audk/PcAtChipsetPkg/PcatRealTimeClockRuntimeDxe/PcRtc.c

1404 lines
36 KiB
C

/** @file
RTC Architectural Protocol GUID as defined in DxeCis 0.96.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Inc. All rights reserved.<BR>
Copyright (c) 2018 - 2020, ARM Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "PcRtc.h"
extern UINTN mRtcIndexRegister;
extern UINTN mRtcTargetRegister;
extern UINT16 mRtcDefaultYear;
extern UINT16 mMinimalValidYear;
extern UINT16 mMaximalValidYear;
//
// Days of month.
//
UINTN mDayOfMonth[] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
//
// The name of NV variable to store the timezone and daylight saving information.
//
CHAR16 mTimeZoneVariableName[] = L"RTC";
/**
Compare the Hour, Minute and Second of the From time and the To time.
Only compare H/M/S in EFI_TIME and ignore other fields here.
@param From the first time
@param To the second time
@return >0 The H/M/S of the From time is later than those of To time
@return ==0 The H/M/S of the From time is same as those of To time
@return <0 The H/M/S of the From time is earlier than those of To time
**/
INTN
CompareHMS (
IN EFI_TIME *From,
IN EFI_TIME *To
);
/**
To check if second date is later than first date within 24 hours.
@param From the first date
@param To the second date
@retval TRUE From is previous to To within 24 hours.
@retval FALSE From is later, or it is previous to To more than 24 hours.
**/
BOOLEAN
IsWithinOneDay (
IN EFI_TIME *From,
IN EFI_TIME *To
);
/**
Read RTC content through its registers using IO access.
@param Address Address offset of RTC. It is recommended to use
macros such as RTC_ADDRESS_SECONDS.
@return The data of UINT8 type read from RTC.
**/
STATIC
UINT8
IoRtcRead (
IN UINTN Address
)
{
IoWrite8 (
mRtcIndexRegister,
(UINT8)(Address | (UINT8)(IoRead8 (mRtcIndexRegister) & 0x80))
);
return IoRead8 (mRtcTargetRegister);
}
/**
Write RTC through its registers using IO access.
@param Address Address offset of RTC. It is recommended to use
macros such as RTC_ADDRESS_SECONDS.
@param Data The content you want to write into RTC.
**/
STATIC
VOID
IoRtcWrite (
IN UINTN Address,
IN UINT8 Data
)
{
IoWrite8 (
mRtcIndexRegister,
(UINT8)(Address | (UINT8)(IoRead8 (mRtcIndexRegister) & 0x80))
);
IoWrite8 (mRtcTargetRegister, Data);
}
/**
Read RTC content through its registers using MMIO access.
@param Address Address offset of RTC. It is recommended to use
macros such as RTC_ADDRESS_SECONDS.
@return The data of UINT8 type read from RTC.
**/
STATIC
UINT8
MmioRtcRead (
IN UINTN Address
)
{
MmioWrite8 (
mRtcIndexRegister,
(UINT8)(Address | (UINT8)(MmioRead8 (mRtcIndexRegister) & 0x80))
);
return MmioRead8 (mRtcTargetRegister);
}
/**
Write RTC through its registers using MMIO access.
@param Address Address offset of RTC. It is recommended to use
macros such as RTC_ADDRESS_SECONDS.
@param Data The content you want to write into RTC.
**/
STATIC
VOID
MmioRtcWrite (
IN UINTN Address,
IN UINT8 Data
)
{
MmioWrite8 (
mRtcIndexRegister,
(UINT8)(Address | (UINT8)(MmioRead8 (mRtcIndexRegister) & 0x80))
);
MmioWrite8 (mRtcTargetRegister, Data);
}
/**
Read RTC content through its registers.
@param Address Address offset of RTC. It is recommended to use
macros such as RTC_ADDRESS_SECONDS.
@return The data of UINT8 type read from RTC.
**/
STATIC
UINT8
RtcRead (
IN UINTN Address
)
{
if (FeaturePcdGet (PcdRtcUseMmio)) {
return MmioRtcRead (Address);
}
return IoRtcRead (Address);
}
/**
Write RTC through its registers.
@param Address Address offset of RTC. It is recommended to use
macros such as RTC_ADDRESS_SECONDS.
@param Data The content you want to write into RTC.
**/
STATIC
VOID
RtcWrite (
IN UINTN Address,
IN UINT8 Data
)
{
if (FeaturePcdGet (PcdRtcUseMmio)) {
MmioRtcWrite (Address, Data);
} else {
IoRtcWrite (Address, Data);
}
}
/**
Initialize RTC.
@param Global For global use inside this module.
@retval EFI_DEVICE_ERROR Initialization failed due to device error.
@retval EFI_SUCCESS Initialization successful.
**/
EFI_STATUS
PcRtcInit (
IN PC_RTC_MODULE_GLOBALS *Global
)
{
EFI_STATUS Status;
RTC_REGISTER_A RegisterA;
RTC_REGISTER_B RegisterB;
RTC_REGISTER_D RegisterD;
EFI_TIME Time;
UINTN DataSize;
UINT32 TimerVar;
BOOLEAN Enabled;
BOOLEAN Pending;
//
// Acquire RTC Lock to make access to RTC atomic
//
if (!EfiAtRuntime ()) {
EfiAcquireLock (&Global->RtcLock);
}
//
// Initialize RTC Register
//
// Make sure Division Chain is properly configured,
// or RTC clock won't "tick" -- time won't increment
//
RegisterA.Data = FixedPcdGet8 (PcdInitialValueRtcRegisterA);
RtcWrite (RTC_ADDRESS_REGISTER_A, RegisterA.Data);
//
// Read Register B
//
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
//
// Clear RTC flag register
//
RtcRead (RTC_ADDRESS_REGISTER_C);
//
// Clear RTC register D
//
RegisterD.Data = FixedPcdGet8 (PcdInitialValueRtcRegisterD);
RtcWrite (RTC_ADDRESS_REGISTER_D, RegisterD.Data);
//
// Wait for up to 0.1 seconds for the RTC to be updated
//
Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
if (EFI_ERROR (Status)) {
//
// Set the variable with default value if the RTC is functioning incorrectly.
//
Global->SavedTimeZone = EFI_UNSPECIFIED_TIMEZONE;
Global->Daylight = 0;
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
return EFI_DEVICE_ERROR;
}
//
// Get the Time/Date/Daylight Savings values.
//
Time.Second = RtcRead (RTC_ADDRESS_SECONDS);
Time.Minute = RtcRead (RTC_ADDRESS_MINUTES);
Time.Hour = RtcRead (RTC_ADDRESS_HOURS);
Time.Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
Time.Month = RtcRead (RTC_ADDRESS_MONTH);
Time.Year = RtcRead (RTC_ADDRESS_YEAR);
//
// Release RTC Lock.
//
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
//
// Get the data of Daylight saving and time zone, if they have been
// stored in NV variable during previous boot.
//
DataSize = sizeof (UINT32);
Status = EfiGetVariable (
mTimeZoneVariableName,
&gEfiCallerIdGuid,
NULL,
&DataSize,
&TimerVar
);
if (!EFI_ERROR (Status)) {
Time.TimeZone = (INT16)TimerVar;
Time.Daylight = (UINT8)(TimerVar >> 16);
} else {
Time.TimeZone = EFI_UNSPECIFIED_TIMEZONE;
Time.Daylight = 0;
}
//
// Validate time fields
//
Status = ConvertRtcTimeToEfiTime (&Time, RegisterB);
if (!EFI_ERROR (Status)) {
Status = RtcTimeFieldsValid (&Time);
}
if (EFI_ERROR (Status)) {
//
// Report Status Code to indicate that the RTC has bad date and time
//
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MINOR,
(EFI_SOFTWARE_DXE_RT_DRIVER | EFI_SW_EC_BAD_DATE_TIME)
);
Time.Second = RTC_INIT_SECOND;
Time.Minute = RTC_INIT_MINUTE;
Time.Hour = RTC_INIT_HOUR;
Time.Day = RTC_INIT_DAY;
Time.Month = RTC_INIT_MONTH;
Time.Year = MAX (mRtcDefaultYear, mMinimalValidYear);
Time.Year = MIN (Time.Year, mMaximalValidYear);
Time.Nanosecond = 0;
Time.TimeZone = EFI_UNSPECIFIED_TIMEZONE;
Time.Daylight = 0;
}
//
// Set RTC configuration after get original time
// The value of bit AIE should be reserved.
//
RegisterB.Data = FixedPcdGet8 (PcdInitialValueRtcRegisterB) | (RegisterB.Data & BIT5);
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
//
// Reset time value according to new RTC configuration
//
Status = PcRtcSetTime (&Time, Global);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
//
// Reset wakeup time value to valid state when wakeup alarm is disabled and wakeup time is invalid.
// Global variable has already had valid SavedTimeZone and Daylight,
// so we can use them to get and set wakeup time.
//
Status = PcRtcGetWakeupTime (&Enabled, &Pending, &Time, Global);
if ((!EFI_ERROR (Status)) || (Enabled)) {
return EFI_SUCCESS;
}
//
// When wakeup time is disabled and invalid, reset wakeup time register to valid state
// but keep wakeup alarm disabled.
//
Time.Second = RTC_INIT_SECOND;
Time.Minute = RTC_INIT_MINUTE;
Time.Hour = RTC_INIT_HOUR;
Time.Day = RTC_INIT_DAY;
Time.Month = RTC_INIT_MONTH;
Time.Year = MAX (mRtcDefaultYear, mMinimalValidYear);
Time.Year = MIN (Time.Year, mMaximalValidYear);
Time.Nanosecond = 0;
Time.TimeZone = Global->SavedTimeZone;
Time.Daylight = Global->Daylight;
//
// Acquire RTC Lock to make access to RTC atomic
//
if (!EfiAtRuntime ()) {
EfiAcquireLock (&Global->RtcLock);
}
//
// Wait for up to 0.1 seconds for the RTC to be updated
//
Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
if (EFI_ERROR (Status)) {
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
return EFI_DEVICE_ERROR;
}
ConvertEfiTimeToRtcTime (&Time, RegisterB);
//
// Set the Y/M/D info to variable as it has no corresponding hw registers.
//
Status = EfiSetVariable (
L"RTCALARM",
&gEfiCallerIdGuid,
EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE,
sizeof (Time),
&Time
);
if (EFI_ERROR (Status)) {
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
return EFI_DEVICE_ERROR;
}
//
// Inhibit updates of the RTC
//
RegisterB.Bits.Set = 1;
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
//
// Set RTC alarm time registers
//
RtcWrite (RTC_ADDRESS_SECONDS_ALARM, Time.Second);
RtcWrite (RTC_ADDRESS_MINUTES_ALARM, Time.Minute);
RtcWrite (RTC_ADDRESS_HOURS_ALARM, Time.Hour);
//
// Allow updates of the RTC registers
//
RegisterB.Bits.Set = 0;
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
//
// Release RTC Lock.
//
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
return EFI_SUCCESS;
}
/**
Returns the current time and date information, and the time-keeping capabilities
of the hardware platform.
@param Time A pointer to storage to receive a snapshot of the current time.
@param Capabilities An optional pointer to a buffer to receive the real time clock
device's capabilities.
@param Global For global use inside this module.
@retval EFI_SUCCESS The operation completed successfully.
@retval EFI_INVALID_PARAMETER Time is NULL.
@retval EFI_DEVICE_ERROR The time could not be retrieved due to hardware error.
**/
EFI_STATUS
PcRtcGetTime (
OUT EFI_TIME *Time,
OUT EFI_TIME_CAPABILITIES *Capabilities OPTIONAL,
IN PC_RTC_MODULE_GLOBALS *Global
)
{
EFI_STATUS Status;
RTC_REGISTER_B RegisterB;
//
// Check parameters for null pointer
//
if (Time == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Acquire RTC Lock to make access to RTC atomic
//
if (!EfiAtRuntime ()) {
EfiAcquireLock (&Global->RtcLock);
}
//
// Wait for up to 0.1 seconds for the RTC to be updated
//
Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
if (EFI_ERROR (Status)) {
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
return Status;
}
//
// Read Register B
//
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
//
// Get the Time/Date/Daylight Savings values.
//
Time->Second = RtcRead (RTC_ADDRESS_SECONDS);
Time->Minute = RtcRead (RTC_ADDRESS_MINUTES);
Time->Hour = RtcRead (RTC_ADDRESS_HOURS);
Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
Time->Month = RtcRead (RTC_ADDRESS_MONTH);
Time->Year = RtcRead (RTC_ADDRESS_YEAR);
//
// Release RTC Lock.
//
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
//
// Get the variable that contains the TimeZone and Daylight fields
//
Time->TimeZone = Global->SavedTimeZone;
Time->Daylight = Global->Daylight;
//
// Make sure all field values are in correct range
//
Status = ConvertRtcTimeToEfiTime (Time, RegisterB);
if (!EFI_ERROR (Status)) {
Status = RtcTimeFieldsValid (Time);
}
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
//
// Fill in Capabilities if it was passed in
//
if (Capabilities != NULL) {
Capabilities->Resolution = 1;
//
// 1 hertz
//
Capabilities->Accuracy = 50000000;
//
// 50 ppm
//
Capabilities->SetsToZero = FALSE;
}
return EFI_SUCCESS;
}
/**
Sets the current local time and date information.
@param Time A pointer to the current time.
@param Global For global use inside this module.
@retval EFI_SUCCESS The operation completed successfully.
@retval EFI_INVALID_PARAMETER A time field is out of range.
@retval EFI_DEVICE_ERROR The time could not be set due due to hardware error.
**/
EFI_STATUS
PcRtcSetTime (
IN EFI_TIME *Time,
IN PC_RTC_MODULE_GLOBALS *Global
)
{
EFI_STATUS Status;
EFI_TIME RtcTime;
RTC_REGISTER_B RegisterB;
UINT32 TimerVar;
if (Time == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Make sure that the time fields are valid
//
Status = RtcTimeFieldsValid (Time);
if (EFI_ERROR (Status)) {
return Status;
}
CopyMem (&RtcTime, Time, sizeof (EFI_TIME));
//
// Acquire RTC Lock to make access to RTC atomic
//
if (!EfiAtRuntime ()) {
EfiAcquireLock (&Global->RtcLock);
}
//
// Wait for up to 0.1 seconds for the RTC to be updated
//
Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
if (EFI_ERROR (Status)) {
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
return Status;
}
//
// Write timezone and daylight to RTC variable
//
if ((Time->TimeZone == EFI_UNSPECIFIED_TIMEZONE) && (Time->Daylight == 0)) {
Status = EfiSetVariable (
mTimeZoneVariableName,
&gEfiCallerIdGuid,
0,
0,
NULL
);
if (Status == EFI_NOT_FOUND) {
Status = EFI_SUCCESS;
}
} else {
TimerVar = Time->Daylight;
TimerVar = (UINT32)((TimerVar << 16) | (UINT16)(Time->TimeZone));
Status = EfiSetVariable (
mTimeZoneVariableName,
&gEfiCallerIdGuid,
EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE,
sizeof (TimerVar),
&TimerVar
);
}
if (EFI_ERROR (Status)) {
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
return EFI_DEVICE_ERROR;
}
//
// Read Register B, and inhibit updates of the RTC
//
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
RegisterB.Bits.Set = 1;
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
//
// Store the century value to RTC before converting to BCD format.
//
if (Global->CenturyRtcAddress != 0) {
RtcWrite (Global->CenturyRtcAddress, DecimalToBcd8 ((UINT8)(RtcTime.Year / 100)));
}
ConvertEfiTimeToRtcTime (&RtcTime, RegisterB);
RtcWrite (RTC_ADDRESS_SECONDS, RtcTime.Second);
RtcWrite (RTC_ADDRESS_MINUTES, RtcTime.Minute);
RtcWrite (RTC_ADDRESS_HOURS, RtcTime.Hour);
RtcWrite (RTC_ADDRESS_DAY_OF_THE_MONTH, RtcTime.Day);
RtcWrite (RTC_ADDRESS_MONTH, RtcTime.Month);
RtcWrite (RTC_ADDRESS_YEAR, (UINT8)RtcTime.Year);
//
// Allow updates of the RTC registers
//
RegisterB.Bits.Set = 0;
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
//
// Release RTC Lock.
//
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
//
// Set the variable that contains the TimeZone and Daylight fields
//
Global->SavedTimeZone = Time->TimeZone;
Global->Daylight = Time->Daylight;
return EFI_SUCCESS;
}
/**
Returns the current wakeup alarm clock setting.
@param Enabled Indicates if the alarm is currently enabled or disabled.
@param Pending Indicates if the alarm signal is pending and requires acknowledgment.
@param Time The current alarm setting.
@param Global For global use inside this module.
@retval EFI_SUCCESS The alarm settings were returned.
@retval EFI_INVALID_PARAMETER Enabled is NULL.
@retval EFI_INVALID_PARAMETER Pending is NULL.
@retval EFI_INVALID_PARAMETER Time is NULL.
@retval EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error.
@retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform.
**/
EFI_STATUS
PcRtcGetWakeupTime (
OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time,
IN PC_RTC_MODULE_GLOBALS *Global
)
{
EFI_STATUS Status;
RTC_REGISTER_B RegisterB;
RTC_REGISTER_C RegisterC;
EFI_TIME RtcTime;
UINTN DataSize;
//
// Check parameters for null pointers
//
if ((Enabled == NULL) || (Pending == NULL) || (Time == NULL)) {
return EFI_INVALID_PARAMETER;
}
//
// Acquire RTC Lock to make access to RTC atomic
//
if (!EfiAtRuntime ()) {
EfiAcquireLock (&Global->RtcLock);
}
//
// Wait for up to 0.1 seconds for the RTC to be updated
//
Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
if (EFI_ERROR (Status)) {
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
return EFI_DEVICE_ERROR;
}
//
// Read Register B and Register C
//
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
RegisterC.Data = RtcRead (RTC_ADDRESS_REGISTER_C);
//
// Get the Time/Date/Daylight Savings values.
//
*Enabled = RegisterB.Bits.Aie;
*Pending = RegisterC.Bits.Af;
Time->Second = RtcRead (RTC_ADDRESS_SECONDS_ALARM);
Time->Minute = RtcRead (RTC_ADDRESS_MINUTES_ALARM);
Time->Hour = RtcRead (RTC_ADDRESS_HOURS_ALARM);
Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
Time->Month = RtcRead (RTC_ADDRESS_MONTH);
Time->Year = RtcRead (RTC_ADDRESS_YEAR);
Time->TimeZone = Global->SavedTimeZone;
Time->Daylight = Global->Daylight;
//
// Get the alarm info from variable
//
DataSize = sizeof (EFI_TIME);
Status = EfiGetVariable (
L"RTCALARM",
&gEfiCallerIdGuid,
NULL,
&DataSize,
&RtcTime
);
if (!EFI_ERROR (Status)) {
//
// The alarm variable exists. In this case, we read variable to get info.
//
Time->Day = RtcTime.Day;
Time->Month = RtcTime.Month;
Time->Year = RtcTime.Year;
}
//
// Release RTC Lock.
//
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
//
// Make sure all field values are in correct range
//
Status = ConvertRtcTimeToEfiTime (Time, RegisterB);
if (!EFI_ERROR (Status)) {
Status = RtcTimeFieldsValid (Time);
}
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
/**
Sets the system wakeup alarm clock time.
@param Enabled Enable or disable the wakeup alarm.
@param Time If Enable is TRUE, the time to set the wakeup alarm for.
If Enable is FALSE, then this parameter is optional, and may be NULL.
@param Global For global use inside this module.
@retval EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled.
If Enable is FALSE, then the wakeup alarm was disabled.
@retval EFI_INVALID_PARAMETER A time field is out of range.
@retval EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error.
@retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform.
**/
EFI_STATUS
PcRtcSetWakeupTime (
IN BOOLEAN Enable,
IN EFI_TIME *Time OPTIONAL,
IN PC_RTC_MODULE_GLOBALS *Global
)
{
EFI_STATUS Status;
EFI_TIME RtcTime;
RTC_REGISTER_B RegisterB;
EFI_TIME_CAPABILITIES Capabilities;
ZeroMem (&RtcTime, sizeof (RtcTime));
if (Enable) {
if (Time == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Make sure that the time fields are valid
//
Status = RtcTimeFieldsValid (Time);
if (EFI_ERROR (Status)) {
return EFI_INVALID_PARAMETER;
}
//
// Just support set alarm time within 24 hours
//
Status = PcRtcGetTime (&RtcTime, &Capabilities, Global);
if (!EFI_ERROR (Status)) {
Status = RtcTimeFieldsValid (&RtcTime);
}
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
if (!IsWithinOneDay (&RtcTime, Time)) {
return EFI_UNSUPPORTED;
}
//
// Make a local copy of the time and date
//
CopyMem (&RtcTime, Time, sizeof (EFI_TIME));
}
//
// Acquire RTC Lock to make access to RTC atomic
//
if (!EfiAtRuntime ()) {
EfiAcquireLock (&Global->RtcLock);
}
//
// Wait for up to 0.1 seconds for the RTC to be updated
//
Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
if (EFI_ERROR (Status)) {
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
return EFI_DEVICE_ERROR;
}
//
// Read Register B
//
RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
if (Enable) {
ConvertEfiTimeToRtcTime (&RtcTime, RegisterB);
} else {
//
// if the alarm is disable, record the current setting.
//
RtcTime.Second = RtcRead (RTC_ADDRESS_SECONDS_ALARM);
RtcTime.Minute = RtcRead (RTC_ADDRESS_MINUTES_ALARM);
RtcTime.Hour = RtcRead (RTC_ADDRESS_HOURS_ALARM);
RtcTime.Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
RtcTime.Month = RtcRead (RTC_ADDRESS_MONTH);
RtcTime.Year = RtcRead (RTC_ADDRESS_YEAR);
RtcTime.TimeZone = Global->SavedTimeZone;
RtcTime.Daylight = Global->Daylight;
}
//
// Set the Y/M/D info to variable as it has no corresponding hw registers.
//
Status = EfiSetVariable (
L"RTCALARM",
&gEfiCallerIdGuid,
EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE,
sizeof (RtcTime),
&RtcTime
);
if (EFI_ERROR (Status)) {
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
return EFI_DEVICE_ERROR;
}
//
// Inhibit updates of the RTC
//
RegisterB.Bits.Set = 1;
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
if (Enable) {
//
// Set RTC alarm time
//
RtcWrite (RTC_ADDRESS_SECONDS_ALARM, RtcTime.Second);
RtcWrite (RTC_ADDRESS_MINUTES_ALARM, RtcTime.Minute);
RtcWrite (RTC_ADDRESS_HOURS_ALARM, RtcTime.Hour);
RegisterB.Bits.Aie = 1;
} else {
RegisterB.Bits.Aie = 0;
}
//
// Allow updates of the RTC registers
//
RegisterB.Bits.Set = 0;
RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
//
// Release RTC Lock.
//
if (!EfiAtRuntime ()) {
EfiReleaseLock (&Global->RtcLock);
}
return EFI_SUCCESS;
}
/**
Checks an 8-bit BCD value, and converts to an 8-bit value if valid.
This function checks the 8-bit BCD value specified by Value.
If valid, the function converts it to an 8-bit value and returns it.
Otherwise, return 0xff.
@param Value The 8-bit BCD value to check and convert
@return The 8-bit value converted. Or 0xff if Value is invalid.
**/
UINT8
CheckAndConvertBcd8ToDecimal8 (
IN UINT8 Value
)
{
if ((Value < 0xa0) && ((Value & 0xf) < 0xa)) {
return BcdToDecimal8 (Value);
}
return 0xff;
}
/**
Converts time read from RTC to EFI_TIME format defined by UEFI spec.
This function converts raw time data read from RTC to the EFI_TIME format
defined by UEFI spec.
If data mode of RTC is BCD, then converts it to decimal,
If RTC is in 12-hour format, then converts it to 24-hour format.
@param Time On input, the time data read from RTC to convert
On output, the time converted to UEFI format
@param RegisterB Value of Register B of RTC, indicating data mode
and hour format.
@retval EFI_INVALID_PARAMETER Parameters passed in are invalid.
@retval EFI_SUCCESS Convert RTC time to EFI time successfully.
**/
EFI_STATUS
ConvertRtcTimeToEfiTime (
IN OUT EFI_TIME *Time,
IN RTC_REGISTER_B RegisterB
)
{
BOOLEAN IsPM;
UINT8 Century;
// IsPM only makes sense for 12-hour format.
if (RegisterB.Bits.Mil == 0) {
if ((Time->Hour & 0x80) != 0) {
IsPM = TRUE;
} else {
IsPM = FALSE;
}
Time->Hour = (UINT8)(Time->Hour & 0x7f);
}
if (RegisterB.Bits.Dm == 0) {
Time->Year = CheckAndConvertBcd8ToDecimal8 ((UINT8)Time->Year);
Time->Month = CheckAndConvertBcd8ToDecimal8 (Time->Month);
Time->Day = CheckAndConvertBcd8ToDecimal8 (Time->Day);
Time->Hour = CheckAndConvertBcd8ToDecimal8 (Time->Hour);
Time->Minute = CheckAndConvertBcd8ToDecimal8 (Time->Minute);
Time->Second = CheckAndConvertBcd8ToDecimal8 (Time->Second);
}
if ((Time->Year == 0xff) || (Time->Month == 0xff) || (Time->Day == 0xff) ||
(Time->Hour == 0xff) || (Time->Minute == 0xff) || (Time->Second == 0xff))
{
return EFI_INVALID_PARAMETER;
}
//
// For minimal/maximum year range [1970, 2069],
// Century is 19 if RTC year >= 70,
// Century is 20 otherwise.
//
Century = (UINT8)(mMinimalValidYear / 100);
if (Time->Year < mMinimalValidYear % 100) {
Century++;
}
Time->Year = (UINT16)(Century * 100 + Time->Year);
//
// If time is in 12 hour format, convert it to 24 hour format
//
if (RegisterB.Bits.Mil == 0) {
if (IsPM && (Time->Hour < 12)) {
Time->Hour = (UINT8)(Time->Hour + 12);
}
if (!IsPM && (Time->Hour == 12)) {
Time->Hour = 0;
}
}
Time->Nanosecond = 0;
return EFI_SUCCESS;
}
/**
Wait for a period for the RTC to be ready.
@param Timeout Tell how long it should take to wait.
@retval EFI_DEVICE_ERROR RTC device error.
@retval EFI_SUCCESS RTC is updated and ready.
**/
EFI_STATUS
RtcWaitToUpdate (
UINTN Timeout
)
{
RTC_REGISTER_A RegisterA;
RTC_REGISTER_D RegisterD;
//
// See if the RTC is functioning correctly
//
RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D);
if (RegisterD.Bits.Vrt == 0) {
return EFI_DEVICE_ERROR;
}
//
// Wait for up to 0.1 seconds for the RTC to be ready.
//
Timeout = (Timeout / 10) + 1;
RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A);
while (RegisterA.Bits.Uip == 1 && Timeout > 0) {
MicroSecondDelay (10);
RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A);
Timeout--;
}
RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D);
if ((Timeout == 0) || (RegisterD.Bits.Vrt == 0)) {
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
/**
See if all fields of a variable of EFI_TIME type is correct.
@param Time The time to be checked.
@retval EFI_INVALID_PARAMETER Some fields of Time are not correct.
@retval EFI_SUCCESS Time is a valid EFI_TIME variable.
**/
EFI_STATUS
RtcTimeFieldsValid (
IN EFI_TIME *Time
)
{
if ((Time->Year < mMinimalValidYear) ||
(Time->Year > mMaximalValidYear) ||
(Time->Month < 1) ||
(Time->Month > 12) ||
(!DayValid (Time)) ||
(Time->Hour > 23) ||
(Time->Minute > 59) ||
(Time->Second > 59) ||
(Time->Nanosecond > 999999999) ||
(!((Time->TimeZone == EFI_UNSPECIFIED_TIMEZONE) || ((Time->TimeZone >= -1440) && (Time->TimeZone <= 1440)))) ||
((Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT))) != 0))
{
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
/**
See if field Day of an EFI_TIME is correct.
@param Time Its Day field is to be checked.
@retval TRUE Day field of Time is correct.
@retval FALSE Day field of Time is NOT correct.
**/
BOOLEAN
DayValid (
IN EFI_TIME *Time
)
{
//
// The validity of Time->Month field should be checked before
//
ASSERT (Time->Month >= 1);
ASSERT (Time->Month <= 12);
if ((Time->Day < 1) ||
(Time->Day > mDayOfMonth[Time->Month - 1]) ||
((Time->Month == 2) && (!IsLeapYear (Time) && (Time->Day > 28)))
)
{
return FALSE;
}
return TRUE;
}
/**
Check if it is a leap year.
@param Time The time to be checked.
@retval TRUE It is a leap year.
@retval FALSE It is NOT a leap year.
**/
BOOLEAN
IsLeapYear (
IN EFI_TIME *Time
)
{
if (Time->Year % 4 == 0) {
if (Time->Year % 100 == 0) {
if (Time->Year % 400 == 0) {
return TRUE;
} else {
return FALSE;
}
} else {
return TRUE;
}
} else {
return FALSE;
}
}
/**
Converts time from EFI_TIME format defined by UEFI spec to RTC format.
This function converts time from EFI_TIME format defined by UEFI spec to RTC format.
If data mode of RTC is BCD, then converts EFI_TIME to it.
If RTC is in 12-hour format, then converts EFI_TIME to it.
@param Time On input, the time data read from UEFI to convert
On output, the time converted to RTC format
@param RegisterB Value of Register B of RTC, indicating data mode
**/
VOID
ConvertEfiTimeToRtcTime (
IN OUT EFI_TIME *Time,
IN RTC_REGISTER_B RegisterB
)
{
BOOLEAN IsPM;
IsPM = TRUE;
//
// Adjust hour field if RTC is in 12 hour mode
//
if (RegisterB.Bits.Mil == 0) {
if (Time->Hour < 12) {
IsPM = FALSE;
}
if (Time->Hour >= 13) {
Time->Hour = (UINT8)(Time->Hour - 12);
} else if (Time->Hour == 0) {
Time->Hour = 12;
}
}
//
// Set the Time/Date values.
//
Time->Year = (UINT16)(Time->Year % 100);
if (RegisterB.Bits.Dm == 0) {
Time->Year = DecimalToBcd8 ((UINT8)Time->Year);
Time->Month = DecimalToBcd8 (Time->Month);
Time->Day = DecimalToBcd8 (Time->Day);
Time->Hour = DecimalToBcd8 (Time->Hour);
Time->Minute = DecimalToBcd8 (Time->Minute);
Time->Second = DecimalToBcd8 (Time->Second);
}
//
// If we are in 12 hour mode and PM is set, then set bit 7 of the Hour field.
//
if ((RegisterB.Bits.Mil == 0) && IsPM) {
Time->Hour = (UINT8)(Time->Hour | 0x80);
}
}
/**
Compare the Hour, Minute and Second of the From time and the To time.
Only compare H/M/S in EFI_TIME and ignore other fields here.
@param From the first time
@param To the second time
@return >0 The H/M/S of the From time is later than those of To time
@return ==0 The H/M/S of the From time is same as those of To time
@return <0 The H/M/S of the From time is earlier than those of To time
**/
INTN
CompareHMS (
IN EFI_TIME *From,
IN EFI_TIME *To
)
{
if ((From->Hour > To->Hour) ||
((From->Hour == To->Hour) && (From->Minute > To->Minute)) ||
((From->Hour == To->Hour) && (From->Minute == To->Minute) && (From->Second > To->Second)))
{
return 1;
} else if ((From->Hour == To->Hour) && (From->Minute == To->Minute) && (From->Second == To->Second)) {
return 0;
} else {
return -1;
}
}
/**
To check if second date is later than first date within 24 hours.
@param From the first date
@param To the second date
@retval TRUE From is previous to To within 24 hours.
@retval FALSE From is later, or it is previous to To more than 24 hours.
**/
BOOLEAN
IsWithinOneDay (
IN EFI_TIME *From,
IN EFI_TIME *To
)
{
BOOLEAN Adjacent;
Adjacent = FALSE;
//
// The validity of From->Month field should be checked before
//
ASSERT (From->Month >= 1);
ASSERT (From->Month <= 12);
if (From->Year == To->Year) {
if (From->Month == To->Month) {
if ((From->Day + 1) == To->Day) {
if ((CompareHMS (From, To) >= 0)) {
Adjacent = TRUE;
}
} else if (From->Day == To->Day) {
if ((CompareHMS (From, To) <= 0)) {
Adjacent = TRUE;
}
}
} else if (((From->Month + 1) == To->Month) && (To->Day == 1)) {
if ((From->Month == 2) && !IsLeapYear (From)) {
if (From->Day == 28) {
if ((CompareHMS (From, To) >= 0)) {
Adjacent = TRUE;
}
}
} else if (From->Day == mDayOfMonth[From->Month - 1]) {
if ((CompareHMS (From, To) >= 0)) {
Adjacent = TRUE;
}
}
}
} else if (((From->Year + 1) == To->Year) &&
(From->Month == 12) &&
(From->Day == 31) &&
(To->Month == 1) &&
(To->Day == 1))
{
if ((CompareHMS (From, To) >= 0)) {
Adjacent = TRUE;
}
}
return Adjacent;
}
/**
Get the century RTC address from the ACPI FADT table.
@return The century RTC address or 0 if not found.
**/
UINT8
GetCenturyRtcAddress (
VOID
)
{
EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
Fadt = (EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *)EfiLocateFirstAcpiTable (
EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE
);
if ((Fadt != NULL) &&
(Fadt->Century > RTC_ADDRESS_REGISTER_D) && (Fadt->Century < 0x80)
)
{
return Fadt->Century;
} else {
return 0;
}
}
/**
Notification function of ACPI Table change.
This is a notification function registered on ACPI Table change event.
It saves the Century address stored in ACPI FADT table.
@param Event Event whose notification function is being invoked.
@param Context Pointer to the notification function's context.
**/
VOID
EFIAPI
PcRtcAcpiTableChangeCallback (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_STATUS Status;
EFI_TIME Time;
UINT8 CenturyRtcAddress;
UINT8 Century;
CenturyRtcAddress = GetCenturyRtcAddress ();
if ((CenturyRtcAddress != 0) && (mModuleGlobal.CenturyRtcAddress != CenturyRtcAddress)) {
mModuleGlobal.CenturyRtcAddress = CenturyRtcAddress;
Status = PcRtcGetTime (&Time, NULL, &mModuleGlobal);
if (!EFI_ERROR (Status)) {
Century = (UINT8)(Time.Year / 100);
Century = DecimalToBcd8 (Century);
DEBUG ((DEBUG_INFO, "PcRtc: Write 0x%x to CMOS location 0x%x\n", Century, mModuleGlobal.CenturyRtcAddress));
RtcWrite (mModuleGlobal.CenturyRtcAddress, Century);
}
}
}