audk/UefiPayloadPkg/UefiPayloadEntry/UniversalPayloadEntry.c

502 lines
16 KiB
C

/** @file
Copyright (c) 2021, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "UefiPayloadEntry.h"
#define MEMORY_ATTRIBUTE_MASK (EFI_RESOURCE_ATTRIBUTE_PRESENT | \
EFI_RESOURCE_ATTRIBUTE_INITIALIZED | \
EFI_RESOURCE_ATTRIBUTE_TESTED | \
EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED | \
EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED | \
EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED | \
EFI_RESOURCE_ATTRIBUTE_READ_ONLY_PROTECTED | \
EFI_RESOURCE_ATTRIBUTE_16_BIT_IO | \
EFI_RESOURCE_ATTRIBUTE_32_BIT_IO | \
EFI_RESOURCE_ATTRIBUTE_64_BIT_IO | \
EFI_RESOURCE_ATTRIBUTE_PERSISTENT )
#define TESTED_MEMORY_ATTRIBUTES (EFI_RESOURCE_ATTRIBUTE_PRESENT | \
EFI_RESOURCE_ATTRIBUTE_INITIALIZED | \
EFI_RESOURCE_ATTRIBUTE_TESTED )
extern VOID *mHobList;
/**
Print all HOBs info from the HOB list.
@return The pointer to the HOB list.
**/
VOID
PrintHob (
IN CONST VOID *HobStart
);
/**
Some bootloader may pass a pcd database, and UPL also contain a PCD database.
Dxe PCD driver has the assumption that the two PCD database can be catenated and
the local token number should be successive.
This function will fix up the UPL PCD database to meet that assumption.
@param[in] DxeFv The FV where to find the Universal PCD database.
@retval EFI_SUCCESS If it completed successfully.
@retval other Failed to fix up.
**/
EFI_STATUS
FixUpPcdDatabase (
IN EFI_FIRMWARE_VOLUME_HEADER *DxeFv
)
{
EFI_STATUS Status;
EFI_FFS_FILE_HEADER *FileHeader;
VOID *PcdRawData;
PEI_PCD_DATABASE *PeiDatabase;
PEI_PCD_DATABASE *UplDatabase;
EFI_HOB_GUID_TYPE *GuidHob;
DYNAMICEX_MAPPING *ExMapTable;
UINTN Index;
GuidHob = GetFirstGuidHob (&gPcdDataBaseHobGuid);
if (GuidHob == NULL) {
//
// No fix-up is needed.
//
return EFI_SUCCESS;
}
PeiDatabase = (PEI_PCD_DATABASE *)GET_GUID_HOB_DATA (GuidHob);
DEBUG ((DEBUG_INFO, "Find the Pei PCD data base, the total local token number is %d\n", PeiDatabase->LocalTokenCount));
Status = FvFindFileByTypeGuid (DxeFv, EFI_FV_FILETYPE_DRIVER, PcdGetPtr (PcdPcdDriverFile), &FileHeader);
ASSERT_EFI_ERROR (Status);
if (EFI_ERROR (Status)) {
return Status;
}
Status = FileFindSection (FileHeader, EFI_SECTION_RAW, &PcdRawData);
ASSERT_EFI_ERROR (Status);
if (EFI_ERROR (Status)) {
return Status;
}
UplDatabase = (PEI_PCD_DATABASE *)PcdRawData;
ExMapTable = (DYNAMICEX_MAPPING *)(UINTN)((UINTN)PcdRawData + UplDatabase->ExMapTableOffset);
for (Index = 0; Index < UplDatabase->ExTokenCount; Index++) {
ExMapTable[Index].TokenNumber += PeiDatabase->LocalTokenCount;
}
DEBUG ((DEBUG_INFO, "Fix up UPL PCD database successfully\n"));
return EFI_SUCCESS;
}
/**
Add HOB into HOB list
@param[in] Hob The HOB to be added into the HOB list.
**/
VOID
AddNewHob (
IN EFI_PEI_HOB_POINTERS *Hob
)
{
EFI_PEI_HOB_POINTERS NewHob;
if (Hob->Raw == NULL) {
return;
}
NewHob.Header = CreateHob (Hob->Header->HobType, Hob->Header->HobLength);
ASSERT (NewHob.Header != NULL);
if (NewHob.Header == NULL) {
return;
}
CopyMem (NewHob.Header + 1, Hob->Header + 1, Hob->Header->HobLength - sizeof (EFI_HOB_GENERIC_HEADER));
}
/**
Found the Resource Descriptor HOB that contains a range (Base, Top)
@param[in] HobList Hob start address
@param[in] Base Memory start address
@param[in] Top Memory end address.
@retval The pointer to the Resource Descriptor HOB.
**/
EFI_HOB_RESOURCE_DESCRIPTOR *
FindResourceDescriptorByRange (
IN VOID *HobList,
IN EFI_PHYSICAL_ADDRESS Base,
IN EFI_PHYSICAL_ADDRESS Top
)
{
EFI_PEI_HOB_POINTERS Hob;
EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
for (Hob.Raw = (UINT8 *)HobList; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
//
// Skip all HOBs except Resource Descriptor HOBs
//
if (GET_HOB_TYPE (Hob) != EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
continue;
}
//
// Skip Resource Descriptor HOBs that do not describe tested system memory
//
ResourceHob = Hob.ResourceDescriptor;
if (ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY) {
continue;
}
if ((ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) != TESTED_MEMORY_ATTRIBUTES) {
continue;
}
//
// Skip Resource Descriptor HOBs that do not contain the PHIT range EfiFreeMemoryBottom..EfiFreeMemoryTop
//
if (Base < ResourceHob->PhysicalStart) {
continue;
}
if (Top > (ResourceHob->PhysicalStart + ResourceHob->ResourceLength)) {
continue;
}
return ResourceHob;
}
return NULL;
}
/**
Find the highest below 4G memory resource descriptor, except the input Resource Descriptor.
@param[in] HobList Hob start address
@param[in] MinimalNeededSize Minimal needed size.
@param[in] ExceptResourceHob Ignore this Resource Descriptor.
@retval The pointer to the Resource Descriptor HOB.
**/
EFI_HOB_RESOURCE_DESCRIPTOR *
FindAnotherHighestBelow4GResourceDescriptor (
IN VOID *HobList,
IN UINTN MinimalNeededSize,
IN EFI_HOB_RESOURCE_DESCRIPTOR *ExceptResourceHob
)
{
EFI_PEI_HOB_POINTERS Hob;
EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
EFI_HOB_RESOURCE_DESCRIPTOR *ReturnResourceHob;
ReturnResourceHob = NULL;
for (Hob.Raw = (UINT8 *)HobList; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
//
// Skip all HOBs except Resource Descriptor HOBs
//
if (GET_HOB_TYPE (Hob) != EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
continue;
}
//
// Skip Resource Descriptor HOBs that do not describe tested system memory
//
ResourceHob = Hob.ResourceDescriptor;
if (ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY) {
continue;
}
if ((ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) != TESTED_MEMORY_ATTRIBUTES) {
continue;
}
//
// Skip if the Resource Descriptor HOB equals to ExceptResourceHob
//
if (ResourceHob == ExceptResourceHob) {
continue;
}
//
// Skip Resource Descriptor HOBs that are beyond 4G
//
if ((ResourceHob->PhysicalStart + ResourceHob->ResourceLength) > BASE_4GB) {
continue;
}
//
// Skip Resource Descriptor HOBs that are too small
//
if (ResourceHob->ResourceLength < MinimalNeededSize) {
continue;
}
//
// Return the topest Resource Descriptor
//
if (ReturnResourceHob == NULL) {
ReturnResourceHob = ResourceHob;
} else {
if (ReturnResourceHob->PhysicalStart < ResourceHob->PhysicalStart) {
ReturnResourceHob = ResourceHob;
}
}
}
return ReturnResourceHob;
}
/**
Check the HOB and decide if it is need inside Payload
Payload maintainer may make decision which HOB is need or needn't
Then add the check logic in the function.
@param[in] Hob The HOB to check
@retval TRUE If HOB is need inside Payload
@retval FALSE If HOB is needn't inside Payload
**/
BOOLEAN
IsHobNeed (
EFI_PEI_HOB_POINTERS Hob
)
{
if (Hob.Header->HobType == EFI_HOB_TYPE_HANDOFF) {
return FALSE;
}
if (Hob.Header->HobType == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
if (CompareGuid (&Hob.MemoryAllocationModule->MemoryAllocationHeader.Name, &gEfiHobMemoryAllocModuleGuid)) {
return FALSE;
}
}
// Arrive here mean the HOB is need
return TRUE;
}
/**
It will build HOBs based on information from bootloaders.
@param[in] BootloaderParameter The starting memory address of bootloader parameter block.
@param[out] DxeFv The pointer to the DXE FV in memory.
@retval EFI_SUCCESS If it completed successfully.
@retval Others If it failed to build required HOBs.
**/
EFI_STATUS
BuildHobs (
IN UINTN BootloaderParameter,
OUT EFI_FIRMWARE_VOLUME_HEADER **DxeFv
)
{
EFI_PEI_HOB_POINTERS Hob;
UINTN MinimalNeededSize;
EFI_PHYSICAL_ADDRESS FreeMemoryBottom;
EFI_PHYSICAL_ADDRESS FreeMemoryTop;
EFI_PHYSICAL_ADDRESS MemoryBottom;
EFI_PHYSICAL_ADDRESS MemoryTop;
EFI_HOB_RESOURCE_DESCRIPTOR *PhitResourceHob;
EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
UNIVERSAL_PAYLOAD_EXTRA_DATA *ExtraData;
UINT8 *GuidHob;
EFI_HOB_FIRMWARE_VOLUME *FvHob;
UNIVERSAL_PAYLOAD_ACPI_TABLE *AcpiTable;
ACPI_BOARD_INFO *AcpiBoardInfo;
EFI_HOB_HANDOFF_INFO_TABLE *HobInfo;
UINT8 Idx;
Hob.Raw = (UINT8 *)BootloaderParameter;
MinimalNeededSize = FixedPcdGet32 (PcdSystemMemoryUefiRegionSize);
ASSERT (Hob.Raw != NULL);
ASSERT ((UINTN)Hob.HandoffInformationTable->EfiFreeMemoryTop == Hob.HandoffInformationTable->EfiFreeMemoryTop);
ASSERT ((UINTN)Hob.HandoffInformationTable->EfiMemoryTop == Hob.HandoffInformationTable->EfiMemoryTop);
ASSERT ((UINTN)Hob.HandoffInformationTable->EfiFreeMemoryBottom == Hob.HandoffInformationTable->EfiFreeMemoryBottom);
ASSERT ((UINTN)Hob.HandoffInformationTable->EfiMemoryBottom == Hob.HandoffInformationTable->EfiMemoryBottom);
//
// Try to find Resource Descriptor HOB that contains Hob range EfiMemoryBottom..EfiMemoryTop
//
PhitResourceHob = FindResourceDescriptorByRange (Hob.Raw, Hob.HandoffInformationTable->EfiMemoryBottom, Hob.HandoffInformationTable->EfiMemoryTop);
if (PhitResourceHob == NULL) {
//
// Boot loader's Phit Hob is not in an available Resource Descriptor, find another Resource Descriptor for new Phit Hob
//
ResourceHob = FindAnotherHighestBelow4GResourceDescriptor (Hob.Raw, MinimalNeededSize, NULL);
if (ResourceHob == NULL) {
return EFI_NOT_FOUND;
}
MemoryBottom = ResourceHob->PhysicalStart + ResourceHob->ResourceLength - MinimalNeededSize;
FreeMemoryBottom = MemoryBottom;
FreeMemoryTop = ResourceHob->PhysicalStart + ResourceHob->ResourceLength;
MemoryTop = FreeMemoryTop;
} else if (PhitResourceHob->PhysicalStart + PhitResourceHob->ResourceLength - Hob.HandoffInformationTable->EfiMemoryTop >= MinimalNeededSize) {
//
// New availiable Memory range in new hob is right above memory top in old hob.
//
MemoryBottom = Hob.HandoffInformationTable->EfiFreeMemoryTop;
FreeMemoryBottom = Hob.HandoffInformationTable->EfiMemoryTop;
FreeMemoryTop = FreeMemoryBottom + MinimalNeededSize;
MemoryTop = FreeMemoryTop;
} else if (Hob.HandoffInformationTable->EfiMemoryBottom - PhitResourceHob->PhysicalStart >= MinimalNeededSize) {
//
// New availiable Memory range in new hob is right below memory bottom in old hob.
//
MemoryBottom = Hob.HandoffInformationTable->EfiMemoryBottom - MinimalNeededSize;
FreeMemoryBottom = MemoryBottom;
FreeMemoryTop = Hob.HandoffInformationTable->EfiMemoryBottom;
MemoryTop = Hob.HandoffInformationTable->EfiMemoryTop;
} else {
//
// In the Resource Descriptor HOB contains boot loader Hob, there is no enough free memory size for payload hob
// Find another Resource Descriptor Hob
//
ResourceHob = FindAnotherHighestBelow4GResourceDescriptor (Hob.Raw, MinimalNeededSize, PhitResourceHob);
if (ResourceHob == NULL) {
return EFI_NOT_FOUND;
}
MemoryBottom = ResourceHob->PhysicalStart + ResourceHob->ResourceLength - MinimalNeededSize;
FreeMemoryBottom = MemoryBottom;
FreeMemoryTop = ResourceHob->PhysicalStart + ResourceHob->ResourceLength;
MemoryTop = FreeMemoryTop;
}
HobInfo = HobConstructor ((VOID *)(UINTN)MemoryBottom, (VOID *)(UINTN)MemoryTop, (VOID *)(UINTN)FreeMemoryBottom, (VOID *)(UINTN)FreeMemoryTop);
HobInfo->BootMode = Hob.HandoffInformationTable->BootMode;
//
// From now on, mHobList will point to the new Hob range.
//
//
// Create an empty FvHob for the DXE FV that contains DXE core.
//
BuildFvHob ((EFI_PHYSICAL_ADDRESS)0, 0);
//
// Since payload created new Hob, move all hobs except PHIT from boot loader hob list.
//
while (!END_OF_HOB_LIST (Hob)) {
if (IsHobNeed (Hob)) {
// Add this hob to payload HOB
AddNewHob (&Hob);
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
//
// Get DXE FV location
//
GuidHob = GetFirstGuidHob (&gUniversalPayloadExtraDataGuid);
ASSERT (GuidHob != NULL);
ExtraData = (UNIVERSAL_PAYLOAD_EXTRA_DATA *)GET_GUID_HOB_DATA (GuidHob);
DEBUG ((DEBUG_INFO, "Multiple Fv Count=%d\n", ExtraData->Count));
ASSERT (AsciiStrCmp (ExtraData->Entry[0].Identifier, "uefi_fv") == 0);
*DxeFv = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)ExtraData->Entry[0].Base;
ASSERT ((*DxeFv)->FvLength == ExtraData->Entry[0].Size);
//
// support multiple FVs provided by UPL
//
for (Idx = 1; Idx < ExtraData->Count; Idx++) {
BuildFvHob (ExtraData->Entry[Idx].Base, ExtraData->Entry[Idx].Size);
DEBUG ((
DEBUG_INFO,
"UPL Multiple fv[%d], Base=0x%x, size=0x%x\n",
Idx,
ExtraData->Entry[Idx].Base,
ExtraData->Entry[Idx].Size
));
}
//
// Create guid hob for acpi board information
//
GuidHob = GetFirstGuidHob (&gUniversalPayloadAcpiTableGuid);
if (GuidHob != NULL) {
AcpiTable = (UNIVERSAL_PAYLOAD_ACPI_TABLE *)GET_GUID_HOB_DATA (GuidHob);
GuidHob = GetFirstGuidHob (&gUefiAcpiBoardInfoGuid);
if (GuidHob == NULL) {
AcpiBoardInfo = BuildHobFromAcpi ((UINT64)AcpiTable->Rsdp);
ASSERT (AcpiBoardInfo != NULL);
}
}
//
// Update DXE FV information to first fv hob in the hob list, which
// is the empty FvHob created before.
//
FvHob = GetFirstHob (EFI_HOB_TYPE_FV);
FvHob->BaseAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)*DxeFv;
FvHob->Length = (*DxeFv)->FvLength;
return EFI_SUCCESS;
}
/**
Entry point to the C language phase of UEFI payload.
@param[in] BootloaderParameter The starting address of bootloader parameter block.
@retval It will not return if SUCCESS, and return error when passing bootloader parameter.
**/
EFI_STATUS
EFIAPI
_ModuleEntryPoint (
IN UINTN BootloaderParameter
)
{
EFI_STATUS Status;
PHYSICAL_ADDRESS DxeCoreEntryPoint;
EFI_PEI_HOB_POINTERS Hob;
EFI_FIRMWARE_VOLUME_HEADER *DxeFv;
mHobList = (VOID *)BootloaderParameter;
DxeFv = NULL;
// Call constructor for all libraries
ProcessLibraryConstructorList ();
DEBUG ((DEBUG_INFO, "Entering Universal Payload...\n"));
DEBUG ((DEBUG_INFO, "sizeof(UINTN) = 0x%x\n", sizeof (UINTN)));
DEBUG_CODE (
//
// Dump the Hobs from boot loader
//
PrintHob (mHobList);
);
// Initialize floating point operating environment to be compliant with UEFI spec.
InitializeFloatingPointUnits ();
// Build HOB based on information from Bootloader
Status = BuildHobs (BootloaderParameter, &DxeFv);
ASSERT_EFI_ERROR (Status);
FixUpPcdDatabase (DxeFv);
Status = UniversalLoadDxeCore (DxeFv, &DxeCoreEntryPoint);
ASSERT_EFI_ERROR (Status);
//
// Mask off all legacy 8259 interrupt sources
//
IoWrite8 (LEGACY_8259_MASK_REGISTER_MASTER, 0xFF);
IoWrite8 (LEGACY_8259_MASK_REGISTER_SLAVE, 0xFF);
Hob.HandoffInformationTable = (EFI_HOB_HANDOFF_INFO_TABLE *)GetFirstHob (EFI_HOB_TYPE_HANDOFF);
HandOffToDxeCore (DxeCoreEntryPoint, Hob);
// Should not get here
CpuDeadLoop ();
return EFI_SUCCESS;
}