mirror of https://github.com/acidanthera/audk.git
1314 lines
35 KiB
C
1314 lines
35 KiB
C
/*++
|
|
|
|
Copyright (c) 2006 - 2010, Intel Corporation.
|
|
Portions copyright (c) 2008-2009 Apple Inc.
|
|
All rights reserved. This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
Module Name:
|
|
|
|
SecMain.c
|
|
|
|
Abstract:
|
|
Unix emulator of SEC phase. It's really a Posix application, but this is
|
|
Ok since all the other modules for NT32 are NOT Posix applications.
|
|
|
|
This program processes host environment variables and figures out
|
|
what the memory layout will be, how may FD's will be loaded and also
|
|
what the boot mode is.
|
|
|
|
The SEC registers a set of services with the SEC core. gPrivateDispatchTable
|
|
is a list of PPI's produced by the SEC that are availble for usage in PEI.
|
|
|
|
This code produces 128 K of temporary memory for the PEI stack by opening a
|
|
host file and mapping it directly to memory addresses.
|
|
|
|
The system.cmd script is used to set host environment variables that drive
|
|
the configuration opitons of the SEC.
|
|
|
|
--*/
|
|
|
|
#include "SecMain.h"
|
|
#include <sys/mman.h>
|
|
#include <Ppi/UnixPeiLoadFile.h>
|
|
#include <Ppi/TemporaryRamSupport.h>
|
|
#include <dlfcn.h>
|
|
|
|
#ifdef __APPLE__
|
|
#define MAP_ANONYMOUS MAP_ANON
|
|
char *gGdbWorkingFileName = NULL;
|
|
#endif
|
|
|
|
|
|
//
|
|
// Globals
|
|
//
|
|
|
|
UNIX_PEI_LOAD_FILE_PPI mSecUnixLoadFilePpi = { SecUnixPeiLoadFile };
|
|
|
|
PEI_UNIX_AUTOSCAN_PPI mSecUnixAutoScanPpi = { SecUnixPeiAutoScan };
|
|
|
|
PEI_UNIX_THUNK_PPI mSecUnixThunkPpi = { SecUnixUnixThunkAddress };
|
|
|
|
EFI_PEI_PROGRESS_CODE_PPI mSecStatusCodePpi = { SecPeiReportStatusCode };
|
|
|
|
UNIX_FWH_PPI mSecFwhInformationPpi = { SecUnixFdAddress };
|
|
|
|
TEMPORARY_RAM_SUPPORT_PPI mSecTemporaryRamSupportPpi = {SecTemporaryRamSupport};
|
|
|
|
EFI_PEI_PPI_DESCRIPTOR gPrivateDispatchTable[] = {
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI,
|
|
&gUnixPeiLoadFilePpiGuid,
|
|
&mSecUnixLoadFilePpi
|
|
},
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI,
|
|
&gPeiUnixAutoScanPpiGuid,
|
|
&mSecUnixAutoScanPpi
|
|
},
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI,
|
|
&gPeiUnixThunkPpiGuid,
|
|
&mSecUnixThunkPpi
|
|
},
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI,
|
|
&gEfiPeiStatusCodePpiGuid,
|
|
&mSecStatusCodePpi
|
|
},
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI,
|
|
&gEfiTemporaryRamSupportPpiGuid,
|
|
&mSecTemporaryRamSupportPpi
|
|
},
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
|
|
&gUnixFwhPpiGuid,
|
|
&mSecFwhInformationPpi
|
|
}
|
|
};
|
|
|
|
|
|
//
|
|
// Default information about where the FD is located.
|
|
// This array gets filled in with information from EFI_FIRMWARE_VOLUMES
|
|
// EFI_FIRMWARE_VOLUMES is a host environment variable set by system.cmd.
|
|
// The number of array elements is allocated base on parsing
|
|
// EFI_FIRMWARE_VOLUMES and the memory is never freed.
|
|
//
|
|
UINTN gFdInfoCount = 0;
|
|
UNIX_FD_INFO *gFdInfo;
|
|
|
|
//
|
|
// Array that supports seperate memory rantes.
|
|
// The memory ranges are set in system.cmd via the EFI_MEMORY_SIZE variable.
|
|
// The number of array elements is allocated base on parsing
|
|
// EFI_MEMORY_SIZE and the memory is never freed.
|
|
//
|
|
UINTN gSystemMemoryCount = 0;
|
|
UNIX_SYSTEM_MEMORY *gSystemMemory;
|
|
|
|
|
|
|
|
UINTN mImageContextModHandleArraySize = 0;
|
|
IMAGE_CONTEXT_TO_MOD_HANDLE *mImageContextModHandleArray = NULL;
|
|
|
|
|
|
VOID
|
|
EFIAPI
|
|
SecSwitchStack (
|
|
UINT32 TemporaryMemoryBase,
|
|
UINT32 PermenentMemoryBase
|
|
);
|
|
|
|
EFI_PHYSICAL_ADDRESS *
|
|
MapMemory (
|
|
INTN fd,
|
|
UINT64 length,
|
|
INTN prot,
|
|
INTN flags);
|
|
|
|
EFI_STATUS
|
|
MapFile (
|
|
IN CHAR8 *FileName,
|
|
IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
|
|
OUT UINT64 *Length
|
|
);
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecNt32PeCoffRelocateImage (
|
|
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
|
|
);
|
|
|
|
|
|
int
|
|
main (
|
|
IN int Argc,
|
|
IN char **Argv,
|
|
IN char **Envp
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Main entry point to SEC for Unix. This is a unix program
|
|
|
|
Arguments:
|
|
Argc - Number of command line arguments
|
|
Argv - Array of command line argument strings
|
|
Envp - Array of environmemt variable strings
|
|
|
|
Returns:
|
|
0 - Normal exit
|
|
1 - Abnormal exit
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS InitialStackMemory;
|
|
UINT64 InitialStackMemorySize;
|
|
UINTN Index;
|
|
UINTN Index1;
|
|
UINTN Index2;
|
|
UINTN PeiIndex;
|
|
CHAR8 *FileName;
|
|
BOOLEAN Done;
|
|
VOID *PeiCoreFile;
|
|
CHAR16 *MemorySizeStr;
|
|
CHAR16 *FirmwareVolumesStr;
|
|
UINTN *StackPointer;
|
|
|
|
setbuf(stdout, 0);
|
|
setbuf(stderr, 0);
|
|
|
|
MemorySizeStr = (CHAR16 *) PcdGetPtr (PcdUnixMemorySizeForSecMain);
|
|
FirmwareVolumesStr = (CHAR16 *) PcdGetPtr (PcdUnixFirmwareVolume);
|
|
|
|
printf ("\nEDK SEC Main UNIX Emulation Environment from www.TianoCore.org\n");
|
|
|
|
#ifdef __APPLE__
|
|
//
|
|
// We can't use dlopen on OS X, so we need a scheme to get symboles into gdb
|
|
// We need to create a temp file that contains gdb commands so we can load
|
|
// symbols when we load every PE/COFF image.
|
|
//
|
|
Index = strlen (*Argv);
|
|
gGdbWorkingFileName = malloc (Index + strlen(".gdb") + 1);
|
|
strcpy (gGdbWorkingFileName, *Argv);
|
|
strcat (gGdbWorkingFileName, ".gdb");
|
|
#endif
|
|
|
|
|
|
//
|
|
// Allocate space for gSystemMemory Array
|
|
//
|
|
gSystemMemoryCount = CountSeperatorsInString (MemorySizeStr, '!') + 1;
|
|
gSystemMemory = calloc (gSystemMemoryCount, sizeof (UNIX_SYSTEM_MEMORY));
|
|
if (gSystemMemory == NULL) {
|
|
printf ("ERROR : Can not allocate memory for system. Exiting.\n");
|
|
exit (1);
|
|
}
|
|
//
|
|
// Allocate space for gSystemMemory Array
|
|
//
|
|
gFdInfoCount = CountSeperatorsInString (FirmwareVolumesStr, '!') + 1;
|
|
gFdInfo = calloc (gFdInfoCount, sizeof (UNIX_FD_INFO));
|
|
if (gFdInfo == NULL) {
|
|
printf ("ERROR : Can not allocate memory for fd info. Exiting.\n");
|
|
exit (1);
|
|
}
|
|
//
|
|
// Setup Boot Mode. If BootModeStr == "" then BootMode = 0 (BOOT_WITH_FULL_CONFIGURATION)
|
|
//
|
|
printf (" BootMode 0x%02x\n", (unsigned int)PcdGet32 (PcdUnixBootMode));
|
|
|
|
//
|
|
// Open up a 128K file to emulate temp memory for PEI.
|
|
// on a real platform this would be SRAM, or using the cache as RAM.
|
|
// Set InitialStackMemory to zero so UnixOpenFile will allocate a new mapping
|
|
//
|
|
InitialStackMemorySize = STACK_SIZE;
|
|
InitialStackMemory = (UINTN)MapMemory(0,
|
|
(UINT32) InitialStackMemorySize,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE);
|
|
if (InitialStackMemory == 0) {
|
|
printf ("ERROR : Can not open SecStack Exiting\n");
|
|
exit (1);
|
|
}
|
|
|
|
printf (" SEC passing in %u KB of temp RAM at 0x%08lx to PEI\n",
|
|
(unsigned int)(InitialStackMemorySize / 1024),
|
|
(unsigned long)InitialStackMemory);
|
|
|
|
for (StackPointer = (UINTN*) (UINTN) InitialStackMemory;
|
|
StackPointer < (UINTN*)(UINTN)((UINTN) InitialStackMemory + (UINT64) InitialStackMemorySize);
|
|
StackPointer ++) {
|
|
*StackPointer = 0x5AA55AA5;
|
|
}
|
|
|
|
//
|
|
// Open All the firmware volumes and remember the info in the gFdInfo global
|
|
//
|
|
FileName = (CHAR8 *)malloc (StrLen (FirmwareVolumesStr) + 1);
|
|
if (FileName == NULL) {
|
|
printf ("ERROR : Can not allocate memory for firmware volume string\n");
|
|
exit (1);
|
|
}
|
|
|
|
Index2 = 0;
|
|
for (Done = FALSE, Index = 0, PeiIndex = 0, PeiCoreFile = NULL;
|
|
FirmwareVolumesStr[Index2] != 0;
|
|
Index++) {
|
|
for (Index1 = 0; (FirmwareVolumesStr[Index2] != '!') && (FirmwareVolumesStr[Index2] != 0); Index2++)
|
|
FileName[Index1++] = FirmwareVolumesStr[Index2];
|
|
if (FirmwareVolumesStr[Index2] == '!')
|
|
Index2++;
|
|
FileName[Index1] = '\0';
|
|
|
|
//
|
|
// Open the FD and remmeber where it got mapped into our processes address space
|
|
//
|
|
Status = MapFile (
|
|
FileName,
|
|
&gFdInfo[Index].Address,
|
|
&gFdInfo[Index].Size
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
printf ("ERROR : Can not open Firmware Device File %s (%x). Exiting.\n", FileName, (unsigned int)Status);
|
|
exit (1);
|
|
}
|
|
|
|
printf (" FD loaded from %s at 0x%08lx",
|
|
FileName, (unsigned long)gFdInfo[Index].Address);
|
|
|
|
if (PeiCoreFile == NULL) {
|
|
//
|
|
// Assume the beginning of the FD is an FV and look for the PEI Core.
|
|
// Load the first one we find.
|
|
//
|
|
Status = SecFfsFindPeiCore ((EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) gFdInfo[Index].Address, &PeiCoreFile);
|
|
if (!EFI_ERROR (Status)) {
|
|
PeiIndex = Index;
|
|
printf (" contains SEC Core");
|
|
}
|
|
}
|
|
|
|
printf ("\n");
|
|
}
|
|
//
|
|
// Calculate memory regions and store the information in the gSystemMemory
|
|
// global for later use. The autosizing code will use this data to
|
|
// map this memory into the SEC process memory space.
|
|
//
|
|
Index1 = 0;
|
|
Index = 0;
|
|
while (1) {
|
|
UINTN val = 0;
|
|
//
|
|
// Save the size of the memory.
|
|
//
|
|
while (MemorySizeStr[Index1] >= '0' && MemorySizeStr[Index1] <= '9') {
|
|
val = val * 10 + MemorySizeStr[Index1] - '0';
|
|
Index1++;
|
|
}
|
|
gSystemMemory[Index++].Size = val * 0x100000;
|
|
if (MemorySizeStr[Index1] == 0)
|
|
break;
|
|
Index1++;
|
|
}
|
|
|
|
printf ("\n");
|
|
|
|
//
|
|
// Hand off to PEI Core
|
|
//
|
|
SecLoadFromCore ((UINTN) InitialStackMemory, (UINTN) InitialStackMemorySize, (UINTN) gFdInfo[0].Address, PeiCoreFile);
|
|
|
|
//
|
|
// If we get here, then the PEI Core returned. This is an error as PEI should
|
|
// always hand off to DXE.
|
|
//
|
|
printf ("ERROR : PEI Core returned\n");
|
|
exit (1);
|
|
}
|
|
|
|
EFI_PHYSICAL_ADDRESS *
|
|
MapMemory (
|
|
INTN fd,
|
|
UINT64 length,
|
|
INTN prot,
|
|
INTN flags)
|
|
{
|
|
STATIC UINTN base = 0x40000000;
|
|
CONST UINTN align = (1 << 24);
|
|
VOID *res = NULL;
|
|
BOOLEAN isAligned = 0;
|
|
|
|
//
|
|
// Try to get an aligned block somewhere in the address space of this
|
|
// process.
|
|
//
|
|
while((!isAligned) && (base != 0)) {
|
|
res = mmap ((void *)base, length, prot, flags, fd, 0);
|
|
if (res == MAP_FAILED) {
|
|
return NULL;
|
|
}
|
|
if ((((UINTN)res) & ~(align-1)) == (UINTN)res) {
|
|
isAligned=1;
|
|
}
|
|
else {
|
|
munmap(res, length);
|
|
base += align;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
EFI_STATUS
|
|
MapFile (
|
|
IN CHAR8 *FileName,
|
|
IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
|
|
OUT UINT64 *Length
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Opens and memory maps a file using Unix services. If BaseAddress is non zero
|
|
the process will try and allocate the memory starting at BaseAddress.
|
|
|
|
Arguments:
|
|
FileName - The name of the file to open and map
|
|
MapSize - The amount of the file to map in bytes
|
|
CreationDisposition - The flags to pass to CreateFile(). Use to create new files for
|
|
memory emulation, and exiting files for firmware volume emulation
|
|
BaseAddress - The base address of the mapped file in the user address space.
|
|
If passed in as NULL the a new memory region is used.
|
|
If passed in as non NULL the request memory region is used for
|
|
the mapping of the file into the process space.
|
|
Length - The size of the mapped region in bytes
|
|
|
|
Returns:
|
|
EFI_SUCCESS - The file was opened and mapped.
|
|
EFI_NOT_FOUND - FileName was not found in the current directory
|
|
EFI_DEVICE_ERROR - An error occured attempting to map the opened file
|
|
|
|
--*/
|
|
{
|
|
int fd;
|
|
VOID *res;
|
|
UINTN FileSize;
|
|
|
|
fd = open (FileName, O_RDONLY);
|
|
if (fd < 0)
|
|
return EFI_NOT_FOUND;
|
|
FileSize = lseek (fd, 0, SEEK_END);
|
|
|
|
#if 0
|
|
if (IsMain)
|
|
{
|
|
/* Read entry address. */
|
|
lseek (fd, FileSize - 0x20, SEEK_SET);
|
|
if (read (fd, &EntryAddress, 4) != 4)
|
|
{
|
|
close (fd);
|
|
return EFI_DEVICE_ERROR;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
res = MapMemory(fd, FileSize, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE);
|
|
|
|
close (fd);
|
|
|
|
if (res == MAP_FAILED)
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
*Length = (UINT64) FileSize;
|
|
*BaseAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) res;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
#define BYTES_PER_RECORD 512
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecPeiReportStatusCode (
|
|
IN CONST EFI_PEI_SERVICES **PeiServices,
|
|
IN EFI_STATUS_CODE_TYPE CodeType,
|
|
IN EFI_STATUS_CODE_VALUE Value,
|
|
IN UINT32 Instance,
|
|
IN CONST EFI_GUID *CallerId,
|
|
IN CONST EFI_STATUS_CODE_DATA *Data OPTIONAL
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This routine produces the ReportStatusCode PEI service. It's passed
|
|
up to the PEI Core via a PPI. T
|
|
|
|
This code currently uses the UNIX clib printf. This does not work the same way
|
|
as the EFI Print (), as %t, %g, %s as Unicode are not supported.
|
|
|
|
Arguments:
|
|
(see EFI_PEI_REPORT_STATUS_CODE)
|
|
|
|
Returns:
|
|
EFI_SUCCESS - Always return success
|
|
|
|
--*/
|
|
// TODO: PeiServices - add argument and description to function comment
|
|
// TODO: CodeType - add argument and description to function comment
|
|
// TODO: Value - add argument and description to function comment
|
|
// TODO: Instance - add argument and description to function comment
|
|
// TODO: CallerId - add argument and description to function comment
|
|
// TODO: Data - add argument and description to function comment
|
|
{
|
|
CHAR8 *Format;
|
|
BASE_LIST Marker;
|
|
CHAR8 PrintBuffer[BYTES_PER_RECORD * 2];
|
|
CHAR8 *Filename;
|
|
CHAR8 *Description;
|
|
UINT32 LineNumber;
|
|
UINT32 ErrorLevel;
|
|
|
|
|
|
if (Data == NULL) {
|
|
} else if (ReportStatusCodeExtractAssertInfo (CodeType, Value, Data, &Filename, &Description, &LineNumber)) {
|
|
//
|
|
// Processes ASSERT ()
|
|
//
|
|
printf ("ASSERT %s(%d): %s\n", Filename, (int)LineNumber, Description);
|
|
|
|
} else if (ReportStatusCodeExtractDebugInfo (Data, &ErrorLevel, &Marker, &Format)) {
|
|
//
|
|
// Process DEBUG () macro
|
|
//
|
|
AsciiBSPrint (PrintBuffer, BYTES_PER_RECORD, Format, Marker);
|
|
printf ("%s", PrintBuffer);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Transfers control to a function starting with a new stack.
|
|
|
|
Transfers control to the function specified by EntryPoint using the new stack
|
|
specified by NewStack and passing in the parameters specified by Context1 and
|
|
Context2. Context1 and Context2 are optional and may be NULL. The function
|
|
EntryPoint must never return.
|
|
|
|
If EntryPoint is NULL, then ASSERT().
|
|
If NewStack is NULL, then ASSERT().
|
|
|
|
@param EntryPoint A pointer to function to call with the new stack.
|
|
@param Context1 A pointer to the context to pass into the EntryPoint
|
|
function.
|
|
@param Context2 A pointer to the context to pass into the EntryPoint
|
|
function.
|
|
@param NewStack A pointer to the new stack to use for the EntryPoint
|
|
function.
|
|
@param NewBsp A pointer to the new BSP for the EntryPoint on IPF. It's
|
|
Reserved on other architectures.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
PeiSwitchStacks (
|
|
IN SWITCH_STACK_ENTRY_POINT EntryPoint,
|
|
IN VOID *Context1, OPTIONAL
|
|
IN VOID *Context2, OPTIONAL
|
|
IN VOID *Context3, OPTIONAL
|
|
IN VOID *NewStack
|
|
)
|
|
{
|
|
BASE_LIBRARY_JUMP_BUFFER JumpBuffer;
|
|
|
|
ASSERT (EntryPoint != NULL);
|
|
ASSERT (NewStack != NULL);
|
|
|
|
//
|
|
// Stack should be aligned with CPU_STACK_ALIGNMENT
|
|
//
|
|
ASSERT (((UINTN)NewStack & (CPU_STACK_ALIGNMENT - 1)) == 0);
|
|
|
|
JumpBuffer.Eip = (UINTN)EntryPoint;
|
|
JumpBuffer.Esp = (UINTN)NewStack - sizeof (VOID*);
|
|
JumpBuffer.Esp -= sizeof (Context1) + sizeof (Context2) + sizeof(Context3);
|
|
((VOID**)JumpBuffer.Esp)[1] = Context1;
|
|
((VOID**)JumpBuffer.Esp)[2] = Context2;
|
|
((VOID**)JumpBuffer.Esp)[3] = Context3;
|
|
|
|
LongJump (&JumpBuffer, (UINTN)-1);
|
|
|
|
|
|
//
|
|
// InternalSwitchStack () will never return
|
|
//
|
|
ASSERT (FALSE);
|
|
}
|
|
|
|
VOID
|
|
SecLoadFromCore (
|
|
IN UINTN LargestRegion,
|
|
IN UINTN LargestRegionSize,
|
|
IN UINTN BootFirmwareVolumeBase,
|
|
IN VOID *PeiCorePe32File
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
This is the service to load the PEI Core from the Firmware Volume
|
|
|
|
Arguments:
|
|
LargestRegion - Memory to use for PEI.
|
|
LargestRegionSize - Size of Memory to use for PEI
|
|
BootFirmwareVolumeBase - Start of the Boot FV
|
|
PeiCorePe32File - PEI Core PE32
|
|
|
|
Returns:
|
|
Success means control is transfered and thus we should never return
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS TopOfMemory;
|
|
VOID *TopOfStack;
|
|
UINT64 PeiCoreSize;
|
|
EFI_PHYSICAL_ADDRESS PeiCoreEntryPoint;
|
|
EFI_PHYSICAL_ADDRESS PeiImageAddress;
|
|
EFI_SEC_PEI_HAND_OFF *SecCoreData;
|
|
UINTN PeiStackSize;
|
|
|
|
//
|
|
// Compute Top Of Memory for Stack and PEI Core Allocations
|
|
//
|
|
TopOfMemory = LargestRegion + LargestRegionSize;
|
|
PeiStackSize = (UINTN)RShiftU64((UINT64)STACK_SIZE,1);
|
|
|
|
//
|
|
// |-----------| <---- TemporaryRamBase + TemporaryRamSize
|
|
// | Heap |
|
|
// | |
|
|
// |-----------| <---- StackBase / PeiTemporaryMemoryBase
|
|
// | |
|
|
// | Stack |
|
|
// |-----------| <---- TemporaryRamBase
|
|
//
|
|
TopOfStack = (VOID *)(LargestRegion + PeiStackSize);
|
|
TopOfMemory = LargestRegion + PeiStackSize;
|
|
|
|
//
|
|
// Reservet space for storing PeiCore's parament in stack.
|
|
//
|
|
TopOfStack = (VOID *)((UINTN)TopOfStack - sizeof (EFI_SEC_PEI_HAND_OFF) - CPU_STACK_ALIGNMENT);
|
|
TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
|
|
|
|
|
|
//
|
|
// Bind this information into the SEC hand-off state
|
|
//
|
|
SecCoreData = (EFI_SEC_PEI_HAND_OFF*)(UINTN) TopOfStack;
|
|
SecCoreData->DataSize = sizeof(EFI_SEC_PEI_HAND_OFF);
|
|
SecCoreData->BootFirmwareVolumeBase = (VOID*)BootFirmwareVolumeBase;
|
|
SecCoreData->BootFirmwareVolumeSize = PcdGet32 (PcdUnixFirmwareFdSize);
|
|
SecCoreData->TemporaryRamBase = (VOID*)(UINTN)LargestRegion;
|
|
SecCoreData->TemporaryRamSize = STACK_SIZE;
|
|
SecCoreData->StackBase = SecCoreData->TemporaryRamBase;
|
|
SecCoreData->StackSize = PeiStackSize;
|
|
SecCoreData->PeiTemporaryRamBase = (VOID*) ((UINTN) SecCoreData->TemporaryRamBase + PeiStackSize);
|
|
SecCoreData->PeiTemporaryRamSize = STACK_SIZE - PeiStackSize;
|
|
|
|
//
|
|
// Load the PEI Core from a Firmware Volume
|
|
//
|
|
Status = SecUnixPeiLoadFile (
|
|
PeiCorePe32File,
|
|
&PeiImageAddress,
|
|
&PeiCoreSize,
|
|
&PeiCoreEntryPoint
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return ;
|
|
}
|
|
|
|
//
|
|
// Transfer control to the PEI Core
|
|
//
|
|
PeiSwitchStacks (
|
|
(SWITCH_STACK_ENTRY_POINT) (UINTN) PeiCoreEntryPoint,
|
|
SecCoreData,
|
|
(VOID *) (UINTN) ((EFI_PEI_PPI_DESCRIPTOR *) &gPrivateDispatchTable),
|
|
NULL,
|
|
TopOfStack
|
|
);
|
|
//
|
|
// If we get here, then the PEI Core returned. This is an error
|
|
//
|
|
return ;
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecUnixPeiAutoScan (
|
|
IN UINTN Index,
|
|
OUT EFI_PHYSICAL_ADDRESS *MemoryBase,
|
|
OUT UINT64 *MemorySize
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
This service is called from Index == 0 until it returns EFI_UNSUPPORTED.
|
|
It allows discontiguous memory regions to be supported by the emulator.
|
|
It uses gSystemMemory[] and gSystemMemoryCount that were created by
|
|
parsing the host environment variable EFI_MEMORY_SIZE.
|
|
The size comes from the varaible and the address comes from the call to
|
|
UnixOpenFile.
|
|
|
|
Arguments:
|
|
Index - Which memory region to use
|
|
MemoryBase - Return Base address of memory region
|
|
MemorySize - Return size in bytes of the memory region
|
|
|
|
Returns:
|
|
EFI_SUCCESS - If memory region was mapped
|
|
EFI_UNSUPPORTED - If Index is not supported
|
|
|
|
--*/
|
|
{
|
|
void *res;
|
|
|
|
if (Index >= gSystemMemoryCount) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
*MemoryBase = 0;
|
|
res = MapMemory(0, gSystemMemory[Index].Size,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC,
|
|
MAP_PRIVATE | MAP_ANONYMOUS);
|
|
if (res == MAP_FAILED)
|
|
return EFI_DEVICE_ERROR;
|
|
*MemorySize = gSystemMemory[Index].Size;
|
|
*MemoryBase = (UINTN)res;
|
|
gSystemMemory[Index].Memory = *MemoryBase;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
VOID *
|
|
EFIAPI
|
|
SecUnixUnixThunkAddress (
|
|
VOID
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Since the SEC is the only Unix program in stack it must export
|
|
an interface to do POSIX calls. gUnix is initailized in UnixThunk.c.
|
|
|
|
Arguments:
|
|
InterfaceSize - sizeof (EFI_WIN_NT_THUNK_PROTOCOL);
|
|
InterfaceBase - Address of the gUnix global
|
|
|
|
Returns:
|
|
EFI_SUCCESS - Data returned
|
|
|
|
--*/
|
|
{
|
|
return gUnix;
|
|
}
|
|
|
|
|
|
EFI_STATUS
|
|
SecUnixPeiLoadFile (
|
|
IN VOID *Pe32Data,
|
|
OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
|
|
OUT UINT64 *ImageSize,
|
|
OUT EFI_PHYSICAL_ADDRESS *EntryPoint
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Loads and relocates a PE/COFF image into memory.
|
|
|
|
Arguments:
|
|
Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated
|
|
ImageAddress - The base address of the relocated PE/COFF image
|
|
ImageSize - The size of the relocated PE/COFF image
|
|
EntryPoint - The entry point of the relocated PE/COFF image
|
|
|
|
Returns:
|
|
EFI_SUCCESS - The file was loaded and relocated
|
|
EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
|
|
|
|
ZeroMem (&ImageContext, sizeof (ImageContext));
|
|
ImageContext.Handle = Pe32Data;
|
|
|
|
ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) SecImageRead;
|
|
|
|
Status = PeCoffLoaderGetImageInfo (&ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// Allocate space in UNIX (not emulator) memory. Extra space is for alignment
|
|
//
|
|
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) malloc ((UINTN) (ImageContext.ImageSize + (ImageContext.SectionAlignment * 2)));
|
|
if (ImageContext.ImageAddress == 0) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
//
|
|
// Align buffer on section boundry
|
|
//
|
|
ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
|
|
ImageContext.ImageAddress &= ~(ImageContext.SectionAlignment - 1);
|
|
|
|
|
|
Status = PeCoffLoaderLoadImage (&ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
Status = PeCoffLoaderRelocateImage (&ImageContext);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
|
|
SecPeCoffRelocateImageExtraAction (&ImageContext);
|
|
|
|
//
|
|
// BugBug: Flush Instruction Cache Here when CPU Lib is ready
|
|
//
|
|
|
|
*ImageAddress = ImageContext.ImageAddress;
|
|
*ImageSize = ImageContext.ImageSize;
|
|
*EntryPoint = ImageContext.EntryPoint;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
RETURN_STATUS
|
|
EFIAPI
|
|
SecPeCoffGetEntryPoint (
|
|
IN VOID *Pe32Data,
|
|
IN OUT VOID **EntryPoint
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS ImageAddress;
|
|
UINT64 ImageSize;
|
|
EFI_PHYSICAL_ADDRESS PhysEntryPoint;
|
|
|
|
Status = SecUnixPeiLoadFile (Pe32Data, &ImageAddress, &ImageSize, &PhysEntryPoint);
|
|
|
|
*EntryPoint = (VOID *)(UINTN)PhysEntryPoint;
|
|
return Status;
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecUnixFdAddress (
|
|
IN UINTN Index,
|
|
IN OUT EFI_PHYSICAL_ADDRESS *FdBase,
|
|
IN OUT UINT64 *FdSize,
|
|
IN OUT EFI_PHYSICAL_ADDRESS *FixUp
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Return the FD Size and base address. Since the FD is loaded from a
|
|
file into host memory only the SEC will know it's address.
|
|
|
|
Arguments:
|
|
Index - Which FD, starts at zero.
|
|
FdSize - Size of the FD in bytes
|
|
FdBase - Start address of the FD. Assume it points to an FV Header
|
|
FixUp - Difference between actual FD address and build address
|
|
|
|
Returns:
|
|
EFI_SUCCESS - Return the Base address and size of the FV
|
|
EFI_UNSUPPORTED - Index does nto map to an FD in the system
|
|
|
|
--*/
|
|
{
|
|
if (Index >= gFdInfoCount) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
*FdBase = gFdInfo[Index].Address;
|
|
*FdSize = gFdInfo[Index].Size;
|
|
*FixUp = 0;
|
|
|
|
if (*FdBase == 0 && *FdSize == 0) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (Index == 0) {
|
|
//
|
|
// FD 0 has XIP code and well known PCD values
|
|
// If the memory buffer could not be allocated at the FD build address
|
|
// the Fixup is the difference.
|
|
//
|
|
*FixUp = *FdBase - PcdGet32 (PcdUnixFdBaseAddress);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecImageRead (
|
|
IN VOID *FileHandle,
|
|
IN UINTN FileOffset,
|
|
IN OUT UINTN *ReadSize,
|
|
OUT VOID *Buffer
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file
|
|
|
|
Arguments:
|
|
FileHandle - The handle to the PE/COFF file
|
|
FileOffset - The offset, in bytes, into the file to read
|
|
ReadSize - The number of bytes to read from the file starting at FileOffset
|
|
Buffer - A pointer to the buffer to read the data into.
|
|
|
|
Returns:
|
|
EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset
|
|
|
|
--*/
|
|
{
|
|
CHAR8 *Destination8;
|
|
CHAR8 *Source8;
|
|
UINTN Length;
|
|
|
|
Destination8 = Buffer;
|
|
Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset);
|
|
Length = *ReadSize;
|
|
while (Length--) {
|
|
*(Destination8++) = *(Source8++);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
UINTN
|
|
CountSeperatorsInString (
|
|
IN const CHAR16 *String,
|
|
IN CHAR16 Seperator
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Count the number of seperators in String
|
|
|
|
Arguments:
|
|
String - String to process
|
|
Seperator - Item to count
|
|
|
|
Returns:
|
|
Number of Seperator in String
|
|
|
|
--*/
|
|
{
|
|
UINTN Count;
|
|
|
|
for (Count = 0; *String != '\0'; String++) {
|
|
if (*String == Seperator) {
|
|
Count++;
|
|
}
|
|
}
|
|
|
|
return Count;
|
|
}
|
|
|
|
|
|
EFI_STATUS
|
|
AddHandle (
|
|
IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext,
|
|
IN VOID *ModHandle
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Store the ModHandle in an array indexed by the Pdb File name.
|
|
The ModHandle is needed to unload the image.
|
|
|
|
Arguments:
|
|
ImageContext - Input data returned from PE Laoder Library. Used to find the
|
|
.PDB file name of the PE Image.
|
|
ModHandle - Returned from LoadLibraryEx() and stored for call to
|
|
FreeLibrary().
|
|
|
|
Returns:
|
|
EFI_SUCCESS - ModHandle was stored.
|
|
|
|
--*/
|
|
{
|
|
UINTN Index;
|
|
IMAGE_CONTEXT_TO_MOD_HANDLE *Array;
|
|
UINTN PreviousSize;
|
|
|
|
|
|
Array = mImageContextModHandleArray;
|
|
for (Index = 0; Index < mImageContextModHandleArraySize; Index++, Array++) {
|
|
if (Array->ImageContext == NULL) {
|
|
//
|
|
// Make a copy of the stirng and store the ModHandle
|
|
//
|
|
Array->ImageContext = ImageContext;
|
|
Array->ModHandle = ModHandle;
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
//
|
|
// No free space in mImageContextModHandleArray so grow it by
|
|
// IMAGE_CONTEXT_TO_MOD_HANDLE entires. realloc will
|
|
// copy the old values to the new locaiton. But it does
|
|
// not zero the new memory area.
|
|
//
|
|
PreviousSize = mImageContextModHandleArraySize * sizeof (IMAGE_CONTEXT_TO_MOD_HANDLE);
|
|
mImageContextModHandleArraySize += MAX_IMAGE_CONTEXT_TO_MOD_HANDLE_ARRAY_SIZE;
|
|
|
|
mImageContextModHandleArray = realloc (mImageContextModHandleArray, mImageContextModHandleArraySize * sizeof (IMAGE_CONTEXT_TO_MOD_HANDLE));
|
|
if (mImageContextModHandleArray == NULL) {
|
|
ASSERT (FALSE);
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
memset (mImageContextModHandleArray + PreviousSize, 0, MAX_IMAGE_CONTEXT_TO_MOD_HANDLE_ARRAY_SIZE * sizeof (IMAGE_CONTEXT_TO_MOD_HANDLE));
|
|
|
|
return AddHandle (ImageContext, ModHandle);
|
|
}
|
|
|
|
|
|
VOID *
|
|
RemoveHandle (
|
|
IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
Return the ModHandle and delete the entry in the array.
|
|
|
|
Arguments:
|
|
ImageContext - Input data returned from PE Laoder Library. Used to find the
|
|
.PDB file name of the PE Image.
|
|
|
|
Returns:
|
|
ModHandle - ModHandle assoicated with ImageContext is returned
|
|
NULL - No ModHandle associated with ImageContext
|
|
|
|
--*/
|
|
{
|
|
UINTN Index;
|
|
IMAGE_CONTEXT_TO_MOD_HANDLE *Array;
|
|
|
|
if (ImageContext->PdbPointer == NULL) {
|
|
//
|
|
// If no PDB pointer there is no ModHandle so return NULL
|
|
//
|
|
return NULL;
|
|
}
|
|
|
|
Array = mImageContextModHandleArray;
|
|
for (Index = 0; Index < mImageContextModHandleArraySize; Index++, Array++) {
|
|
if ((Array->ImageContext == ImageContext)) {
|
|
//
|
|
// If you find a match return it and delete the entry
|
|
//
|
|
Array->ImageContext = NULL;
|
|
return Array->ModHandle;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
|
|
//
|
|
// Target for gdb breakpoint in a script that uses gGdbWorkingFileName to source a
|
|
// add-symbol-file command. Hey what can you say scripting in gdb is not that great....
|
|
//
|
|
// Put .gdbinit in the CWD where you do gdb SecMain.dll for source level debug
|
|
//
|
|
// cat .gdbinit
|
|
// b SecGdbScriptBreak
|
|
// command
|
|
// silent
|
|
// source SecMain.dll.gdb
|
|
// c
|
|
// end
|
|
//
|
|
VOID
|
|
SecGdbScriptBreak (
|
|
VOID
|
|
)
|
|
{
|
|
}
|
|
|
|
VOID
|
|
SecUnixLoaderBreak (
|
|
VOID
|
|
)
|
|
{
|
|
}
|
|
|
|
BOOLEAN
|
|
IsPdbFile (
|
|
IN CHAR8 *PdbFileName
|
|
)
|
|
{
|
|
UINTN Len;
|
|
|
|
if (PdbFileName == NULL) {
|
|
return FALSE;
|
|
}
|
|
|
|
Len = strlen (PdbFileName);
|
|
if ((Len < 5)|| (PdbFileName[Len - 4] != '.')) {
|
|
return FALSE;
|
|
}
|
|
|
|
if ((PdbFileName[Len - 3] == 'P' || PdbFileName[Len - 3] == 'p') &&
|
|
(PdbFileName[Len - 2] == 'D' || PdbFileName[Len - 2] == 'd') &&
|
|
(PdbFileName[Len - 1] == 'B' || PdbFileName[Len - 1] == 'b')) {
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
#define MAX_SPRINT_BUFFER_SIZE 0x200
|
|
|
|
void
|
|
PrintLoadAddress (
|
|
IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
|
|
)
|
|
{
|
|
fprintf (stderr,
|
|
"0x%08lx Loading %s with entry point 0x%08lx\n",
|
|
(unsigned long)ImageContext->ImageAddress + ImageContext->SizeOfHeaders,
|
|
ImageContext->PdbPointer,
|
|
(unsigned long)ImageContext->EntryPoint
|
|
);
|
|
|
|
// Keep output synced up
|
|
fflush (stderr);
|
|
}
|
|
|
|
|
|
VOID
|
|
EFIAPI
|
|
SecPeCoffRelocateImageExtraAction (
|
|
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
|
|
)
|
|
{
|
|
|
|
#ifdef __APPLE__
|
|
PrintLoadAddress (ImageContext);
|
|
|
|
//
|
|
// In mach-o (OS X executable) dlopen() can only load files in the MH_DYLIB of MH_BUNDLE format.
|
|
// To convert to PE/COFF we need to construct a mach-o with the MH_PRELOAD format. We create
|
|
// .dSYM files for the PE/COFF images that can be used by gdb for source level debugging.
|
|
//
|
|
FILE *GdbTempFile;
|
|
|
|
//
|
|
// In the Mach-O to PE/COFF conversion the size of the PE/COFF headers is not accounted for.
|
|
// Thus we need to skip over the PE/COFF header when giving load addresses for our symbol table.
|
|
//
|
|
if (ImageContext->PdbPointer != NULL && !IsPdbFile (ImageContext->PdbPointer)) {
|
|
//
|
|
// Now we have a database of the images that are currently loaded
|
|
//
|
|
|
|
//
|
|
// 'symbol-file' will clear out currnet symbol mappings in gdb.
|
|
// you can do a 'add-symbol-file filename address' for every image we loaded to get source
|
|
// level debug in gdb. Note Sec, being a true application will work differently.
|
|
//
|
|
// We add the PE/COFF header size into the image as the mach-O does not have a header in
|
|
// loaded into system memory.
|
|
//
|
|
// This gives us a data base of gdb commands and after something is unloaded that entry will be
|
|
// removed. We don't yet have the scheme of how to comunicate with gdb, but we have the
|
|
// data base of info ready to roll.
|
|
//
|
|
// We could use qXfer:libraries:read, but OS X GDB does not currently support it.
|
|
// <library-list>
|
|
// <library name="/lib/libc.so.6"> // ImageContext->PdbPointer
|
|
// <segment address="0x10000000"/> // ImageContext->ImageAddress + ImageContext->SizeOfHeaders
|
|
// </library>
|
|
// </library-list>
|
|
//
|
|
|
|
//
|
|
// Write the file we need for the gdb script
|
|
//
|
|
GdbTempFile = fopen (gGdbWorkingFileName, "w");
|
|
if (GdbTempFile != NULL) {
|
|
fprintf (GdbTempFile, "add-symbol-file %s 0x%x\n", ImageContext->PdbPointer, (UINTN)(ImageContext->ImageAddress + ImageContext->SizeOfHeaders));
|
|
fclose (GdbTempFile);
|
|
|
|
//
|
|
// Target for gdb breakpoint in a script that uses gGdbWorkingFileName to set a breakpoint.
|
|
// Hey what can you say scripting in gdb is not that great....
|
|
//
|
|
SecGdbScriptBreak ();
|
|
}
|
|
|
|
AddHandle (ImageContext, ImageContext->PdbPointer);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
void *Handle = NULL;
|
|
void *Entry = NULL;
|
|
|
|
fprintf (stderr,
|
|
"Loading %s 0x%08lx - entry point 0x%08lx\n",
|
|
ImageContext->PdbPointer,
|
|
(unsigned long)ImageContext->ImageAddress,
|
|
(unsigned long)ImageContext->EntryPoint);
|
|
|
|
Handle = dlopen (ImageContext->PdbPointer, RTLD_NOW);
|
|
|
|
if (Handle) {
|
|
Entry = dlsym (Handle, "_ModuleEntryPoint");
|
|
} else {
|
|
printf("%s\n", dlerror());
|
|
}
|
|
|
|
if (Entry != NULL) {
|
|
ImageContext->EntryPoint = (UINTN)Entry;
|
|
printf("Change %s Entrypoint to :0x%08lx\n", ImageContext->PdbPointer, (unsigned long)Entry);
|
|
}
|
|
|
|
SecUnixLoaderBreak ();
|
|
|
|
#endif
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
VOID
|
|
EFIAPI
|
|
SecPeCoffLoaderUnloadImageExtraAction (
|
|
IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
|
|
)
|
|
{
|
|
VOID *Handle;
|
|
|
|
Handle = RemoveHandle (ImageContext);
|
|
|
|
#ifdef __APPLE__
|
|
FILE *GdbTempFile;
|
|
|
|
if (Handle != NULL) {
|
|
//
|
|
// Need to skip .PDB files created from VC++
|
|
//
|
|
if (!IsPdbFile (ImageContext->PdbPointer)) {
|
|
//
|
|
// Write the file we need for the gdb script
|
|
//
|
|
GdbTempFile = fopen (gGdbWorkingFileName, "w");
|
|
if (GdbTempFile != NULL) {
|
|
fprintf (GdbTempFile, "remove-symbol-file %s\n", ImageContext->PdbPointer);
|
|
fclose (GdbTempFile);
|
|
|
|
//
|
|
// Target for gdb breakpoint in a script that uses gGdbWorkingFileName to set a breakpoint.
|
|
// Hey what can you say scripting in gdb is not that great....
|
|
//
|
|
SecGdbScriptBreak ();
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
//
|
|
// Don't want to confuse gdb with symbols for something that got unloaded
|
|
//
|
|
if (Handle != NULL) {
|
|
dlclose (Handle);
|
|
}
|
|
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
VOID
|
|
ModuleEntryPoint (
|
|
VOID
|
|
)
|
|
{
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
SecTemporaryRamSupport (
|
|
IN CONST EFI_PEI_SERVICES **PeiServices,
|
|
IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
|
|
IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
|
|
IN UINTN CopySize
|
|
)
|
|
{
|
|
//
|
|
// Migrate the whole temporary memory to permenent memory.
|
|
//
|
|
CopyMem (
|
|
(VOID*)(UINTN)PermanentMemoryBase,
|
|
(VOID*)(UINTN)TemporaryMemoryBase,
|
|
CopySize
|
|
);
|
|
|
|
//
|
|
// SecSwitchStack function must be invoked after the memory migration
|
|
// immediatly, also we need fixup the stack change caused by new call into
|
|
// permenent memory.
|
|
//
|
|
SecSwitchStack (
|
|
(UINT32) TemporaryMemoryBase,
|
|
(UINT32) PermanentMemoryBase
|
|
);
|
|
|
|
//
|
|
// We need *not* fix the return address because currently,
|
|
// The PeiCore is excuted in flash.
|
|
//
|
|
|
|
//
|
|
// Simulate to invalid temporary memory, terminate temporary memory
|
|
//
|
|
//ZeroMem ((VOID*)(UINTN)TemporaryMemoryBase, CopySize);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|