMON_SECTION_HEADER);
//
// Call decompress function
//
Status = UefiDecompress (
(CHAR8 *) ((EFI_COMPRESSION_SECTION *) Section + 1),
DstBuffer,
ScratchBuffer
);
if (EFI_ERROR (Status)) {
//
// Decompress failed
//
DEBUG ((EFI_D_ERROR, "Decompress Failed - %r\n", Status));
return EFI_NOT_FOUND;
}
break;
case EFI_NOT_COMPRESSED:
//
// Allocate destination buffer
//
DstBufferSize = CompressionSection->UncompressedLength;
DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize) + 1);
if (DstBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Adjust DstBuffer offset, skip EFI section header
// to make section data at page alignment.
//
DstBuffer = DstBuffer + EFI_PAGE_SIZE - sizeof (EFI_COMMON_SECTION_HEADER);
//
// stream is not actually compressed, just encapsulated. So just copy it.
//
CopyMem (DstBuffer, CompressionSection + 1, DstBufferSize);
break;
default:
//
// Don't support other unknown compression type.
//
ASSERT (FALSE);
return EFI_NOT_FOUND;
}
*OutputSize = DstBufferSize;
*OutputBuffer = DstBuffer;
return EFI_SUCCESS;
}
VOID
UpdateStackHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_PEI_HOB_POINTERS Hob;
Hob.Raw = GetHobList ();
while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, Hob.Raw)) != NULL) {
if (CompareGuid (&gEfiHobMemoryAllocStackGuid, &(Hob.MemoryAllocationStack->AllocDescriptor.Name))) {
//
// Build a new memory allocation HOB with old stack info with EfiConventionalMemory type
// to be reclaimed by DXE core.
//
BuildMemoryAllocationHob (
Hob.MemoryAllocationStack->AllocDescriptor.MemoryBaseAddress,
Hob.MemoryAllocationStack->AllocDescriptor.MemoryLength,
EfiConventionalMemory
);
//
// Update the BSP Stack Hob to reflect the new stack info.
//
Hob.MemoryAllocationStack->AllocDescriptor.MemoryBaseAddress = BaseAddress;
Hob.MemoryAllocationStack->AllocDescriptor.MemoryLength = Length;
break;
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
}