14132666fa
If MDEPKG_NDEBUG is defined, then debug and assert related macros wrapped by it are mapped to NULL implementations. Therefore, add MDEPKG_NDEBUG flags for release builds of DynamicTablesPkg. Signed-off-by: Sami Mujawar <sami.mujawar@arm.com> Reviewed-by: Alexei Fedorov <Alexei.Fedorov@arm.com> |
||
---|---|---|
.. | ||
Drivers | ||
Include | ||
Library | ||
DynamicTables.dsc.inc | ||
DynamicTables.fdf.inc | ||
DynamicTablesPkg.ci.yaml | ||
DynamicTablesPkg.dec | ||
DynamicTablesPkg.dsc | ||
Readme.md |
Readme.md
Dynamic Tables Framework
Dynamic Tables Framework provides mechanisms to reduce the amount of effort required in porting firmware to new platforms. The aim is to provide an implementation capable of generating the firmware tables from an external source. This is potentially a management node, either local or remote, or, where suitable, a file that might be generated from the system construction. This initial release does not fully implement that - the configuration is held in local UEFI modules.
Feature Summary
The dynamic tables framework is designed to generate standardised firmware tables that describe the hardware information at run-time. A goal of standardised firmware is to have a common firmware for a platform capable of booting both Windows and Linux operating systems.
Traditionally the firmware tables are handcrafted using ACPI Source Language (ASL), Table Definition Language (TDL) and C-code. This approach can be error prone and involves time consuming debugging. In addition, it may be desirable to configure platform hardware at runtime such as: configuring the number of cores available for use by the OS, or turning SoC features ON or OFF.
The dynamic tables framework simplifies this by providing a set of standard table generators, that are implemented as libraries. These generators query a platform specific component, the 'Configuration Manager', to collate the information required for generating the tables at run-time.
The framework also provides the ability to implement custom/OEM generators; thereby facilitating support for custom tables. The custom generators can also utilize the existing standard generators and override any functionality if needed.
The framework currently implements a set of standard ACPI table generators for ARM architecture, that can generate Server Base Boot Requirement (SBBR) compliant tables. Although, the set of standard generators implement the functionality required for ARM architecture; the framework is extensible, and support for other architectures can be added easily.
The framework currently supports the following table generators for ARM:
- DBG2 - Debug Port Table 2
- DSDT - Differentiated system description table. This is essentially a RAW table generator.
- FADT - Fixed ACPI Description Table
- GTDT - Generic Timer Description Table
- IORT - IO Remapping Table
- MADT - Multiple APIC Description Table
- MCFG - PCI Express memory mapped configuration space base address Description Table
- SPCR - Serial Port Console Redirection Table
- SSDT - Secondary System Description Table. This is essentially a RAW table generator.
Roadmap
The current implementation of the Configuration Manager populates the platform information statically as a C structure. Further enhancements to introduce runtime loading of platform information from a platform information file is planned.
Also support for generating SMBIOS tables is planned and will be added subsequently.
Supported Platforms
- Juno
- FVP Models
Build Instructions
-
Set path for the iASL compiler with support for generating a C header file as output.
-
Set PACKAGES_PATH to point to the locations of the following repositories:
Example:
set PACKAGES_PATH=%CD%\edk2;%CD%\edk2-platforms;
or
export PACKAGES_PATH=$PWD/edk2:$PWD/edk2-platforms
- To enable Dynamic tables framework the 'DYNAMIC_TABLES_FRAMEWORK' option must be defined. This can be passed as a command line parameter to the edk2 build system.
Example:
build -a AARCH64 -p Platform\ARM\JunoPkg\ArmJuno.dsc -t GCC5 -D DYNAMIC_TABLES_FRAMEWORK
or
build -a AARCH64 -p Platform\ARM\VExpressPkg\ArmVExpress-FVP-AArch64.dsc -t GCC5 -D DYNAMIC_TABLES_FRAMEWORK
Prerequisites
Ensure that the latest ACPICA iASL compiler is used for building Dynamic Tables Framework. Dynamic Tables Framework has been tested using the following iASL compiler version: Version 20200717*, dated 17 July, 2020.
Running CI builds locally
The TianoCore EDKII project has introduced Core CI infrastructure using TianoCore EDKII Tools PIP modules:
The instructions to setup the CI environment are in 'edk2\.pytool\Readme.md'
Building DynamicTablesPkg with Pytools
-
[Optional] Create a Python Virtual Environment - generally once per workspace
python -m venv <name of virtual environment> e.g. python -m venv edk2-ci
-
[Optional] Activate Virtual Environment - each time new shell/command window is opened
<name of virtual environment>/Scripts/activate e.g. On a windows host PC run: edk2-ci\Scripts\activate.bat
-
Install Pytools - generally once per virtual env or whenever pip-requirements.txt changes
pip install --upgrade -r pip-requirements.txt
-
Initialize & Update Submodules - only when submodules updated
stuart_setup -c .pytool/CISettings.py TOOL_CHAIN_TAG=<TOOL_CHAIN_TAG> -a <TARGET_ARCH> e.g. stuart_setup -c .pytool/CISettings.py TOOL_CHAIN_TAG=GCC5
-
Initialize & Update Dependencies - only as needed when ext_deps change
stuart_update -c .pytool/CISettings.py TOOL_CHAIN_TAG=<TOOL_CHAIN_TAG> -a <TARGET_ARCH> e.g. stuart_update -c .pytool/CISettings.py TOOL_CHAIN_TAG=GCC5
-
Compile the basetools if necessary - only when basetools C source files change
python BaseTools/Edk2ToolsBuild.py -t <ToolChainTag>
-
Compile DynamicTablesPkg
stuart_build-c .pytool/CISettings.py TOOL_CHAIN_TAG=<TOOL_CHAIN_TAG> -a <TARGET_ARCH> e.g. stuart_ci_build -c .pytool/CISettings.py TOOL_CHAIN_TAG=GCC5 -p DynamicTablesPkg -a AARCH64 --verbose
- use
stuart_build -c .pytool/CISettings.py -h
option to see help on additional options.
- use
Documentation
Refer to the following presentation from UEFI Plugfest Seattle 2018: