audk/OvmfPkg/AcpiS3SaveDxe/AcpiS3Save.c

559 lines
16 KiB
C

/** @file
This is a replacement for the ACPI S3 Save protocol.
The ACPI S3 Save protocol used to be defined in the S3 boot path
specification 0.9. Instead, the same functionality is now hooked to the
End-of-Dxe event.
Copyright (c) 2014-2015, Red Hat, Inc.<BR>
Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions
of the BSD License which accompanies this distribution. The
full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <PiDxe.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#include <Library/HobLib.h>
#include <Library/LockBoxLib.h>
#include <Library/PcdLib.h>
#include <Library/DebugLib.h>
#include <Library/QemuFwCfgLib.h>
#include <Guid/AcpiVariableCompatibility.h>
#include <Guid/AcpiS3Context.h>
#include <Guid/Acpi.h>
#include <Guid/EventGroup.h>
#include <Protocol/LockBox.h>
#include <IndustryStandard/Acpi.h>
EFI_GUID mAcpiS3IdtrProfileGuid = {
0xdea652b0, 0xd587, 0x4c54, { 0xb5, 0xb4, 0xc6, 0x82, 0xe7, 0xa0, 0xaa, 0x3d }
};
/**
Allocate memory below 4G memory address.
This function allocates memory below 4G memory address.
@param MemoryType Memory type of memory to allocate.
@param Size Size of memory to allocate.
@return Allocated address for output.
**/
VOID*
AllocateMemoryBelow4G (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Size
)
{
UINTN Pages;
EFI_PHYSICAL_ADDRESS Address;
EFI_STATUS Status;
VOID* Buffer;
Pages = EFI_SIZE_TO_PAGES (Size);
Address = 0xffffffff;
Status = gBS->AllocatePages (
AllocateMaxAddress,
MemoryType,
Pages,
&Address
);
ASSERT_EFI_ERROR (Status);
Buffer = (VOID *) (UINTN) Address;
ZeroMem (Buffer, Size);
return Buffer;
}
/**
This function scan ACPI table in RSDT.
@param Rsdt ACPI RSDT
@param Signature ACPI table signature
@return ACPI table
**/
VOID *
ScanTableInRSDT (
IN EFI_ACPI_DESCRIPTION_HEADER *Rsdt,
IN UINT32 Signature
)
{
UINTN Index;
UINT32 EntryCount;
UINT32 *EntryPtr;
EFI_ACPI_DESCRIPTION_HEADER *Table;
if (Rsdt == NULL) {
return NULL;
}
EntryCount = (Rsdt->Length - sizeof (EFI_ACPI_DESCRIPTION_HEADER)) / sizeof(UINT32);
EntryPtr = (UINT32 *)(Rsdt + 1);
for (Index = 0; Index < EntryCount; Index ++, EntryPtr ++) {
Table = (EFI_ACPI_DESCRIPTION_HEADER *)((UINTN)(*EntryPtr));
if (Table->Signature == Signature) {
return Table;
}
}
return NULL;
}
/**
This function scan ACPI table in XSDT.
@param Xsdt ACPI XSDT
@param Signature ACPI table signature
@return ACPI table
**/
VOID *
ScanTableInXSDT (
IN EFI_ACPI_DESCRIPTION_HEADER *Xsdt,
IN UINT32 Signature
)
{
UINTN Index;
UINT32 EntryCount;
UINT64 EntryPtr;
UINTN BasePtr;
EFI_ACPI_DESCRIPTION_HEADER *Table;
if (Xsdt == NULL) {
return NULL;
}
EntryCount = (Xsdt->Length - sizeof (EFI_ACPI_DESCRIPTION_HEADER)) / sizeof(UINT64);
BasePtr = (UINTN)(Xsdt + 1);
for (Index = 0; Index < EntryCount; Index ++) {
CopyMem (&EntryPtr, (VOID *)(BasePtr + Index * sizeof(UINT64)), sizeof(UINT64));
Table = (EFI_ACPI_DESCRIPTION_HEADER *)((UINTN)(EntryPtr));
if (Table->Signature == Signature) {
return Table;
}
}
return NULL;
}
/**
To find Facs in FADT.
@param Fadt FADT table pointer
@return Facs table pointer.
**/
EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *
FindAcpiFacsFromFadt (
IN EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt
)
{
EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *Facs;
UINT64 Data64;
if (Fadt == NULL) {
return NULL;
}
if (Fadt->Header.Revision < EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_REVISION) {
Facs = (EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *)(UINTN)Fadt->FirmwareCtrl;
} else {
if (Fadt->FirmwareCtrl != 0) {
Facs = (EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *)(UINTN)Fadt->FirmwareCtrl;
} else {
CopyMem (&Data64, &Fadt->XFirmwareCtrl, sizeof(UINT64));
Facs = (EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *)(UINTN)Data64;
}
}
return Facs;
}
/**
To find Facs in Acpi tables.
To find Firmware ACPI control strutcure in Acpi Tables since the S3 waking vector is stored
in the table.
@param AcpiTableGuid The guid used to find ACPI table in UEFI ConfigurationTable.
@return Facs table pointer.
**/
EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *
FindAcpiFacsTableByAcpiGuid (
IN EFI_GUID *AcpiTableGuid
)
{
EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *Rsdp;
EFI_ACPI_DESCRIPTION_HEADER *Rsdt;
EFI_ACPI_DESCRIPTION_HEADER *Xsdt;
EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *Facs;
UINTN Index;
Rsdp = NULL;
//
// found ACPI table RSD_PTR from system table
//
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
if (CompareGuid (&(gST->ConfigurationTable[Index].VendorGuid), AcpiTableGuid)) {
//
// A match was found.
//
Rsdp = gST->ConfigurationTable[Index].VendorTable;
break;
}
}
if (Rsdp == NULL) {
return NULL;
}
//
// Search XSDT
//
if (Rsdp->Revision >= EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER_REVISION) {
Xsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN) Rsdp->XsdtAddress;
Fadt = ScanTableInXSDT (Xsdt, EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE);
if (Fadt != NULL) {
Facs = FindAcpiFacsFromFadt (Fadt);
if (Facs != NULL) {
return Facs;
}
}
}
//
// Search RSDT
//
Rsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN) Rsdp->RsdtAddress;
Fadt = ScanTableInRSDT (Rsdt, EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE);
if (Fadt != NULL) {
Facs = FindAcpiFacsFromFadt (Fadt);
if (Facs != NULL) {
return Facs;
}
}
return NULL;
}
/**
To find Facs in Acpi tables.
To find Firmware ACPI control strutcure in Acpi Tables since the S3 waking vector is stored
in the table.
@return Facs table pointer.
**/
EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *
FindAcpiFacsTable (
VOID
)
{
EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *Facs;
Facs = FindAcpiFacsTableByAcpiGuid (&gEfiAcpi20TableGuid);
if (Facs != NULL) {
return Facs;
}
return FindAcpiFacsTableByAcpiGuid (&gEfiAcpi10TableGuid);
}
/**
Allocates and fills in the Page Directory and Page Table Entries to
establish a 1:1 Virtual to Physical mapping.
If BootScriptExector driver will run in 64-bit mode, this function will establish the 1:1
virtual to physical mapping page table.
If BootScriptExector driver will not run in 64-bit mode, this function will do nothing.
@return the 1:1 Virtual to Physical identity mapping page table base address.
**/
EFI_PHYSICAL_ADDRESS
S3CreateIdentityMappingPageTables (
VOID
)
{
if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
UINT32 RegEax;
UINT32 RegEdx;
UINT8 PhysicalAddressBits;
UINT32 NumberOfPml4EntriesNeeded;
UINT32 NumberOfPdpEntriesNeeded;
EFI_PHYSICAL_ADDRESS S3NvsPageTableAddress;
UINTN TotalPageTableSize;
VOID *Hob;
BOOLEAN Page1GSupport;
Page1GSupport = FALSE;
if (PcdGetBool(PcdUse1GPageTable)) {
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000001) {
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
if ((RegEdx & BIT26) != 0) {
Page1GSupport = TRUE;
}
}
}
//
// Get physical address bits supported.
//
Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
if (Hob != NULL) {
PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
} else {
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000008) {
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
PhysicalAddressBits = (UINT8) RegEax;
} else {
PhysicalAddressBits = 36;
}
}
//
// IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
//
ASSERT (PhysicalAddressBits <= 52);
if (PhysicalAddressBits > 48) {
PhysicalAddressBits = 48;
}
//
// Calculate the table entries needed.
//
if (PhysicalAddressBits <= 39 ) {
NumberOfPml4EntriesNeeded = 1;
NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30));
} else {
NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 39));
NumberOfPdpEntriesNeeded = 512;
}
//
// We need calculate whole page size then allocate once, because S3 restore page table does not know each page in Nvs.
//
if (!Page1GSupport) {
TotalPageTableSize = (UINTN)(1 + NumberOfPml4EntriesNeeded + NumberOfPml4EntriesNeeded * NumberOfPdpEntriesNeeded);
} else {
TotalPageTableSize = (UINTN)(1 + NumberOfPml4EntriesNeeded);
}
DEBUG ((EFI_D_ERROR, "TotalPageTableSize - %Lx pages\n",
(UINT64)TotalPageTableSize));
//
// By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
//
S3NvsPageTableAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateMemoryBelow4G (EfiReservedMemoryType, EFI_PAGES_TO_SIZE(TotalPageTableSize));
ASSERT (S3NvsPageTableAddress != 0);
return S3NvsPageTableAddress;
} else {
//
// If DXE is running 32-bit mode, no need to establish page table.
//
return (EFI_PHYSICAL_ADDRESS) 0;
}
}
/**
Prepares all information that is needed in the S3 resume boot path.
Allocate the resources or prepare informations and save in ACPI variable set for S3 resume boot path
@retval EFI_SUCCESS All information was saved successfully.
**/
STATIC
EFI_STATUS
EFIAPI
S3Ready (
VOID
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS AcpiS3ContextBuffer;
ACPI_S3_CONTEXT *AcpiS3Context;
STATIC BOOLEAN AlreadyEntered;
IA32_DESCRIPTOR *Idtr;
IA32_IDT_GATE_DESCRIPTOR *IdtGate;
DEBUG ((EFI_D_INFO, "S3Ready!\n"));
ASSERT (!AlreadyEntered);
if (AlreadyEntered) {
return EFI_SUCCESS;
}
AlreadyEntered = TRUE;
AcpiS3Context = AllocateMemoryBelow4G (EfiReservedMemoryType, sizeof(*AcpiS3Context));
ASSERT (AcpiS3Context != NULL);
AcpiS3ContextBuffer = (EFI_PHYSICAL_ADDRESS)(UINTN)AcpiS3Context;
//
// Get ACPI Table because we will save its position to variable
//
AcpiS3Context->AcpiFacsTable = (EFI_PHYSICAL_ADDRESS)(UINTN)FindAcpiFacsTable ();
ASSERT (AcpiS3Context->AcpiFacsTable != 0);
IdtGate = AllocateMemoryBelow4G (EfiReservedMemoryType, sizeof(IA32_IDT_GATE_DESCRIPTOR) * 0x100 + sizeof(IA32_DESCRIPTOR));
Idtr = (IA32_DESCRIPTOR *)(IdtGate + 0x100);
Idtr->Base = (UINTN)IdtGate;
Idtr->Limit = (UINT16)(sizeof(IA32_IDT_GATE_DESCRIPTOR) * 0x100 - 1);
AcpiS3Context->IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)Idtr;
Status = SaveLockBox (
&mAcpiS3IdtrProfileGuid,
(VOID *)(UINTN)Idtr,
(UINTN)sizeof(IA32_DESCRIPTOR)
);
ASSERT_EFI_ERROR (Status);
Status = SetLockBoxAttributes (&mAcpiS3IdtrProfileGuid, LOCK_BOX_ATTRIBUTE_RESTORE_IN_PLACE);
ASSERT_EFI_ERROR (Status);
//
// Allocate page table
//
AcpiS3Context->S3NvsPageTableAddress = S3CreateIdentityMappingPageTables ();
//
// Allocate stack
//
AcpiS3Context->BootScriptStackSize = PcdGet32 (PcdS3BootScriptStackSize);
AcpiS3Context->BootScriptStackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateMemoryBelow4G (EfiReservedMemoryType, PcdGet32 (PcdS3BootScriptStackSize));
ASSERT (AcpiS3Context->BootScriptStackBase != 0);
//
// Allocate a code buffer < 4G for S3 debug to load external code, set invalid code instructions in it.
//
AcpiS3Context->S3DebugBufferAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateMemoryBelow4G (EfiReservedMemoryType, EFI_PAGE_SIZE);
SetMem ((VOID *)(UINTN)AcpiS3Context->S3DebugBufferAddress, EFI_PAGE_SIZE, 0xff);
DEBUG ((EFI_D_INFO, "AcpiS3Context: AcpiFacsTable is 0x%8Lx\n",
AcpiS3Context->AcpiFacsTable));
DEBUG ((EFI_D_INFO, "AcpiS3Context: IdtrProfile is 0x%8Lx\n",
AcpiS3Context->IdtrProfile));
DEBUG ((EFI_D_INFO, "AcpiS3Context: S3NvsPageTableAddress is 0x%8Lx\n",
AcpiS3Context->S3NvsPageTableAddress));
DEBUG ((EFI_D_INFO, "AcpiS3Context: S3DebugBufferAddress is 0x%8Lx\n",
AcpiS3Context->S3DebugBufferAddress));
Status = SaveLockBox (
&gEfiAcpiVariableGuid,
&AcpiS3ContextBuffer,
sizeof(AcpiS3ContextBuffer)
);
ASSERT_EFI_ERROR (Status);
Status = SaveLockBox (
&gEfiAcpiS3ContextGuid,
(VOID *)(UINTN)AcpiS3Context,
(UINTN)sizeof(*AcpiS3Context)
);
ASSERT_EFI_ERROR (Status);
Status = SetLockBoxAttributes (&gEfiAcpiS3ContextGuid, LOCK_BOX_ATTRIBUTE_RESTORE_IN_PLACE);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}
/**
Callback function executed when the EndOfDxe event group is signaled.
@param[in] Event Event whose notification function is being invoked.
@param[in] Context The pointer to the notification function's context, which
is implementation-dependent.
**/
VOID
EFIAPI
OnEndOfDxe (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_STATUS Status;
//
// Our S3Ready() function always succeeds.
//
Status = S3Ready ();
ASSERT_EFI_ERROR (Status);
//
// Close the event, deregistering the callback and freeing resources.
//
Status = gBS->CloseEvent (Event);
ASSERT_EFI_ERROR (Status);
}
/**
The Driver Entry Point.
The function is the driver Entry point that will register the End-of-Dxe
callback.
@param ImageHandle A handle for the image that is initializing this driver
@param SystemTable A pointer to the EFI system table
@retval EFI_SUCCESS: Driver initialized successfully
@retval EFI_LOAD_ERROR: Failed to Initialize or has been loaded
@retval EFI_OUT_OF_RESOURCES Could not allocate needed resources
**/
EFI_STATUS
EFIAPI
InstallEndOfDxeCallback (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_EVENT EndOfDxeEvent;
if (!QemuFwCfgS3Enabled()) {
return EFI_LOAD_ERROR;
}
Status = gBS->InstallMultipleProtocolInterfaces (
&ImageHandle,
&gEfiLockBoxProtocolGuid, NULL,
NULL
);
ASSERT_EFI_ERROR (Status);
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
OnEndOfDxe,
NULL, /* NotifyContext */
&gEfiEndOfDxeEventGroupGuid,
&EndOfDxeEvent
);
ASSERT_EFI_ERROR (Status);
return Status;
}