audk/OvmfPkg/PlatformPei/MemDetect.c

420 lines
12 KiB
C

/**@file
Memory Detection for Virtual Machines.
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
Module Name:
MemDetect.c
**/
//
// The package level header files this module uses
//
#include <IndustryStandard/E820.h>
#include <IndustryStandard/I440FxPiix4.h>
#include <IndustryStandard/Q35MchIch9.h>
#include <IndustryStandard/CloudHv.h>
#include <IndustryStandard/Xen/arch-x86/hvm/start_info.h>
#include <PiPei.h>
#include <Register/Intel/SmramSaveStateMap.h>
//
// The Library classes this module consumes
//
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/HobLib.h>
#include <Library/IoLib.h>
#include <Library/MemEncryptSevLib.h>
#include <Library/PcdLib.h>
#include <Library/PciLib.h>
#include <Library/PeimEntryPoint.h>
#include <Library/ResourcePublicationLib.h>
#include <Library/QemuFwCfgLib.h>
#include <Library/QemuFwCfgSimpleParserLib.h>
#include "Platform.h"
VOID
Q35TsegMbytesInitialization (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT16 ExtendedTsegMbytes;
RETURN_STATUS PcdStatus;
ASSERT (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID);
//
// Check if QEMU offers an extended TSEG.
//
// This can be seen from writing MCH_EXT_TSEG_MB_QUERY to the MCH_EXT_TSEG_MB
// register, and reading back the register.
//
// On a QEMU machine type that does not offer an extended TSEG, the initial
// write overwrites whatever value a malicious guest OS may have placed in
// the (unimplemented) register, before entering S3 or rebooting.
// Subsequently, the read returns MCH_EXT_TSEG_MB_QUERY unchanged.
//
// On a QEMU machine type that offers an extended TSEG, the initial write
// triggers an update to the register. Subsequently, the value read back
// (which is guaranteed to differ from MCH_EXT_TSEG_MB_QUERY) tells us the
// number of megabytes.
//
PciWrite16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB), MCH_EXT_TSEG_MB_QUERY);
ExtendedTsegMbytes = PciRead16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB));
if (ExtendedTsegMbytes == MCH_EXT_TSEG_MB_QUERY) {
PlatformInfoHob->Q35TsegMbytes = PcdGet16 (PcdQ35TsegMbytes);
return;
}
DEBUG ((
DEBUG_INFO,
"%a: QEMU offers an extended TSEG (%d MB)\n",
__func__,
ExtendedTsegMbytes
));
PcdStatus = PcdSet16S (PcdQ35TsegMbytes, ExtendedTsegMbytes);
ASSERT_RETURN_ERROR (PcdStatus);
PlatformInfoHob->Q35TsegMbytes = ExtendedTsegMbytes;
}
VOID
Q35SmramAtDefaultSmbaseInitialization (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
RETURN_STATUS PcdStatus;
UINTN CtlReg;
UINT8 CtlRegVal;
ASSERT (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID);
CtlReg = DRAMC_REGISTER_Q35 (MCH_DEFAULT_SMBASE_CTL);
PciWrite8 (CtlReg, MCH_DEFAULT_SMBASE_QUERY);
CtlRegVal = PciRead8 (CtlReg);
PlatformInfoHob->Q35SmramAtDefaultSmbase = (BOOLEAN)(CtlRegVal ==
MCH_DEFAULT_SMBASE_IN_RAM);
DEBUG ((
DEBUG_INFO,
"%a: SMRAM at default SMBASE %a\n",
__func__,
PlatformInfoHob->Q35SmramAtDefaultSmbase ? "found" : "not found"
));
PcdStatus = PcdSetBoolS (
PcdQ35SmramAtDefaultSmbase,
PlatformInfoHob->Q35SmramAtDefaultSmbase
);
ASSERT_RETURN_ERROR (PcdStatus);
}
/**
Initialize the PhysMemAddressWidth field in PlatformInfoHob based on guest RAM size.
**/
VOID
AddressWidthInitialization (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
RETURN_STATUS PcdStatus;
PlatformAddressWidthInitialization (PlatformInfoHob);
//
// If DXE is 32-bit, then we're done; PciBusDxe will degrade 64-bit MMIO
// resources to 32-bit anyway. See DegradeResource() in
// "PciResourceSupport.c".
//
#ifdef MDE_CPU_IA32
if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
return;
}
#endif
if (PlatformInfoHob->PcdPciMmio64Size == 0) {
if (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME) {
DEBUG ((
DEBUG_INFO,
"%a: disabling 64-bit PCI host aperture\n",
__func__
));
PcdStatus = PcdSet64S (PcdPciMmio64Size, 0);
ASSERT_RETURN_ERROR (PcdStatus);
}
return;
}
if (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME) {
//
// The core PciHostBridgeDxe driver will automatically add this range to
// the GCD memory space map through our PciHostBridgeLib instance; here we
// only need to set the PCDs.
//
PcdStatus = PcdSet64S (PcdPciMmio64Base, PlatformInfoHob->PcdPciMmio64Base);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet64S (PcdPciMmio64Size, PlatformInfoHob->PcdPciMmio64Size);
ASSERT_RETURN_ERROR (PcdStatus);
DEBUG ((
DEBUG_INFO,
"%a: Pci64Base=0x%Lx Pci64Size=0x%Lx\n",
__func__,
PlatformInfoHob->PcdPciMmio64Base,
PlatformInfoHob->PcdPciMmio64Size
));
}
}
/**
Calculate the cap for the permanent PEI memory.
**/
STATIC
UINT32
GetPeiMemoryCap (
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
BOOLEAN Page1GSupport;
UINT32 RegEax;
UINT32 RegEdx;
UINT64 MaxAddr;
UINT32 Level5Pages;
UINT32 Level4Pages;
UINT32 Level3Pages;
UINT32 Level2Pages;
UINT32 TotalPages;
UINT64 ApStacks;
UINT64 MemoryCap;
//
// If DXE is 32-bit, then just return the traditional 64 MB cap.
//
#ifdef MDE_CPU_IA32
if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
return SIZE_64MB;
}
#endif
//
// Dependent on physical address width, PEI memory allocations can be
// dominated by the page tables built for 64-bit DXE. So we key the cap off
// of those.
//
Page1GSupport = FALSE;
if (PcdGetBool (PcdUse1GPageTable)) {
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000001) {
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
if ((RegEdx & BIT26) != 0) {
Page1GSupport = TRUE;
}
}
}
//
// - A 4KB page accommodates the least significant 12 bits of the
// virtual address.
// - A page table entry at any level consumes 8 bytes, so a 4KB page
// table page (at any level) contains 512 entries, and
// accommodates 9 bits of the virtual address.
// - we minimally cover the phys address space with 2MB pages, so
// level 1 never exists.
// - If 1G paging is available, then level 2 doesn't exist either.
// - Start with level 2, where a page table page accommodates
// 9 + 9 + 12 = 30 bits of the virtual address (and covers 1GB of
// physical address space).
//
MaxAddr = LShiftU64 (1, PlatformInfoHob->PhysMemAddressWidth);
Level2Pages = (UINT32)RShiftU64 (MaxAddr, 30);
Level3Pages = MAX (Level2Pages >> 9, 1u);
Level4Pages = MAX (Level3Pages >> 9, 1u);
Level5Pages = 1;
if (Page1GSupport) {
Level2Pages = 0;
TotalPages = Level5Pages + Level4Pages + Level3Pages;
ASSERT (TotalPages <= 0x40201);
} else {
TotalPages = Level5Pages + Level4Pages + Level3Pages + Level2Pages;
// PlatformAddressWidthFromCpuid() caps at 40 phys bits without 1G pages.
ASSERT (PlatformInfoHob->PhysMemAddressWidth <= 40);
ASSERT (TotalPages <= 0x404);
}
//
// With 32k stacks and 4096 vcpus this lands at 128 MB (far away
// from MAX_UINT32).
//
ApStacks = PlatformInfoHob->PcdCpuMaxLogicalProcessorNumber * PcdGet32 (PcdCpuApStackSize);
//
// Add 64 MB for miscellaneous allocations. Note that for
// PhysMemAddressWidth values close to 36 and a small number of
// CPUs, the cap will actually be dominated by this increment.
//
MemoryCap = EFI_PAGES_TO_SIZE ((UINTN)TotalPages) + ApStacks + SIZE_64MB;
DEBUG ((
DEBUG_INFO,
"%a: page tables: %6lu KB (%u/%u/%u/%u pages for levels 5/4/3/2)\n",
__func__,
RShiftU64 (EFI_PAGES_TO_SIZE ((UINTN)TotalPages), 10),
Level5Pages,
Level4Pages,
Level3Pages,
Level2Pages
));
DEBUG ((
DEBUG_INFO,
"%a: ap stacks: %6lu KB (%u cpus)\n",
__func__,
RShiftU64 (ApStacks, 10),
PlatformInfoHob->PcdCpuMaxLogicalProcessorNumber
));
DEBUG ((
DEBUG_INFO,
"%a: memory cap: %6lu KB\n",
__func__,
RShiftU64 (MemoryCap, 10)
));
ASSERT (MemoryCap <= MAX_UINT32);
return (UINT32)MemoryCap;
}
/**
Publish PEI core memory
@return EFI_SUCCESS The PEIM initialized successfully.
**/
EFI_STATUS
PublishPeiMemory (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS MemoryBase;
UINT64 MemorySize;
UINT32 LowerMemorySize;
UINT32 PeiMemoryCap;
UINT32 S3AcpiReservedMemoryBase;
UINT32 S3AcpiReservedMemorySize;
PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);
LowerMemorySize = PlatformInfoHob->LowMemory;
if (PlatformInfoHob->SmmSmramRequire) {
//
// TSEG is chipped from the end of low RAM
//
LowerMemorySize -= PlatformInfoHob->Q35TsegMbytes * SIZE_1MB;
}
S3AcpiReservedMemoryBase = 0;
S3AcpiReservedMemorySize = 0;
//
// If S3 is supported, then the S3 permanent PEI memory is placed next,
// downwards. Its size is primarily dictated by CpuMpPei. The formula below
// is an approximation.
//
if (PlatformInfoHob->S3Supported) {
S3AcpiReservedMemorySize = SIZE_512KB +
PlatformInfoHob->PcdCpuMaxLogicalProcessorNumber *
PcdGet32 (PcdCpuApStackSize);
S3AcpiReservedMemoryBase = LowerMemorySize - S3AcpiReservedMemorySize;
LowerMemorySize = S3AcpiReservedMemoryBase;
}
PlatformInfoHob->S3AcpiReservedMemoryBase = S3AcpiReservedMemoryBase;
PlatformInfoHob->S3AcpiReservedMemorySize = S3AcpiReservedMemorySize;
if (PlatformInfoHob->BootMode == BOOT_ON_S3_RESUME) {
MemoryBase = S3AcpiReservedMemoryBase;
MemorySize = S3AcpiReservedMemorySize;
} else {
PeiMemoryCap = GetPeiMemoryCap (PlatformInfoHob);
DEBUG ((
DEBUG_INFO,
"%a: PhysMemAddressWidth=%d PeiMemoryCap=%u KB\n",
__func__,
PlatformInfoHob->PhysMemAddressWidth,
PeiMemoryCap >> 10
));
//
// Determine the range of memory to use during PEI
//
// Technically we could lay the permanent PEI RAM over SEC's temporary
// decompression and scratch buffer even if "secure S3" is needed, since
// their lifetimes don't overlap. However, PeiFvInitialization() will cover
// RAM up to PcdOvmfDecompressionScratchEnd with an EfiACPIMemoryNVS memory
// allocation HOB, and other allocations served from the permanent PEI RAM
// shouldn't overlap with that HOB.
//
MemoryBase = PlatformInfoHob->S3Supported && PlatformInfoHob->SmmSmramRequire ?
PcdGet32 (PcdOvmfDecompressionScratchEnd) :
PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize);
MemorySize = LowerMemorySize - MemoryBase;
if (MemorySize > PeiMemoryCap) {
MemoryBase = LowerMemorySize - PeiMemoryCap;
MemorySize = PeiMemoryCap;
} else {
DEBUG ((
DEBUG_WARN,
"%a: Not enough memory for PEI (have %lu KB, estimated need %u KB)\n",
__func__,
RShiftU64 (MemorySize, 10),
PeiMemoryCap >> 10
));
}
}
//
// MEMFD_BASE_ADDRESS separates the SMRAM at the default SMBASE from the
// normal boot permanent PEI RAM. Regarding the S3 boot path, the S3
// permanent PEI RAM is located even higher.
//
if (PlatformInfoHob->SmmSmramRequire && PlatformInfoHob->Q35SmramAtDefaultSmbase) {
ASSERT (SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE <= MemoryBase);
}
//
// Publish this memory to the PEI Core
//
Status = PublishSystemMemory (MemoryBase, MemorySize);
ASSERT_EFI_ERROR (Status);
return Status;
}
/**
Publish system RAM and reserve memory regions
**/
VOID
InitializeRamRegions (
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
if (TdIsEnabled ()) {
PlatformTdxPublishRamRegions ();
return;
}
PlatformQemuInitializeRam (PlatformInfoHob);
SevInitializeRam ();
PlatformQemuInitializeRamForS3 (PlatformInfoHob);
}