mirror of https://github.com/acidanthera/audk.git
844 lines
25 KiB
C
844 lines
25 KiB
C
/**@file
|
|
Platform PEI driver
|
|
|
|
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
|
|
Copyright (c) 2011, Andrei Warkentin <andreiw@motorola.com>
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
//
|
|
// The package level header files this module uses
|
|
//
|
|
#include <PiPei.h>
|
|
|
|
//
|
|
// The Library classes this module consumes
|
|
//
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/HobLib.h>
|
|
#include <Library/IoLib.h>
|
|
#include <Library/MemoryAllocationLib.h>
|
|
#include <Library/PcdLib.h>
|
|
#include <Library/PciLib.h>
|
|
#include <Library/PeimEntryPoint.h>
|
|
#include <Library/PeiServicesLib.h>
|
|
#include <Library/QemuFwCfgLib.h>
|
|
#include <Library/QemuFwCfgS3Lib.h>
|
|
#include <Library/QemuFwCfgSimpleParserLib.h>
|
|
#include <Library/ResourcePublicationLib.h>
|
|
#include <Ppi/MasterBootMode.h>
|
|
#include <IndustryStandard/I440FxPiix4.h>
|
|
#include <IndustryStandard/Microvm.h>
|
|
#include <IndustryStandard/Pci22.h>
|
|
#include <IndustryStandard/Q35MchIch9.h>
|
|
#include <IndustryStandard/QemuCpuHotplug.h>
|
|
#include <Library/MemEncryptSevLib.h>
|
|
#include <OvmfPlatforms.h>
|
|
|
|
#include "Platform.h"
|
|
|
|
EFI_HOB_PLATFORM_INFO mPlatformInfoHob = { 0 };
|
|
|
|
EFI_PEI_PPI_DESCRIPTOR mPpiBootMode[] = {
|
|
{
|
|
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
|
|
&gEfiPeiMasterBootModePpiGuid,
|
|
NULL
|
|
}
|
|
};
|
|
|
|
VOID
|
|
EFIAPI
|
|
PlatformMemMapInitialization (
|
|
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
)
|
|
{
|
|
UINT64 PciIoBase;
|
|
UINT64 PciIoSize;
|
|
UINT32 TopOfLowRam;
|
|
UINT64 PciExBarBase;
|
|
UINT32 PciBase;
|
|
UINT32 PciSize;
|
|
|
|
PciIoBase = 0xC000;
|
|
PciIoSize = 0x4000;
|
|
|
|
//
|
|
// Video memory + Legacy BIOS region
|
|
//
|
|
PlatformAddIoMemoryRangeHob (0x0A0000, BASE_1MB);
|
|
|
|
if (PlatformInfoHob->HostBridgeDevId == 0xffff /* microvm */) {
|
|
PlatformAddIoMemoryBaseSizeHob (MICROVM_GED_MMIO_BASE, SIZE_4KB);
|
|
PlatformAddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB); /* ioapic #1 */
|
|
PlatformAddIoMemoryBaseSizeHob (0xFEC10000, SIZE_4KB); /* ioapic #2 */
|
|
return;
|
|
}
|
|
|
|
TopOfLowRam = PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);
|
|
PciExBarBase = 0;
|
|
if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
|
|
//
|
|
// The MMCONFIG area is expected to fall between the top of low RAM and
|
|
// the base of the 32-bit PCI host aperture.
|
|
//
|
|
PciExBarBase = FixedPcdGet64 (PcdPciExpressBaseAddress);
|
|
ASSERT (TopOfLowRam <= PciExBarBase);
|
|
ASSERT (PciExBarBase <= MAX_UINT32 - SIZE_256MB);
|
|
PciBase = (UINT32)(PciExBarBase + SIZE_256MB);
|
|
} else {
|
|
ASSERT (TopOfLowRam <= PlatformInfoHob->Uc32Base);
|
|
PciBase = PlatformInfoHob->Uc32Base;
|
|
}
|
|
|
|
//
|
|
// address purpose size
|
|
// ------------ -------- -------------------------
|
|
// max(top, 2g) PCI MMIO 0xFC000000 - max(top, 2g)
|
|
// 0xFC000000 gap 44 MB
|
|
// 0xFEC00000 IO-APIC 4 KB
|
|
// 0xFEC01000 gap 1020 KB
|
|
// 0xFED00000 HPET 1 KB
|
|
// 0xFED00400 gap 111 KB
|
|
// 0xFED1C000 gap (PIIX4) / RCRB (ICH9) 16 KB
|
|
// 0xFED20000 gap 896 KB
|
|
// 0xFEE00000 LAPIC 1 MB
|
|
//
|
|
PciSize = 0xFC000000 - PciBase;
|
|
PlatformAddIoMemoryBaseSizeHob (PciBase, PciSize);
|
|
|
|
PlatformInfoHob->PcdPciMmio32Base = PciBase;
|
|
PlatformInfoHob->PcdPciMmio32Size = PciSize;
|
|
|
|
PlatformAddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB);
|
|
PlatformAddIoMemoryBaseSizeHob (0xFED00000, SIZE_1KB);
|
|
if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
|
|
PlatformAddIoMemoryBaseSizeHob (ICH9_ROOT_COMPLEX_BASE, SIZE_16KB);
|
|
//
|
|
// Note: there should be an
|
|
//
|
|
// PlatformAddIoMemoryBaseSizeHob (PciExBarBase, SIZE_256MB);
|
|
//
|
|
// call below, just like the one above for RCBA. However, Linux insists
|
|
// that the MMCONFIG area be marked in the E820 or UEFI memory map as
|
|
// "reserved memory" -- Linux does not content itself with a simple gap
|
|
// in the memory map wherever the MCFG ACPI table points to.
|
|
//
|
|
// This appears to be a safety measure. The PCI Firmware Specification
|
|
// (rev 3.1) says in 4.1.2. "MCFG Table Description": "The resources can
|
|
// *optionally* be returned in [...] EFIGetMemoryMap as reserved memory
|
|
// [...]". (Emphasis added here.)
|
|
//
|
|
// Normally we add memory resource descriptor HOBs in
|
|
// QemuInitializeRam(), and pre-allocate from those with memory
|
|
// allocation HOBs in InitializeRamRegions(). However, the MMCONFIG area
|
|
// is most definitely not RAM; so, as an exception, cover it with
|
|
// uncacheable reserved memory right here.
|
|
//
|
|
PlatformAddReservedMemoryBaseSizeHob (PciExBarBase, SIZE_256MB, FALSE);
|
|
BuildMemoryAllocationHob (
|
|
PciExBarBase,
|
|
SIZE_256MB,
|
|
EfiReservedMemoryType
|
|
);
|
|
}
|
|
|
|
PlatformAddIoMemoryBaseSizeHob (PcdGet32 (PcdCpuLocalApicBaseAddress), SIZE_1MB);
|
|
|
|
//
|
|
// On Q35, the IO Port space is available for PCI resource allocations from
|
|
// 0x6000 up.
|
|
//
|
|
if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
|
|
PciIoBase = 0x6000;
|
|
PciIoSize = 0xA000;
|
|
ASSERT ((ICH9_PMBASE_VALUE & 0xF000) < PciIoBase);
|
|
}
|
|
|
|
//
|
|
// Add PCI IO Port space available for PCI resource allocations.
|
|
//
|
|
BuildResourceDescriptorHob (
|
|
EFI_RESOURCE_IO,
|
|
EFI_RESOURCE_ATTRIBUTE_PRESENT |
|
|
EFI_RESOURCE_ATTRIBUTE_INITIALIZED,
|
|
PciIoBase,
|
|
PciIoSize
|
|
);
|
|
|
|
PlatformInfoHob->PcdPciIoBase = PciIoBase;
|
|
PlatformInfoHob->PcdPciIoSize = PciIoSize;
|
|
}
|
|
|
|
VOID
|
|
MemMapInitialization (
|
|
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
)
|
|
{
|
|
RETURN_STATUS PcdStatus;
|
|
|
|
PlatformMemMapInitialization (PlatformInfoHob);
|
|
|
|
if (PlatformInfoHob->HostBridgeDevId == 0xffff /* microvm */) {
|
|
return;
|
|
}
|
|
|
|
PcdStatus = PcdSet64S (PcdPciMmio32Base, PlatformInfoHob->PcdPciMmio32Base);
|
|
ASSERT_RETURN_ERROR (PcdStatus);
|
|
PcdStatus = PcdSet64S (PcdPciMmio32Size, PlatformInfoHob->PcdPciMmio32Size);
|
|
ASSERT_RETURN_ERROR (PcdStatus);
|
|
|
|
PcdStatus = PcdSet64S (PcdPciIoBase, PlatformInfoHob->PcdPciIoBase);
|
|
ASSERT_RETURN_ERROR (PcdStatus);
|
|
PcdStatus = PcdSet64S (PcdPciIoSize, PlatformInfoHob->PcdPciIoSize);
|
|
ASSERT_RETURN_ERROR (PcdStatus);
|
|
}
|
|
|
|
/**
|
|
* Fetch "opt/ovmf/PcdSetNxForStack" from QEMU
|
|
*
|
|
* @param Setting The pointer to the setting of "/opt/ovmf/PcdSetNxForStack".
|
|
* @return EFI_SUCCESS Successfully fetch the settings.
|
|
*/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
PlatformNoexecDxeInitialization (
|
|
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
)
|
|
{
|
|
return QemuFwCfgParseBool ("opt/ovmf/PcdSetNxForStack", &PlatformInfoHob->PcdSetNxForStack);
|
|
}
|
|
|
|
VOID
|
|
NoexecDxeInitialization (
|
|
VOID
|
|
)
|
|
{
|
|
RETURN_STATUS Status;
|
|
|
|
Status = PlatformNoexecDxeInitialization (&mPlatformInfoHob);
|
|
if (!RETURN_ERROR (Status)) {
|
|
Status = PcdSetBoolS (PcdSetNxForStack, mPlatformInfoHob.PcdSetNxForStack);
|
|
ASSERT_RETURN_ERROR (Status);
|
|
}
|
|
}
|
|
|
|
VOID
|
|
PciExBarInitialization (
|
|
VOID
|
|
)
|
|
{
|
|
union {
|
|
UINT64 Uint64;
|
|
UINT32 Uint32[2];
|
|
} PciExBarBase;
|
|
|
|
//
|
|
// We only support the 256MB size for the MMCONFIG area:
|
|
// 256 buses * 32 devices * 8 functions * 4096 bytes config space.
|
|
//
|
|
// The masks used below enforce the Q35 requirements that the MMCONFIG area
|
|
// be (a) correctly aligned -- here at 256 MB --, (b) located under 64 GB.
|
|
//
|
|
// Note that (b) also ensures that the minimum address width we have
|
|
// determined in AddressWidthInitialization(), i.e., 36 bits, will suffice
|
|
// for DXE's page tables to cover the MMCONFIG area.
|
|
//
|
|
PciExBarBase.Uint64 = FixedPcdGet64 (PcdPciExpressBaseAddress);
|
|
ASSERT ((PciExBarBase.Uint32[1] & MCH_PCIEXBAR_HIGHMASK) == 0);
|
|
ASSERT ((PciExBarBase.Uint32[0] & MCH_PCIEXBAR_LOWMASK) == 0);
|
|
|
|
//
|
|
// Clear the PCIEXBAREN bit first, before programming the high register.
|
|
//
|
|
PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW), 0);
|
|
|
|
//
|
|
// Program the high register. Then program the low register, setting the
|
|
// MMCONFIG area size and enabling decoding at once.
|
|
//
|
|
PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_HIGH), PciExBarBase.Uint32[1]);
|
|
PciWrite32 (
|
|
DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW),
|
|
PciExBarBase.Uint32[0] | MCH_PCIEXBAR_BUS_FF | MCH_PCIEXBAR_EN
|
|
);
|
|
}
|
|
|
|
static const UINT8 EmptyFdt[] = {
|
|
0xd0, 0x0d, 0xfe, 0xed, 0x00, 0x00, 0x00, 0x48,
|
|
0x00, 0x00, 0x00, 0x38, 0x00, 0x00, 0x00, 0x48,
|
|
0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00, 0x11,
|
|
0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x09,
|
|
};
|
|
|
|
VOID
|
|
MicrovmInitialization (
|
|
VOID
|
|
)
|
|
{
|
|
FIRMWARE_CONFIG_ITEM FdtItem;
|
|
UINTN FdtSize;
|
|
UINTN FdtPages;
|
|
EFI_STATUS Status;
|
|
UINT64 *FdtHobData;
|
|
VOID *NewBase;
|
|
|
|
Status = QemuFwCfgFindFile ("etc/fdt", &FdtItem, &FdtSize);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_INFO, "%a: no etc/fdt found in fw_cfg, using dummy\n", __FUNCTION__));
|
|
FdtItem = 0;
|
|
FdtSize = sizeof (EmptyFdt);
|
|
}
|
|
|
|
FdtPages = EFI_SIZE_TO_PAGES (FdtSize);
|
|
NewBase = AllocatePages (FdtPages);
|
|
if (NewBase == NULL) {
|
|
DEBUG ((DEBUG_INFO, "%a: AllocatePages failed\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
|
|
if (FdtItem) {
|
|
QemuFwCfgSelectItem (FdtItem);
|
|
QemuFwCfgReadBytes (FdtSize, NewBase);
|
|
} else {
|
|
CopyMem (NewBase, EmptyFdt, FdtSize);
|
|
}
|
|
|
|
FdtHobData = BuildGuidHob (&gFdtHobGuid, sizeof (*FdtHobData));
|
|
if (FdtHobData == NULL) {
|
|
DEBUG ((DEBUG_INFO, "%a: BuildGuidHob failed\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"%a: fdt at 0x%x (size %d)\n",
|
|
__FUNCTION__,
|
|
NewBase,
|
|
FdtSize
|
|
));
|
|
*FdtHobData = (UINTN)NewBase;
|
|
}
|
|
|
|
VOID
|
|
MiscInitializationForMicrovm (
|
|
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
)
|
|
{
|
|
RETURN_STATUS PcdStatus;
|
|
|
|
ASSERT (PlatformInfoHob->HostBridgeDevId == 0xffff);
|
|
|
|
DEBUG ((DEBUG_INFO, "%a: microvm\n", __FUNCTION__));
|
|
//
|
|
// Disable A20 Mask
|
|
//
|
|
IoOr8 (0x92, BIT1);
|
|
|
|
//
|
|
// Build the CPU HOB with guest RAM size dependent address width and 16-bits
|
|
// of IO space. (Side note: unlike other HOBs, the CPU HOB is needed during
|
|
// S3 resume as well, so we build it unconditionally.)
|
|
//
|
|
BuildCpuHob (PlatformInfoHob->PhysMemAddressWidth, 16);
|
|
|
|
MicrovmInitialization ();
|
|
PcdStatus = PcdSet16S (
|
|
PcdOvmfHostBridgePciDevId,
|
|
MICROVM_PSEUDO_DEVICE_ID
|
|
);
|
|
ASSERT_RETURN_ERROR (PcdStatus);
|
|
}
|
|
|
|
VOID
|
|
PlatformMiscInitialization (
|
|
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
)
|
|
{
|
|
UINTN PmCmd;
|
|
UINTN Pmba;
|
|
UINT32 PmbaAndVal;
|
|
UINT32 PmbaOrVal;
|
|
UINTN AcpiCtlReg;
|
|
UINT8 AcpiEnBit;
|
|
|
|
//
|
|
// Disable A20 Mask
|
|
//
|
|
IoOr8 (0x92, BIT1);
|
|
|
|
//
|
|
// Build the CPU HOB with guest RAM size dependent address width and 16-bits
|
|
// of IO space. (Side note: unlike other HOBs, the CPU HOB is needed during
|
|
// S3 resume as well, so we build it unconditionally.)
|
|
//
|
|
BuildCpuHob (PlatformInfoHob->PhysMemAddressWidth, 16);
|
|
|
|
//
|
|
// Determine platform type and save Host Bridge DID to PCD
|
|
//
|
|
switch (PlatformInfoHob->HostBridgeDevId) {
|
|
case INTEL_82441_DEVICE_ID:
|
|
PmCmd = POWER_MGMT_REGISTER_PIIX4 (PCI_COMMAND_OFFSET);
|
|
Pmba = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA);
|
|
PmbaAndVal = ~(UINT32)PIIX4_PMBA_MASK;
|
|
PmbaOrVal = PIIX4_PMBA_VALUE;
|
|
AcpiCtlReg = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMREGMISC);
|
|
AcpiEnBit = PIIX4_PMREGMISC_PMIOSE;
|
|
break;
|
|
case INTEL_Q35_MCH_DEVICE_ID:
|
|
PmCmd = POWER_MGMT_REGISTER_Q35 (PCI_COMMAND_OFFSET);
|
|
Pmba = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE);
|
|
PmbaAndVal = ~(UINT32)ICH9_PMBASE_MASK;
|
|
PmbaOrVal = ICH9_PMBASE_VALUE;
|
|
AcpiCtlReg = POWER_MGMT_REGISTER_Q35 (ICH9_ACPI_CNTL);
|
|
AcpiEnBit = ICH9_ACPI_CNTL_ACPI_EN;
|
|
break;
|
|
case CLOUDHV_DEVICE_ID:
|
|
break;
|
|
default:
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: Unknown Host Bridge Device ID: 0x%04x\n",
|
|
__FUNCTION__,
|
|
PlatformInfoHob->HostBridgeDevId
|
|
));
|
|
ASSERT (FALSE);
|
|
return;
|
|
}
|
|
|
|
if (PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) {
|
|
DEBUG ((DEBUG_INFO, "%a: Cloud Hypervisor is done.\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
|
|
//
|
|
// If the appropriate IOspace enable bit is set, assume the ACPI PMBA has
|
|
// been configured and skip the setup here. This matches the logic in
|
|
// AcpiTimerLibConstructor ().
|
|
//
|
|
if ((PciRead8 (AcpiCtlReg) & AcpiEnBit) == 0) {
|
|
//
|
|
// The PEI phase should be exited with fully accessibe ACPI PM IO space:
|
|
// 1. set PMBA
|
|
//
|
|
PciAndThenOr32 (Pmba, PmbaAndVal, PmbaOrVal);
|
|
|
|
//
|
|
// 2. set PCICMD/IOSE
|
|
//
|
|
PciOr8 (PmCmd, EFI_PCI_COMMAND_IO_SPACE);
|
|
|
|
//
|
|
// 3. set ACPI PM IO enable bit (PMREGMISC:PMIOSE or ACPI_CNTL:ACPI_EN)
|
|
//
|
|
PciOr8 (AcpiCtlReg, AcpiEnBit);
|
|
}
|
|
|
|
if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
|
|
//
|
|
// Set Root Complex Register Block BAR
|
|
//
|
|
PciWrite32 (
|
|
POWER_MGMT_REGISTER_Q35 (ICH9_RCBA),
|
|
ICH9_ROOT_COMPLEX_BASE | ICH9_RCBA_EN
|
|
);
|
|
|
|
//
|
|
// Set PCI Express Register Range Base Address
|
|
//
|
|
PciExBarInitialization ();
|
|
}
|
|
}
|
|
|
|
VOID
|
|
MiscInitialization (
|
|
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
)
|
|
{
|
|
RETURN_STATUS PcdStatus;
|
|
|
|
PlatformMiscInitialization (PlatformInfoHob);
|
|
|
|
PcdStatus = PcdSet16S (PcdOvmfHostBridgePciDevId, PlatformInfoHob->HostBridgeDevId);
|
|
ASSERT_RETURN_ERROR (PcdStatus);
|
|
}
|
|
|
|
VOID
|
|
BootModeInitialization (
|
|
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
if (PlatformCmosRead8 (0xF) == 0xFE) {
|
|
PlatformInfoHob->BootMode = BOOT_ON_S3_RESUME;
|
|
}
|
|
|
|
PlatformCmosWrite8 (0xF, 0x00);
|
|
|
|
Status = PeiServicesSetBootMode (PlatformInfoHob->BootMode);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
Status = PeiServicesInstallPpi (mPpiBootMode);
|
|
ASSERT_EFI_ERROR (Status);
|
|
}
|
|
|
|
VOID
|
|
ReserveEmuVariableNvStore (
|
|
)
|
|
{
|
|
EFI_PHYSICAL_ADDRESS VariableStore;
|
|
RETURN_STATUS PcdStatus;
|
|
|
|
//
|
|
// Allocate storage for NV variables early on so it will be
|
|
// at a consistent address. Since VM memory is preserved
|
|
// across reboots, this allows the NV variable storage to survive
|
|
// a VM reboot.
|
|
//
|
|
VariableStore =
|
|
(EFI_PHYSICAL_ADDRESS)(UINTN)
|
|
AllocateRuntimePages (
|
|
EFI_SIZE_TO_PAGES (2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize))
|
|
);
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"Reserved variable store memory: 0x%lX; size: %dkb\n",
|
|
VariableStore,
|
|
(2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize)) / 1024
|
|
));
|
|
PcdStatus = PcdSet64S (PcdEmuVariableNvStoreReserved, VariableStore);
|
|
ASSERT_RETURN_ERROR (PcdStatus);
|
|
}
|
|
|
|
VOID
|
|
S3Verification (
|
|
VOID
|
|
)
|
|
{
|
|
#if defined (MDE_CPU_X64)
|
|
if (mPlatformInfoHob.SmmSmramRequire && mPlatformInfoHob.S3Supported) {
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: S3Resume2Pei doesn't support X64 PEI + SMM yet.\n",
|
|
__FUNCTION__
|
|
));
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: Please disable S3 on the QEMU command line (see the README),\n",
|
|
__FUNCTION__
|
|
));
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: or build OVMF with \"OvmfPkgIa32X64.dsc\".\n",
|
|
__FUNCTION__
|
|
));
|
|
ASSERT (FALSE);
|
|
CpuDeadLoop ();
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
VOID
|
|
Q35BoardVerification (
|
|
VOID
|
|
)
|
|
{
|
|
if (mPlatformInfoHob.HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
|
|
return;
|
|
}
|
|
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: no TSEG (SMRAM) on host bridge DID=0x%04x; "
|
|
"only DID=0x%04x (Q35) is supported\n",
|
|
__FUNCTION__,
|
|
mPlatformInfoHob.HostBridgeDevId,
|
|
INTEL_Q35_MCH_DEVICE_ID
|
|
));
|
|
ASSERT (FALSE);
|
|
CpuDeadLoop ();
|
|
}
|
|
|
|
/**
|
|
Fetch the boot CPU count and the possible CPU count from QEMU, and expose
|
|
them to UefiCpuPkg modules. Set the MaxCpuCount field in PlatformInfoHob.
|
|
**/
|
|
VOID
|
|
PlatformMaxCpuCountInitialization (
|
|
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
)
|
|
{
|
|
UINT16 BootCpuCount;
|
|
UINT32 MaxCpuCount;
|
|
|
|
//
|
|
// Try to fetch the boot CPU count.
|
|
//
|
|
QemuFwCfgSelectItem (QemuFwCfgItemSmpCpuCount);
|
|
BootCpuCount = QemuFwCfgRead16 ();
|
|
if (BootCpuCount == 0) {
|
|
//
|
|
// QEMU doesn't report the boot CPU count. (BootCpuCount == 0) will let
|
|
// MpInitLib count APs up to (PcdCpuMaxLogicalProcessorNumber - 1), or
|
|
// until PcdCpuApInitTimeOutInMicroSeconds elapses (whichever is reached
|
|
// first).
|
|
//
|
|
DEBUG ((DEBUG_WARN, "%a: boot CPU count unavailable\n", __FUNCTION__));
|
|
MaxCpuCount = PlatformInfoHob->DefaultMaxCpuNumber;
|
|
} else {
|
|
//
|
|
// We will expose BootCpuCount to MpInitLib. MpInitLib will count APs up to
|
|
// (BootCpuCount - 1) precisely, regardless of timeout.
|
|
//
|
|
// Now try to fetch the possible CPU count.
|
|
//
|
|
UINTN CpuHpBase;
|
|
UINT32 CmdData2;
|
|
|
|
CpuHpBase = ((PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) ?
|
|
ICH9_CPU_HOTPLUG_BASE : PIIX4_CPU_HOTPLUG_BASE);
|
|
|
|
//
|
|
// If only legacy mode is available in the CPU hotplug register block, or
|
|
// the register block is completely missing, then the writes below are
|
|
// no-ops.
|
|
//
|
|
// 1. Switch the hotplug register block to modern mode.
|
|
//
|
|
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0);
|
|
//
|
|
// 2. Select a valid CPU for deterministic reading of
|
|
// QEMU_CPUHP_R_CMD_DATA2.
|
|
//
|
|
// CPU#0 is always valid; it is the always present and non-removable
|
|
// BSP.
|
|
//
|
|
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0);
|
|
//
|
|
// 3. Send a command after which QEMU_CPUHP_R_CMD_DATA2 is specified to
|
|
// read as zero, and which does not invalidate the selector. (The
|
|
// selector may change, but it must not become invalid.)
|
|
//
|
|
// Send QEMU_CPUHP_CMD_GET_PENDING, as it will prove useful later.
|
|
//
|
|
IoWrite8 (CpuHpBase + QEMU_CPUHP_W_CMD, QEMU_CPUHP_CMD_GET_PENDING);
|
|
//
|
|
// 4. Read QEMU_CPUHP_R_CMD_DATA2.
|
|
//
|
|
// If the register block is entirely missing, then this is an unassigned
|
|
// IO read, returning all-bits-one.
|
|
//
|
|
// If only legacy mode is available, then bit#0 stands for CPU#0 in the
|
|
// "CPU present bitmap". CPU#0 is always present.
|
|
//
|
|
// Otherwise, QEMU_CPUHP_R_CMD_DATA2 is either still reserved (returning
|
|
// all-bits-zero), or it is specified to read as zero after the above
|
|
// steps. Both cases confirm modern mode.
|
|
//
|
|
CmdData2 = IoRead32 (CpuHpBase + QEMU_CPUHP_R_CMD_DATA2);
|
|
DEBUG ((DEBUG_VERBOSE, "%a: CmdData2=0x%x\n", __FUNCTION__, CmdData2));
|
|
if (CmdData2 != 0) {
|
|
//
|
|
// QEMU doesn't support the modern CPU hotplug interface. Assume that the
|
|
// possible CPU count equals the boot CPU count (precluding hotplug).
|
|
//
|
|
DEBUG ((
|
|
DEBUG_WARN,
|
|
"%a: modern CPU hotplug interface unavailable\n",
|
|
__FUNCTION__
|
|
));
|
|
MaxCpuCount = BootCpuCount;
|
|
} else {
|
|
//
|
|
// Grab the possible CPU count from the modern CPU hotplug interface.
|
|
//
|
|
UINT32 Present, Possible, Selected;
|
|
|
|
Present = 0;
|
|
Possible = 0;
|
|
|
|
//
|
|
// We've sent QEMU_CPUHP_CMD_GET_PENDING last; this ensures
|
|
// QEMU_CPUHP_RW_CMD_DATA can now be read usefully. However,
|
|
// QEMU_CPUHP_CMD_GET_PENDING may have selected a CPU with actual pending
|
|
// hotplug events; therefore, select CPU#0 forcibly.
|
|
//
|
|
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible);
|
|
|
|
do {
|
|
UINT8 CpuStatus;
|
|
|
|
//
|
|
// Read the status of the currently selected CPU. This will help with a
|
|
// sanity check against "BootCpuCount".
|
|
//
|
|
CpuStatus = IoRead8 (CpuHpBase + QEMU_CPUHP_R_CPU_STAT);
|
|
if ((CpuStatus & QEMU_CPUHP_STAT_ENABLED) != 0) {
|
|
++Present;
|
|
}
|
|
|
|
//
|
|
// Attempt to select the next CPU.
|
|
//
|
|
++Possible;
|
|
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible);
|
|
//
|
|
// If the selection is successful, then the following read will return
|
|
// the selector (which we know is positive at this point). Otherwise,
|
|
// the read will return 0.
|
|
//
|
|
Selected = IoRead32 (CpuHpBase + QEMU_CPUHP_RW_CMD_DATA);
|
|
ASSERT (Selected == Possible || Selected == 0);
|
|
} while (Selected > 0);
|
|
|
|
//
|
|
// Sanity check: fw_cfg and the modern CPU hotplug interface should
|
|
// return the same boot CPU count.
|
|
//
|
|
if (BootCpuCount != Present) {
|
|
DEBUG ((
|
|
DEBUG_WARN,
|
|
"%a: QEMU v2.7 reset bug: BootCpuCount=%d "
|
|
"Present=%u\n",
|
|
__FUNCTION__,
|
|
BootCpuCount,
|
|
Present
|
|
));
|
|
//
|
|
// The handling of QemuFwCfgItemSmpCpuCount, across CPU hotplug plus
|
|
// platform reset (including S3), was corrected in QEMU commit
|
|
// e3cadac073a9 ("pc: fix FW_CFG_NB_CPUS to account for -device added
|
|
// CPUs", 2016-11-16), part of release v2.8.0.
|
|
//
|
|
BootCpuCount = (UINT16)Present;
|
|
}
|
|
|
|
MaxCpuCount = Possible;
|
|
}
|
|
}
|
|
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"%a: BootCpuCount=%d MaxCpuCount=%u\n",
|
|
__FUNCTION__,
|
|
BootCpuCount,
|
|
MaxCpuCount
|
|
));
|
|
ASSERT (BootCpuCount <= MaxCpuCount);
|
|
|
|
PlatformInfoHob->PcdCpuMaxLogicalProcessorNumber = MaxCpuCount;
|
|
PlatformInfoHob->PcdCpuBootLogicalProcessorNumber = BootCpuCount;
|
|
}
|
|
|
|
/**
|
|
Fetch the boot CPU count and the possible CPU count from QEMU, and expose
|
|
them to UefiCpuPkg modules. Set the MaxCpuCount field in PlatformInfoHob.
|
|
**/
|
|
VOID
|
|
MaxCpuCountInitialization (
|
|
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
|
|
)
|
|
{
|
|
RETURN_STATUS PcdStatus;
|
|
|
|
PlatformMaxCpuCountInitialization (PlatformInfoHob);
|
|
|
|
PcdStatus = PcdSet32S (PcdCpuBootLogicalProcessorNumber, PlatformInfoHob->PcdCpuBootLogicalProcessorNumber);
|
|
ASSERT_RETURN_ERROR (PcdStatus);
|
|
PcdStatus = PcdSet32S (PcdCpuMaxLogicalProcessorNumber, PlatformInfoHob->PcdCpuMaxLogicalProcessorNumber);
|
|
ASSERT_RETURN_ERROR (PcdStatus);
|
|
}
|
|
|
|
/**
|
|
Perform Platform PEI initialization.
|
|
|
|
@param FileHandle Handle of the file being invoked.
|
|
@param PeiServices Describes the list of possible PEI Services.
|
|
|
|
@return EFI_SUCCESS The PEIM initialized successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
InitializePlatform (
|
|
IN EFI_PEI_FILE_HANDLE FileHandle,
|
|
IN CONST EFI_PEI_SERVICES **PeiServices
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
DEBUG ((DEBUG_INFO, "Platform PEIM Loaded\n"));
|
|
|
|
mPlatformInfoHob.SmmSmramRequire = FeaturePcdGet (PcdSmmSmramRequire);
|
|
mPlatformInfoHob.SevEsIsEnabled = MemEncryptSevEsIsEnabled ();
|
|
mPlatformInfoHob.PcdPciMmio64Size = PcdGet64 (PcdPciMmio64Size);
|
|
mPlatformInfoHob.DefaultMaxCpuNumber = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
|
|
|
|
PlatformDebugDumpCmos ();
|
|
|
|
if (QemuFwCfgS3Enabled ()) {
|
|
DEBUG ((DEBUG_INFO, "S3 support was detected on QEMU\n"));
|
|
mPlatformInfoHob.S3Supported = TRUE;
|
|
Status = PcdSetBoolS (PcdAcpiS3Enable, TRUE);
|
|
ASSERT_EFI_ERROR (Status);
|
|
}
|
|
|
|
S3Verification ();
|
|
BootModeInitialization (&mPlatformInfoHob);
|
|
AddressWidthInitialization (&mPlatformInfoHob);
|
|
|
|
//
|
|
// Query Host Bridge DID
|
|
//
|
|
mPlatformInfoHob.HostBridgeDevId = PciRead16 (OVMF_HOSTBRIDGE_DID);
|
|
|
|
MaxCpuCountInitialization (&mPlatformInfoHob);
|
|
|
|
if (mPlatformInfoHob.SmmSmramRequire) {
|
|
Q35BoardVerification ();
|
|
Q35TsegMbytesInitialization ();
|
|
Q35SmramAtDefaultSmbaseInitialization ();
|
|
}
|
|
|
|
PublishPeiMemory ();
|
|
|
|
PlatformQemuUc32BaseInitialization (&mPlatformInfoHob);
|
|
|
|
InitializeRamRegions (&mPlatformInfoHob);
|
|
|
|
if (mPlatformInfoHob.BootMode != BOOT_ON_S3_RESUME) {
|
|
if (!mPlatformInfoHob.SmmSmramRequire) {
|
|
ReserveEmuVariableNvStore ();
|
|
}
|
|
|
|
PeiFvInitialization ();
|
|
MemTypeInfoInitialization ();
|
|
MemMapInitialization (&mPlatformInfoHob);
|
|
NoexecDxeInitialization ();
|
|
}
|
|
|
|
InstallClearCacheCallback ();
|
|
AmdSevInitialize ();
|
|
if (mPlatformInfoHob.HostBridgeDevId == 0xffff) {
|
|
MiscInitializationForMicrovm (&mPlatformInfoHob);
|
|
} else {
|
|
MiscInitialization (&mPlatformInfoHob);
|
|
}
|
|
|
|
InstallFeatureControlCallback ();
|
|
|
|
return EFI_SUCCESS;
|
|
}
|