mirror of https://github.com/acidanthera/audk.git
620 lines
16 KiB
C
620 lines
16 KiB
C
/*++
|
|
|
|
Copyright (c) 2006, Intel Corporation
|
|
All rights reserved. This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
Module Name:
|
|
|
|
EbcSupport.c
|
|
|
|
Abstract:
|
|
|
|
This module contains EBC support routines that are customized based on
|
|
the target x64 processor.
|
|
|
|
--*/
|
|
|
|
#include "EbcInt.h"
|
|
#include "EbcExecute.h"
|
|
|
|
//
|
|
// NOTE: This is the stack size allocated for the interpreter
|
|
// when it executes an EBC image. The requirements can change
|
|
// based on whether or not a debugger is present, and other
|
|
// platform-specific configurations.
|
|
//
|
|
#define VM_STACK_SIZE (1024 * 8)
|
|
#define EBC_THUNK_SIZE 64
|
|
|
|
#define STACK_REMAIN_SIZE (1024 * 4)
|
|
|
|
STATIC
|
|
VOID
|
|
PushU64 (
|
|
VM_CONTEXT *VmPtr,
|
|
UINT64 Arg
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Push a 64 bit unsigned value to the VM stack.
|
|
|
|
Arguments:
|
|
|
|
VmPtr - The pointer to current VM context.
|
|
Arg - The value to be pushed
|
|
|
|
Returns:
|
|
|
|
VOID
|
|
|
|
--*/
|
|
{
|
|
//
|
|
// Advance the VM stack down, and then copy the argument to the stack.
|
|
// Hope it's aligned.
|
|
//
|
|
VmPtr->R[0] -= sizeof (UINT64);
|
|
*(UINT64 *) VmPtr->R[0] = Arg;
|
|
return;
|
|
}
|
|
|
|
STATIC
|
|
UINT64
|
|
EbcInterpret (
|
|
UINTN Arg1,
|
|
UINTN Arg2,
|
|
UINTN Arg3,
|
|
UINTN Arg4,
|
|
UINTN Arg5,
|
|
UINTN Arg6,
|
|
UINTN Arg7,
|
|
UINTN Arg8,
|
|
UINTN Arg9,
|
|
UINTN Arg10,
|
|
UINTN Arg11,
|
|
UINTN Arg12,
|
|
UINTN Arg13,
|
|
UINTN Arg14,
|
|
UINTN Arg15,
|
|
UINTN Arg16
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Begin executing an EBC image. The address of the entry point is passed
|
|
in via a processor register, so we'll need to make a call to get the
|
|
value.
|
|
|
|
Arguments:
|
|
|
|
This is a thunk function. Microsoft x64 compiler only provide fast_call
|
|
calling convention, so the first four arguments are passed by rcx, rdx,
|
|
r8, and r9, while other arguments are passed in stack.
|
|
|
|
Returns:
|
|
|
|
The value returned by the EBC application we're going to run.
|
|
|
|
--*/
|
|
{
|
|
//
|
|
// Create a new VM context on the stack
|
|
//
|
|
VM_CONTEXT VmContext;
|
|
UINTN Addr;
|
|
EFI_STATUS Status;
|
|
UINTN StackIndex;
|
|
|
|
//
|
|
// Get the EBC entry point from the processor register.
|
|
// Don't call any function before getting the EBC entry
|
|
// point because this will collab the return register.
|
|
//
|
|
Addr = EbcLLGetEbcEntryPoint ();
|
|
|
|
//
|
|
// Now clear out our context
|
|
//
|
|
ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
|
|
|
|
//
|
|
// Set the VM instruction pointer to the correct location in memory.
|
|
//
|
|
VmContext.Ip = (VMIP) Addr;
|
|
|
|
//
|
|
// Initialize the stack pointer for the EBC. Get the current system stack
|
|
// pointer and adjust it down by the max needed for the interpreter.
|
|
//
|
|
Addr = EbcLLGetStackPointer ();
|
|
|
|
//
|
|
// Adjust the VM's stack pointer down.
|
|
//
|
|
|
|
Status = GetEBCStack((EFI_HANDLE)(UINTN)-1, &VmContext.StackPool, &StackIndex);
|
|
if (EFI_ERROR(Status)) {
|
|
return Status;
|
|
}
|
|
VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
|
|
VmContext.R[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
|
|
VmContext.HighStackBottom = (UINTN) VmContext.R[0];
|
|
VmContext.R[0] -= sizeof (UINTN);
|
|
|
|
//
|
|
// Align the stack on a natural boundary.
|
|
//
|
|
VmContext.R[0] &= ~(sizeof (UINTN) - 1);
|
|
|
|
//
|
|
// Put a magic value in the stack gap, then adjust down again.
|
|
//
|
|
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) VM_STACK_KEY_VALUE;
|
|
VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.R[0];
|
|
|
|
//
|
|
// The stack upper to LowStackTop is belong to the VM.
|
|
//
|
|
VmContext.LowStackTop = (UINTN) VmContext.R[0];
|
|
|
|
//
|
|
// For the worst case, assume there are 4 arguments passed in registers, store
|
|
// them to VM's stack.
|
|
//
|
|
PushU64 (&VmContext, (UINT64) Arg16);
|
|
PushU64 (&VmContext, (UINT64) Arg15);
|
|
PushU64 (&VmContext, (UINT64) Arg14);
|
|
PushU64 (&VmContext, (UINT64) Arg13);
|
|
PushU64 (&VmContext, (UINT64) Arg12);
|
|
PushU64 (&VmContext, (UINT64) Arg11);
|
|
PushU64 (&VmContext, (UINT64) Arg10);
|
|
PushU64 (&VmContext, (UINT64) Arg9);
|
|
PushU64 (&VmContext, (UINT64) Arg8);
|
|
PushU64 (&VmContext, (UINT64) Arg7);
|
|
PushU64 (&VmContext, (UINT64) Arg6);
|
|
PushU64 (&VmContext, (UINT64) Arg5);
|
|
PushU64 (&VmContext, (UINT64) Arg4);
|
|
PushU64 (&VmContext, (UINT64) Arg3);
|
|
PushU64 (&VmContext, (UINT64) Arg2);
|
|
PushU64 (&VmContext, (UINT64) Arg1);
|
|
|
|
//
|
|
// Interpreter assumes 64-bit return address is pushed on the stack.
|
|
// The x64 does not do this so pad the stack accordingly.
|
|
//
|
|
PushU64 (&VmContext, (UINT64) 0);
|
|
PushU64 (&VmContext, (UINT64) 0x1234567887654321ULL);
|
|
|
|
//
|
|
// For x64, this is where we say our return address is
|
|
//
|
|
VmContext.StackRetAddr = (UINT64) VmContext.R[0];
|
|
|
|
//
|
|
// We need to keep track of where the EBC stack starts. This way, if the EBC
|
|
// accesses any stack variables above its initial stack setting, then we know
|
|
// it's accessing variables passed into it, which means the data is on the
|
|
// VM's stack.
|
|
// When we're called, on the stack (high to low) we have the parameters, the
|
|
// return address, then the saved ebp. Save the pointer to the return address.
|
|
// EBC code knows that's there, so should look above it for function parameters.
|
|
// The offset is the size of locals (VMContext + Addr + saved ebp).
|
|
// Note that the interpreter assumes there is a 16 bytes of return address on
|
|
// the stack too, so adjust accordingly.
|
|
// VmContext.HighStackBottom = (UINTN)(Addr + sizeof (VmContext) + sizeof (Addr));
|
|
//
|
|
|
|
//
|
|
// Begin executing the EBC code
|
|
//
|
|
EbcExecute (&VmContext);
|
|
|
|
//
|
|
// Return the value in R[7] unless there was an error
|
|
//
|
|
ReturnEBCStack(StackIndex);
|
|
return (UINT64) VmContext.R[7];
|
|
}
|
|
|
|
STATIC
|
|
UINT64
|
|
ExecuteEbcImageEntryPoint (
|
|
IN EFI_HANDLE ImageHandle,
|
|
IN EFI_SYSTEM_TABLE *SystemTable
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Begin executing an EBC image. The address of the entry point is passed
|
|
in via a processor register, so we'll need to make a call to get the
|
|
value.
|
|
|
|
Arguments:
|
|
|
|
ImageHandle - image handle for the EBC application we're executing
|
|
SystemTable - standard system table passed into an driver's entry point
|
|
|
|
Returns:
|
|
|
|
The value returned by the EBC application we're going to run.
|
|
|
|
--*/
|
|
{
|
|
//
|
|
// Create a new VM context on the stack
|
|
//
|
|
VM_CONTEXT VmContext;
|
|
UINTN Addr;
|
|
EFI_STATUS Status;
|
|
UINTN StackIndex;
|
|
|
|
//
|
|
// Get the EBC entry point from the processor register. Make sure you don't
|
|
// call any functions before this or you could mess up the register the
|
|
// entry point is passed in.
|
|
//
|
|
Addr = EbcLLGetEbcEntryPoint ();
|
|
|
|
//
|
|
// Now clear out our context
|
|
//
|
|
ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
|
|
|
|
//
|
|
// Save the image handle so we can track the thunks created for this image
|
|
//
|
|
VmContext.ImageHandle = ImageHandle;
|
|
VmContext.SystemTable = SystemTable;
|
|
|
|
//
|
|
// Set the VM instruction pointer to the correct location in memory.
|
|
//
|
|
VmContext.Ip = (VMIP) Addr;
|
|
|
|
//
|
|
// Initialize the stack pointer for the EBC. Get the current system stack
|
|
// pointer and adjust it down by the max needed for the interpreter.
|
|
//
|
|
Addr = EbcLLGetStackPointer ();
|
|
|
|
Status = GetEBCStack(ImageHandle, &VmContext.StackPool, &StackIndex);
|
|
if (EFI_ERROR(Status)) {
|
|
return Status;
|
|
}
|
|
VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
|
|
VmContext.R[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
|
|
VmContext.HighStackBottom = (UINTN) VmContext.R[0];
|
|
VmContext.R[0] -= sizeof (UINTN);
|
|
|
|
|
|
//
|
|
// Put a magic value in the stack gap, then adjust down again
|
|
//
|
|
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) VM_STACK_KEY_VALUE;
|
|
VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.R[0];
|
|
|
|
//
|
|
// Align the stack on a natural boundary
|
|
VmContext.R[0] &= ~(sizeof(UINTN) - 1);
|
|
//
|
|
VmContext.LowStackTop = (UINTN) VmContext.R[0];
|
|
|
|
//
|
|
// Simply copy the image handle and system table onto the EBC stack.
|
|
// Greatly simplifies things by not having to spill the args.
|
|
//
|
|
PushU64 (&VmContext, (UINT64) SystemTable);
|
|
PushU64 (&VmContext, (UINT64) ImageHandle);
|
|
|
|
//
|
|
// VM pushes 16-bytes for return address. Simulate that here.
|
|
//
|
|
PushU64 (&VmContext, (UINT64) 0);
|
|
PushU64 (&VmContext, (UINT64) 0x1234567887654321ULL);
|
|
|
|
//
|
|
// For x64, this is where we say our return address is
|
|
//
|
|
VmContext.StackRetAddr = (UINT64) VmContext.R[0];
|
|
|
|
//
|
|
// Entry function needn't access high stack context, simply
|
|
// put the stack pointer here.
|
|
//
|
|
|
|
//
|
|
// Begin executing the EBC code
|
|
//
|
|
EbcExecute (&VmContext);
|
|
|
|
//
|
|
// Return the value in R[7] unless there was an error
|
|
//
|
|
ReturnEBCStack(StackIndex);
|
|
return (UINT64) VmContext.R[7];
|
|
}
|
|
|
|
EFI_STATUS
|
|
EbcCreateThunks (
|
|
IN EFI_HANDLE ImageHandle,
|
|
IN VOID *EbcEntryPoint,
|
|
OUT VOID **Thunk,
|
|
IN UINT32 Flags
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Create an IA32 thunk for the given EBC entry point.
|
|
|
|
Arguments:
|
|
|
|
ImageHandle - Handle of image for which this thunk is being created
|
|
EbcEntryPoint - Address of the EBC code that the thunk is to call
|
|
Thunk - Returned thunk we create here
|
|
|
|
Returns:
|
|
|
|
Standard EFI status.
|
|
|
|
--*/
|
|
{
|
|
UINT8 *Ptr;
|
|
UINT8 *ThunkBase;
|
|
UINT32 I;
|
|
UINT64 Addr;
|
|
INT32 Size;
|
|
INT32 ThunkSize;
|
|
|
|
//
|
|
// Check alignment of pointer to EBC code
|
|
//
|
|
if ((UINT32) (UINTN) EbcEntryPoint & 0x01) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
Size = EBC_THUNK_SIZE;
|
|
ThunkSize = Size;
|
|
|
|
Ptr = AllocatePool (Size);
|
|
|
|
if (Ptr == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
//
|
|
// Print(L"Allocate TH: 0x%X\n", (UINT32)Ptr);
|
|
//
|
|
// Save the start address so we can add a pointer to it to a list later.
|
|
//
|
|
ThunkBase = Ptr;
|
|
|
|
//
|
|
// Give them the address of our buffer we're going to fix up
|
|
//
|
|
*Thunk = (VOID *) Ptr;
|
|
|
|
//
|
|
// Add a magic code here to help the VM recognize the thunk..
|
|
// mov rax, ca112ebccall2ebch => 48 B8 BC 2E 11 CA BC 2E 11 CA
|
|
//
|
|
*Ptr = 0x48;
|
|
Ptr++;
|
|
Size--;
|
|
*Ptr = 0xB8;
|
|
Ptr++;
|
|
Size--;
|
|
Addr = (UINT64) 0xCA112EBCCA112EBCULL;
|
|
for (I = 0; I < sizeof (Addr); I++) {
|
|
*Ptr = (UINT8) (UINTN) Addr;
|
|
Addr >>= 8;
|
|
Ptr++;
|
|
Size--;
|
|
}
|
|
|
|
//
|
|
// Add code bytes to load up a processor register with the EBC entry point.
|
|
// mov rax, 123456789abcdef0h => 48 B8 F0 DE BC 9A 78 56 34 12
|
|
// The first 8 bytes of the thunk entry is the address of the EBC
|
|
// entry point.
|
|
//
|
|
*Ptr = 0x48;
|
|
Ptr++;
|
|
Size--;
|
|
*Ptr = 0xB8;
|
|
Ptr++;
|
|
Size--;
|
|
Addr = (UINT64) EbcEntryPoint;
|
|
for (I = 0; I < sizeof (Addr); I++) {
|
|
*Ptr = (UINT8) (UINTN) Addr;
|
|
Addr >>= 8;
|
|
Ptr++;
|
|
Size--;
|
|
}
|
|
|
|
//
|
|
// Stick in a load of ecx with the address of appropriate VM function.
|
|
// Using r11 because it's a volatile register and won't be used in this
|
|
// point.
|
|
// mov r11 123456789abcdef0h => 49 BB F0 DE BC 9A 78 56 34 12
|
|
//
|
|
if (Flags & FLAG_THUNK_ENTRY_POINT) {
|
|
Addr = (UINTN) ExecuteEbcImageEntryPoint;
|
|
} else {
|
|
Addr = (UINTN) EbcInterpret;
|
|
}
|
|
|
|
//
|
|
// mov r11 Addr => 0x49 0xBB
|
|
//
|
|
*Ptr = 0x49;
|
|
Ptr++;
|
|
Size--;
|
|
*Ptr = 0xBB;
|
|
Ptr++;
|
|
Size--;
|
|
for (I = 0; I < sizeof (Addr); I++) {
|
|
*Ptr = (UINT8) Addr;
|
|
Addr >>= 8;
|
|
Ptr++;
|
|
Size--;
|
|
}
|
|
//
|
|
// Stick in jump opcode bytes for jmp r11 => 0x41 0xFF 0xE3
|
|
//
|
|
*Ptr = 0x41;
|
|
Ptr++;
|
|
Size--;
|
|
*Ptr = 0xFF;
|
|
Ptr++;
|
|
Size--;
|
|
*Ptr = 0xE3;
|
|
Size--;
|
|
|
|
//
|
|
// Double check that our defined size is ok (application error)
|
|
//
|
|
if (Size < 0) {
|
|
ASSERT (FALSE);
|
|
return EFI_BUFFER_TOO_SMALL;
|
|
}
|
|
//
|
|
// Add the thunk to the list for this image. Do this last since the add
|
|
// function flushes the cache for us.
|
|
//
|
|
EbcAddImageThunk (ImageHandle, (VOID *) ThunkBase, ThunkSize);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
VOID
|
|
EbcLLCALLEX (
|
|
IN VM_CONTEXT *VmPtr,
|
|
IN UINTN FuncAddr,
|
|
IN UINTN NewStackPointer,
|
|
IN VOID *FramePtr,
|
|
IN UINT8 Size
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This function is called to execute an EBC CALLEX instruction.
|
|
The function check the callee's content to see whether it is common native
|
|
code or a thunk to another piece of EBC code.
|
|
If the callee is common native code, use EbcLLCAllEXASM to manipulate,
|
|
otherwise, set the VM->IP to target EBC code directly to avoid another VM
|
|
be startup which cost time and stack space.
|
|
|
|
Arguments:
|
|
|
|
VmPtr - Pointer to a VM context.
|
|
FuncAddr - Callee's address
|
|
NewStackPointer - New stack pointer after the call
|
|
FramePtr - New frame pointer after the call
|
|
Size - The size of call instruction
|
|
|
|
Returns:
|
|
|
|
None.
|
|
|
|
--*/
|
|
{
|
|
UINTN IsThunk;
|
|
UINTN TargetEbcAddr;
|
|
|
|
IsThunk = 1;
|
|
TargetEbcAddr = 0;
|
|
|
|
//
|
|
// Processor specific code to check whether the callee is a thunk to EBC.
|
|
//
|
|
if (*((UINT8 *)FuncAddr) != 0x48) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT8 *)FuncAddr + 1) != 0xB8) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT8 *)FuncAddr + 2) != 0xBC) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT8 *)FuncAddr + 3) != 0x2E) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT8 *)FuncAddr + 4) != 0x11) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT8 *)FuncAddr + 5) != 0xCA) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT8 *)FuncAddr + 6) != 0xBC) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT8 *)FuncAddr + 7) != 0x2E) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT8 *)FuncAddr + 8) != 0x11) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT8 *)FuncAddr + 9) != 0xCA) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT8 *)FuncAddr + 10) != 0x48) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
if (*((UINT8 *)FuncAddr + 11) != 0xB8) {
|
|
IsThunk = 0;
|
|
goto Action;
|
|
}
|
|
|
|
CopyMem (&TargetEbcAddr, (UINT8 *)FuncAddr + 12, 8);
|
|
|
|
Action:
|
|
if (IsThunk == 1){
|
|
//
|
|
// The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and
|
|
// put our return address and frame pointer on the VM stack.
|
|
// Then set the VM's IP to new EBC code.
|
|
//
|
|
VmPtr->R[0] -= 8;
|
|
VmWriteMemN (VmPtr, (UINTN) VmPtr->R[0], (UINTN) FramePtr);
|
|
VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->R[0];
|
|
VmPtr->R[0] -= 8;
|
|
VmWriteMem64 (VmPtr, (UINTN) VmPtr->R[0], (UINT64) (VmPtr->Ip + Size));
|
|
|
|
VmPtr->Ip = (VMIP) (UINTN) TargetEbcAddr;
|
|
} else {
|
|
//
|
|
// The callee is not a thunk to EBC, call native code.
|
|
//
|
|
EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);
|
|
|
|
//
|
|
// Get return value and advance the IP.
|
|
//
|
|
VmPtr->R[7] = EbcLLGetReturnValue ();
|
|
VmPtr->Ip += Size;
|
|
}
|
|
}
|
|
|