mirror of https://github.com/acidanthera/audk.git
818 lines
30 KiB
C
818 lines
30 KiB
C
/** @file
|
|
MP initialize support functions for PEI phase.
|
|
|
|
Copyright (c) 2016 - 2020, Intel Corporation. All rights reserved.<BR>
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include "MpLib.h"
|
|
#include <Library/PeiServicesLib.h>
|
|
#include <Guid/S3SmmInitDone.h>
|
|
#include <Ppi/ShadowMicrocode.h>
|
|
|
|
STATIC UINT64 mSevEsPeiWakeupBuffer = BASE_1MB;
|
|
|
|
/**
|
|
S3 SMM Init Done notification function.
|
|
|
|
@param PeiServices Indirect reference to the PEI Services Table.
|
|
@param NotifyDesc Address of the notification descriptor data structure.
|
|
@param InvokePpi Address of the PPI that was invoked.
|
|
|
|
@retval EFI_SUCCESS The function completes successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NotifyOnS3SmmInitDonePpi (
|
|
IN EFI_PEI_SERVICES **PeiServices,
|
|
IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDesc,
|
|
IN VOID *InvokePpi
|
|
);
|
|
|
|
//
|
|
// Global function
|
|
//
|
|
EFI_PEI_NOTIFY_DESCRIPTOR mS3SmmInitDoneNotifyDesc = {
|
|
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
|
|
&gEdkiiS3SmmInitDoneGuid,
|
|
NotifyOnS3SmmInitDonePpi
|
|
};
|
|
|
|
/**
|
|
S3 SMM Init Done notification function.
|
|
|
|
@param PeiServices Indirect reference to the PEI Services Table.
|
|
@param NotifyDesc Address of the notification descriptor data structure.
|
|
@param InvokePpi Address of the PPI that was invoked.
|
|
|
|
@retval EFI_SUCCESS The function completes successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
NotifyOnS3SmmInitDonePpi (
|
|
IN EFI_PEI_SERVICES **PeiServices,
|
|
IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDesc,
|
|
IN VOID *InvokePpi
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
|
|
CpuMpData = GetCpuMpData ();
|
|
|
|
//
|
|
// PiSmmCpuDxeSmm driver hardcode change the loop mode to HLT mode.
|
|
// So in this notify function, code need to check the current loop
|
|
// mode, if it is not HLT mode, code need to change loop mode back
|
|
// to the original mode.
|
|
//
|
|
if (CpuMpData->ApLoopMode != ApInHltLoop) {
|
|
CpuMpData->WakeUpByInitSipiSipi = TRUE;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Enable Debug Agent to support source debugging on AP function.
|
|
|
|
**/
|
|
VOID
|
|
EnableDebugAgent (
|
|
VOID
|
|
)
|
|
{
|
|
}
|
|
|
|
/**
|
|
Get pointer to CPU MP Data structure.
|
|
For BSP, the pointer is retrieved from HOB.
|
|
For AP, the structure is stored in the top of each AP's stack.
|
|
|
|
@return The pointer to CPU MP Data structure.
|
|
**/
|
|
CPU_MP_DATA *
|
|
GetCpuMpData (
|
|
VOID
|
|
)
|
|
{
|
|
CPU_MP_DATA *CpuMpData;
|
|
MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
|
|
UINTN ApTopOfStack;
|
|
AP_STACK_DATA *ApStackData;
|
|
|
|
ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
|
|
if (ApicBaseMsr.Bits.BSP == 1) {
|
|
CpuMpData = GetCpuMpDataFromGuidedHob ();
|
|
ASSERT (CpuMpData != NULL);
|
|
} else {
|
|
ApTopOfStack = ALIGN_VALUE ((UINTN)&ApTopOfStack, (UINTN)PcdGet32 (PcdCpuApStackSize));
|
|
ApStackData = (AP_STACK_DATA *)((UINTN)ApTopOfStack- sizeof (AP_STACK_DATA));
|
|
CpuMpData = (CPU_MP_DATA *)ApStackData->MpData;
|
|
}
|
|
|
|
return CpuMpData;
|
|
}
|
|
|
|
/**
|
|
Save the pointer to CPU MP Data structure.
|
|
|
|
@param[in] CpuMpData The pointer to CPU MP Data structure will be saved.
|
|
**/
|
|
VOID
|
|
SaveCpuMpData (
|
|
IN CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
UINT32 MaxCpusPerHob;
|
|
UINT32 CpusInHob;
|
|
UINT64 Data64;
|
|
UINT32 Index;
|
|
UINT32 HobBase;
|
|
CPU_INFO_IN_HOB *CpuInfoInHob;
|
|
MP_HAND_OFF *MpHandOff;
|
|
MP_HAND_OFF_CONFIG MpHandOffConfig;
|
|
UINTN MpHandOffSize;
|
|
|
|
MaxCpusPerHob = (0xFFF8 - sizeof (EFI_HOB_GUID_TYPE) - sizeof (MP_HAND_OFF)) / sizeof (PROCESSOR_HAND_OFF);
|
|
|
|
//
|
|
// When APs are in a state that can be waken up by a store operation to a memory address,
|
|
// report the MP_HAND_OFF data for DXE to use.
|
|
//
|
|
CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
|
|
|
|
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
|
if (Index % MaxCpusPerHob == 0) {
|
|
HobBase = Index;
|
|
CpusInHob = MIN (CpuMpData->CpuCount - HobBase, MaxCpusPerHob);
|
|
|
|
MpHandOffSize = sizeof (MP_HAND_OFF) + sizeof (PROCESSOR_HAND_OFF) * CpusInHob;
|
|
MpHandOff = (MP_HAND_OFF *)BuildGuidHob (&mMpHandOffGuid, MpHandOffSize);
|
|
ASSERT (MpHandOff != NULL);
|
|
ZeroMem (MpHandOff, MpHandOffSize);
|
|
|
|
MpHandOff->ProcessorIndex = HobBase;
|
|
MpHandOff->CpuCount = CpusInHob;
|
|
}
|
|
|
|
MpHandOff->Info[Index-HobBase].ApicId = CpuInfoInHob[Index].ApicId;
|
|
MpHandOff->Info[Index-HobBase].Health = CpuInfoInHob[Index].Health;
|
|
if (CpuMpData->ApLoopMode != ApInHltLoop) {
|
|
MpHandOff->Info[Index-HobBase].StartupSignalAddress = (UINT64)(UINTN)CpuMpData->CpuData[Index].StartupApSignal;
|
|
MpHandOff->Info[Index-HobBase].StartupProcedureAddress = (UINT64)(UINTN)&CpuMpData->CpuData[Index].ApFunction;
|
|
}
|
|
}
|
|
|
|
ZeroMem (&MpHandOffConfig, sizeof (MpHandOffConfig));
|
|
if (CpuMpData->ApLoopMode != ApInHltLoop) {
|
|
MpHandOffConfig.StartupSignalValue = MP_HAND_OFF_SIGNAL;
|
|
MpHandOffConfig.WaitLoopExecutionMode = sizeof (VOID *);
|
|
}
|
|
|
|
BuildGuidDataHob (
|
|
&mMpHandOffConfigGuid,
|
|
(VOID *)&MpHandOffConfig,
|
|
sizeof (MpHandOffConfig)
|
|
);
|
|
|
|
//
|
|
// Build location of CPU MP DATA buffer in HOB
|
|
//
|
|
Data64 = (UINT64)(UINTN)CpuMpData;
|
|
BuildGuidDataHob (
|
|
&mCpuInitMpLibHobGuid,
|
|
(VOID *)&Data64,
|
|
sizeof (UINT64)
|
|
);
|
|
}
|
|
|
|
/**
|
|
Check if AP wakeup buffer is overlapped with existing allocated buffer.
|
|
|
|
@param[in] WakeupBufferStart AP wakeup buffer start address.
|
|
@param[in] WakeupBufferEnd AP wakeup buffer end address.
|
|
|
|
@retval TRUE There is overlap.
|
|
@retval FALSE There is no overlap.
|
|
**/
|
|
BOOLEAN
|
|
CheckOverlapWithAllocatedBuffer (
|
|
IN UINT64 WakeupBufferStart,
|
|
IN UINT64 WakeupBufferEnd
|
|
)
|
|
{
|
|
EFI_PEI_HOB_POINTERS Hob;
|
|
EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
|
|
BOOLEAN Overlapped;
|
|
UINT64 MemoryStart;
|
|
UINT64 MemoryEnd;
|
|
|
|
Overlapped = FALSE;
|
|
//
|
|
// Get the HOB list for processing
|
|
//
|
|
Hob.Raw = GetHobList ();
|
|
//
|
|
// Collect memory ranges
|
|
//
|
|
while (!END_OF_HOB_LIST (Hob)) {
|
|
if (Hob.Header->HobType == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
|
|
MemoryHob = Hob.MemoryAllocation;
|
|
MemoryStart = MemoryHob->AllocDescriptor.MemoryBaseAddress;
|
|
MemoryEnd = MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength;
|
|
if (!((WakeupBufferStart >= MemoryEnd) || (WakeupBufferEnd <= MemoryStart))) {
|
|
Overlapped = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Hob.Raw = GET_NEXT_HOB (Hob);
|
|
}
|
|
|
|
return Overlapped;
|
|
}
|
|
|
|
/**
|
|
Get available system memory below 1MB by specified size.
|
|
|
|
@param[in] WakeupBufferSize Wakeup buffer size required
|
|
|
|
@retval other Return wakeup buffer address below 1MB.
|
|
@retval -1 Cannot find free memory below 1MB.
|
|
**/
|
|
UINTN
|
|
GetWakeupBuffer (
|
|
IN UINTN WakeupBufferSize
|
|
)
|
|
{
|
|
EFI_PEI_HOB_POINTERS Hob;
|
|
UINT64 WakeupBufferStart;
|
|
UINT64 WakeupBufferEnd;
|
|
|
|
WakeupBufferSize = (WakeupBufferSize + SIZE_4KB - 1) & ~(SIZE_4KB - 1);
|
|
|
|
//
|
|
// Get the HOB list for processing
|
|
//
|
|
Hob.Raw = GetHobList ();
|
|
|
|
//
|
|
// Collect memory ranges
|
|
//
|
|
while (!END_OF_HOB_LIST (Hob)) {
|
|
if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
|
|
if ((Hob.ResourceDescriptor->PhysicalStart < BASE_1MB) &&
|
|
(Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) &&
|
|
((Hob.ResourceDescriptor->ResourceAttribute &
|
|
(EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED |
|
|
EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED |
|
|
EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED
|
|
)) == 0)
|
|
)
|
|
{
|
|
//
|
|
// Need memory under 1MB to be collected here
|
|
//
|
|
WakeupBufferEnd = Hob.ResourceDescriptor->PhysicalStart + Hob.ResourceDescriptor->ResourceLength;
|
|
if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) &&
|
|
(WakeupBufferEnd > mSevEsPeiWakeupBuffer))
|
|
{
|
|
//
|
|
// SEV-ES Wakeup buffer should be under 1MB and under any previous one
|
|
//
|
|
WakeupBufferEnd = mSevEsPeiWakeupBuffer;
|
|
} else if (WakeupBufferEnd > BASE_1MB) {
|
|
//
|
|
// Wakeup buffer should be under 1MB
|
|
//
|
|
WakeupBufferEnd = BASE_1MB;
|
|
}
|
|
|
|
while (WakeupBufferEnd > WakeupBufferSize) {
|
|
//
|
|
// Wakeup buffer should be aligned on 4KB
|
|
//
|
|
WakeupBufferStart = (WakeupBufferEnd - WakeupBufferSize) & ~(SIZE_4KB - 1);
|
|
if (WakeupBufferStart < Hob.ResourceDescriptor->PhysicalStart) {
|
|
break;
|
|
}
|
|
|
|
if (CheckOverlapWithAllocatedBuffer (WakeupBufferStart, WakeupBufferEnd)) {
|
|
//
|
|
// If this range is overlapped with existing allocated buffer, skip it
|
|
// and find the next range
|
|
//
|
|
WakeupBufferEnd -= WakeupBufferSize;
|
|
continue;
|
|
}
|
|
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"WakeupBufferStart = %x, WakeupBufferSize = %x\n",
|
|
WakeupBufferStart,
|
|
WakeupBufferSize
|
|
));
|
|
|
|
if (ConfidentialComputingGuestHas (CCAttrAmdSevEs)) {
|
|
//
|
|
// Next SEV-ES wakeup buffer allocation must be below this
|
|
// allocation
|
|
//
|
|
mSevEsPeiWakeupBuffer = WakeupBufferStart;
|
|
}
|
|
|
|
return (UINTN)WakeupBufferStart;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Find the next HOB
|
|
//
|
|
Hob.Raw = GET_NEXT_HOB (Hob);
|
|
}
|
|
|
|
return (UINTN)-1;
|
|
}
|
|
|
|
/**
|
|
Get available EfiBootServicesCode memory below 4GB by specified size.
|
|
|
|
This buffer is required to safely transfer AP from real address mode to
|
|
protected mode or long mode, due to the fact that the buffer returned by
|
|
GetWakeupBuffer() may be marked as non-executable.
|
|
|
|
@param[in] BufferSize Wakeup transition buffer size.
|
|
|
|
@retval other Return wakeup transition buffer address below 4GB.
|
|
@retval 0 Cannot find free memory below 4GB.
|
|
**/
|
|
UINTN
|
|
AllocateCodeBuffer (
|
|
IN UINTN BufferSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS Address;
|
|
|
|
Status = PeiServicesAllocatePages (EfiBootServicesCode, EFI_SIZE_TO_PAGES (BufferSize), &Address);
|
|
if (EFI_ERROR (Status)) {
|
|
Address = 0;
|
|
}
|
|
|
|
return (UINTN)Address;
|
|
}
|
|
|
|
/**
|
|
Return the address of the SEV-ES AP jump table.
|
|
|
|
This buffer is required in order for an SEV-ES guest to transition from
|
|
UEFI into an OS.
|
|
|
|
@return Return SEV-ES AP jump table buffer
|
|
**/
|
|
UINTN
|
|
GetSevEsAPMemory (
|
|
VOID
|
|
)
|
|
{
|
|
//
|
|
// PEI phase doesn't need to do such transition. So simply return 0.
|
|
//
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
Checks APs status and updates APs status if needed.
|
|
|
|
**/
|
|
VOID
|
|
CheckAndUpdateApsStatus (
|
|
VOID
|
|
)
|
|
{
|
|
}
|
|
|
|
/**
|
|
Build the microcode patch HOB that contains the base address and size of the
|
|
microcode patch stored in the memory.
|
|
|
|
@param[in] CpuMpData Pointer to the CPU_MP_DATA structure.
|
|
|
|
**/
|
|
VOID
|
|
BuildMicrocodeCacheHob (
|
|
IN CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
EDKII_MICROCODE_PATCH_HOB *MicrocodeHob;
|
|
UINTN HobDataLength;
|
|
UINT32 Index;
|
|
|
|
HobDataLength = sizeof (EDKII_MICROCODE_PATCH_HOB) +
|
|
sizeof (UINT64) * CpuMpData->CpuCount;
|
|
|
|
MicrocodeHob = AllocatePool (HobDataLength);
|
|
if (MicrocodeHob == NULL) {
|
|
ASSERT (FALSE);
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Store the information of the memory region that holds the microcode patches.
|
|
//
|
|
MicrocodeHob->MicrocodePatchAddress = CpuMpData->MicrocodePatchAddress;
|
|
MicrocodeHob->MicrocodePatchRegionSize = CpuMpData->MicrocodePatchRegionSize;
|
|
|
|
//
|
|
// Store the detected microcode patch for each processor as well.
|
|
//
|
|
MicrocodeHob->ProcessorCount = CpuMpData->CpuCount;
|
|
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
|
if (CpuMpData->CpuData[Index].MicrocodeEntryAddr != 0) {
|
|
MicrocodeHob->ProcessorSpecificPatchOffset[Index] =
|
|
CpuMpData->CpuData[Index].MicrocodeEntryAddr - CpuMpData->MicrocodePatchAddress;
|
|
} else {
|
|
MicrocodeHob->ProcessorSpecificPatchOffset[Index] = MAX_UINT64;
|
|
}
|
|
}
|
|
|
|
BuildGuidDataHob (
|
|
&gEdkiiMicrocodePatchHobGuid,
|
|
MicrocodeHob,
|
|
HobDataLength
|
|
);
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
Initialize global data for MP support.
|
|
|
|
@param[in] CpuMpData The pointer to CPU MP Data structure.
|
|
**/
|
|
VOID
|
|
InitMpGlobalData (
|
|
IN CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
BuildMicrocodeCacheHob (CpuMpData);
|
|
SaveCpuMpData (CpuMpData);
|
|
|
|
///
|
|
/// Install Notify
|
|
///
|
|
Status = PeiServicesNotifyPpi (&mS3SmmInitDoneNotifyDesc);
|
|
ASSERT_EFI_ERROR (Status);
|
|
}
|
|
|
|
/**
|
|
This service executes a caller provided function on all enabled APs.
|
|
|
|
@param[in] Procedure A pointer to the function to be run on
|
|
enabled APs of the system. See type
|
|
EFI_AP_PROCEDURE.
|
|
@param[in] SingleThread If TRUE, then all the enabled APs execute
|
|
the function specified by Procedure one by
|
|
one, in ascending order of processor handle
|
|
number. If FALSE, then all the enabled APs
|
|
execute the function specified by Procedure
|
|
simultaneously.
|
|
@param[in] WaitEvent The event created by the caller with CreateEvent()
|
|
service. If it is NULL, then execute in
|
|
blocking mode. BSP waits until all APs finish
|
|
or TimeoutInMicroSeconds expires. If it's
|
|
not NULL, then execute in non-blocking mode.
|
|
BSP requests the function specified by
|
|
Procedure to be started on all the enabled
|
|
APs, and go on executing immediately. If
|
|
all return from Procedure, or TimeoutInMicroSeconds
|
|
expires, this event is signaled. The BSP
|
|
can use the CheckEvent() or WaitForEvent()
|
|
services to check the state of event. Type
|
|
EFI_EVENT is defined in CreateEvent() in
|
|
the Unified Extensible Firmware Interface
|
|
Specification.
|
|
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
|
APs to return from Procedure, either for
|
|
blocking or non-blocking mode. Zero means
|
|
infinity. If the timeout expires before
|
|
all APs return from Procedure, then Procedure
|
|
on the failed APs is terminated. All enabled
|
|
APs are available for next function assigned
|
|
by MpInitLibStartupAllAPs() or
|
|
MPInitLibStartupThisAP().
|
|
If the timeout expires in blocking mode,
|
|
BSP returns EFI_TIMEOUT. If the timeout
|
|
expires in non-blocking mode, WaitEvent
|
|
is signaled with SignalEvent().
|
|
@param[in] ProcedureArgument The parameter passed into Procedure for
|
|
all APs.
|
|
@param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,
|
|
if all APs finish successfully, then its
|
|
content is set to NULL. If not all APs
|
|
finish before timeout expires, then its
|
|
content is set to address of the buffer
|
|
holding handle numbers of the failed APs.
|
|
The buffer is allocated by MP Initialization
|
|
library, and it's the caller's responsibility to
|
|
free the buffer with FreePool() service.
|
|
In blocking mode, it is ready for consumption
|
|
when the call returns. In non-blocking mode,
|
|
it is ready when WaitEvent is signaled. The
|
|
list of failed CPU is terminated by
|
|
END_OF_CPU_LIST.
|
|
|
|
@retval EFI_SUCCESS In blocking mode, all APs have finished before
|
|
the timeout expired.
|
|
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched
|
|
to all enabled APs.
|
|
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
|
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
|
signaled.
|
|
@retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
|
|
supported.
|
|
@retval EFI_DEVICE_ERROR Caller processor is AP.
|
|
@retval EFI_NOT_STARTED No enabled APs exist in the system.
|
|
@retval EFI_NOT_READY Any enabled APs are busy.
|
|
@retval EFI_NOT_READY MP Initialize Library is not initialized.
|
|
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
|
all enabled APs have finished.
|
|
@retval EFI_INVALID_PARAMETER Procedure is NULL.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibStartupAllAPs (
|
|
IN EFI_AP_PROCEDURE Procedure,
|
|
IN BOOLEAN SingleThread,
|
|
IN EFI_EVENT WaitEvent OPTIONAL,
|
|
IN UINTN TimeoutInMicroseconds,
|
|
IN VOID *ProcedureArgument OPTIONAL,
|
|
OUT UINTN **FailedCpuList OPTIONAL
|
|
)
|
|
{
|
|
if (WaitEvent != NULL) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
return StartupAllCPUsWorker (
|
|
Procedure,
|
|
SingleThread,
|
|
TRUE,
|
|
NULL,
|
|
TimeoutInMicroseconds,
|
|
ProcedureArgument,
|
|
FailedCpuList
|
|
);
|
|
}
|
|
|
|
/**
|
|
This service lets the caller get one enabled AP to execute a caller-provided
|
|
function.
|
|
|
|
@param[in] Procedure A pointer to the function to be run on the
|
|
designated AP of the system. See type
|
|
EFI_AP_PROCEDURE.
|
|
@param[in] ProcessorNumber The handle number of the AP. The range is
|
|
from 0 to the total number of logical
|
|
processors minus 1. The total number of
|
|
logical processors can be retrieved by
|
|
MpInitLibGetNumberOfProcessors().
|
|
@param[in] WaitEvent The event created by the caller with CreateEvent()
|
|
service. If it is NULL, then execute in
|
|
blocking mode. BSP waits until this AP finish
|
|
or TimeoutInMicroSeconds expires. If it's
|
|
not NULL, then execute in non-blocking mode.
|
|
BSP requests the function specified by
|
|
Procedure to be started on this AP,
|
|
and go on executing immediately. If this AP
|
|
return from Procedure or TimeoutInMicroSeconds
|
|
expires, this event is signaled. The BSP
|
|
can use the CheckEvent() or WaitForEvent()
|
|
services to check the state of event. Type
|
|
EFI_EVENT is defined in CreateEvent() in
|
|
the Unified Extensible Firmware Interface
|
|
Specification.
|
|
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
|
this AP to finish this Procedure, either for
|
|
blocking or non-blocking mode. Zero means
|
|
infinity. If the timeout expires before
|
|
this AP returns from Procedure, then Procedure
|
|
on the AP is terminated. The
|
|
AP is available for next function assigned
|
|
by MpInitLibStartupAllAPs() or
|
|
MpInitLibStartupThisAP().
|
|
If the timeout expires in blocking mode,
|
|
BSP returns EFI_TIMEOUT. If the timeout
|
|
expires in non-blocking mode, WaitEvent
|
|
is signaled with SignalEvent().
|
|
@param[in] ProcedureArgument The parameter passed into Procedure on the
|
|
specified AP.
|
|
@param[out] Finished If NULL, this parameter is ignored. In
|
|
blocking mode, this parameter is ignored.
|
|
In non-blocking mode, if AP returns from
|
|
Procedure before the timeout expires, its
|
|
content is set to TRUE. Otherwise, the
|
|
value is set to FALSE. The caller can
|
|
determine if the AP returned from Procedure
|
|
by evaluating this value.
|
|
|
|
@retval EFI_SUCCESS In blocking mode, specified AP finished before
|
|
the timeout expires.
|
|
@retval EFI_SUCCESS In non-blocking mode, the function has been
|
|
dispatched to specified AP.
|
|
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
|
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
|
signaled.
|
|
@retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
|
|
supported.
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
|
the specified AP has finished.
|
|
@retval EFI_NOT_READY The specified AP is busy.
|
|
@retval EFI_NOT_READY MP Initialize Library is not initialized.
|
|
@retval EFI_NOT_FOUND The processor with the handle specified by
|
|
ProcessorNumber does not exist.
|
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
|
|
@retval EFI_INVALID_PARAMETER Procedure is NULL.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibStartupThisAP (
|
|
IN EFI_AP_PROCEDURE Procedure,
|
|
IN UINTN ProcessorNumber,
|
|
IN EFI_EVENT WaitEvent OPTIONAL,
|
|
IN UINTN TimeoutInMicroseconds,
|
|
IN VOID *ProcedureArgument OPTIONAL,
|
|
OUT BOOLEAN *Finished OPTIONAL
|
|
)
|
|
{
|
|
if (WaitEvent != NULL) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
return StartupThisAPWorker (
|
|
Procedure,
|
|
ProcessorNumber,
|
|
NULL,
|
|
TimeoutInMicroseconds,
|
|
ProcedureArgument,
|
|
Finished
|
|
);
|
|
}
|
|
|
|
/**
|
|
This service switches the requested AP to be the BSP from that point onward.
|
|
This service changes the BSP for all purposes. This call can only be performed
|
|
by the current BSP.
|
|
|
|
@param[in] ProcessorNumber The handle number of AP that is to become the new
|
|
BSP. The range is from 0 to the total number of
|
|
logical processors minus 1. The total number of
|
|
logical processors can be retrieved by
|
|
MpInitLibGetNumberOfProcessors().
|
|
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
|
|
enabled AP. Otherwise, it will be disabled.
|
|
|
|
@retval EFI_SUCCESS BSP successfully switched.
|
|
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
|
|
this service returning.
|
|
@retval EFI_UNSUPPORTED Switching the BSP is not supported.
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
@retval EFI_NOT_FOUND The processor with the handle specified by
|
|
ProcessorNumber does not exist.
|
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
|
|
a disabled AP.
|
|
@retval EFI_NOT_READY The specified AP is busy.
|
|
@retval EFI_NOT_READY MP Initialize Library is not initialized.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibSwitchBSP (
|
|
IN UINTN ProcessorNumber,
|
|
IN BOOLEAN EnableOldBSP
|
|
)
|
|
{
|
|
return SwitchBSPWorker (ProcessorNumber, EnableOldBSP);
|
|
}
|
|
|
|
/**
|
|
This service lets the caller enable or disable an AP from this point onward.
|
|
This service may only be called from the BSP.
|
|
|
|
@param[in] ProcessorNumber The handle number of AP.
|
|
The range is from 0 to the total number of
|
|
logical processors minus 1. The total number of
|
|
logical processors can be retrieved by
|
|
MpInitLibGetNumberOfProcessors().
|
|
@param[in] EnableAP Specifies the new state for the processor for
|
|
enabled, FALSE for disabled.
|
|
@param[in] HealthFlag If not NULL, a pointer to a value that specifies
|
|
the new health status of the AP. This flag
|
|
corresponds to StatusFlag defined in
|
|
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
|
|
the PROCESSOR_HEALTH_STATUS_BIT is used. All other
|
|
bits are ignored. If it is NULL, this parameter
|
|
is ignored.
|
|
|
|
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
|
|
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
|
|
prior to this service returning.
|
|
@retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
|
|
does not exist.
|
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
|
|
@retval EFI_NOT_READY MP Initialize Library is not initialized.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
EFIAPI
|
|
MpInitLibEnableDisableAP (
|
|
IN UINTN ProcessorNumber,
|
|
IN BOOLEAN EnableAP,
|
|
IN UINT32 *HealthFlag OPTIONAL
|
|
)
|
|
{
|
|
return EnableDisableApWorker (ProcessorNumber, EnableAP, HealthFlag);
|
|
}
|
|
|
|
/**
|
|
This funtion will try to invoke platform specific microcode shadow logic to
|
|
relocate microcode update patches into memory.
|
|
|
|
@param[in, out] CpuMpData The pointer to CPU MP Data structure.
|
|
|
|
@retval EFI_SUCCESS Shadow microcode success.
|
|
@retval EFI_OUT_OF_RESOURCES No enough resource to complete the operation.
|
|
@retval EFI_UNSUPPORTED Can't find platform specific microcode shadow
|
|
PPI/Protocol.
|
|
**/
|
|
EFI_STATUS
|
|
PlatformShadowMicrocode (
|
|
IN OUT CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EDKII_PEI_SHADOW_MICROCODE_PPI *ShadowMicrocodePpi;
|
|
UINTN CpuCount;
|
|
EDKII_PEI_MICROCODE_CPU_ID *MicrocodeCpuId;
|
|
UINTN Index;
|
|
UINTN BufferSize;
|
|
VOID *Buffer;
|
|
|
|
Status = PeiServicesLocatePpi (
|
|
&gEdkiiPeiShadowMicrocodePpiGuid,
|
|
0,
|
|
NULL,
|
|
(VOID **)&ShadowMicrocodePpi
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
CpuCount = CpuMpData->CpuCount;
|
|
MicrocodeCpuId = (EDKII_PEI_MICROCODE_CPU_ID *)AllocateZeroPool (sizeof (EDKII_PEI_MICROCODE_CPU_ID) * CpuCount);
|
|
if (MicrocodeCpuId == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
|
|
MicrocodeCpuId[Index].ProcessorSignature = CpuMpData->CpuData[Index].ProcessorSignature;
|
|
MicrocodeCpuId[Index].PlatformId = CpuMpData->CpuData[Index].PlatformId;
|
|
}
|
|
|
|
Status = ShadowMicrocodePpi->ShadowMicrocode (
|
|
ShadowMicrocodePpi,
|
|
CpuCount,
|
|
MicrocodeCpuId,
|
|
&BufferSize,
|
|
&Buffer
|
|
);
|
|
FreePool (MicrocodeCpuId);
|
|
if (EFI_ERROR (Status)) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
CpuMpData->MicrocodePatchAddress = (UINTN)Buffer;
|
|
CpuMpData->MicrocodePatchRegionSize = BufferSize;
|
|
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"%a: Required microcode patches have been loaded at 0x%lx, with size 0x%lx.\n",
|
|
__func__,
|
|
CpuMpData->MicrocodePatchAddress,
|
|
CpuMpData->MicrocodePatchRegionSize
|
|
));
|
|
|
|
return EFI_SUCCESS;
|
|
}
|