mirror of
https://github.com/ClementTsang/bottom.git
synced 2025-07-22 21:24:49 +02:00
refactor: some refactoring while stable graphs (#1715)
* update grids * asdfadf * asdf * b * update loggers * some formatting and refactoring * docs * some comments * more docs
This commit is contained in:
parent
c68b190388
commit
146b8596cf
@ -2,15 +2,19 @@
|
||||
|
||||
## The graph points look broken/strange
|
||||
|
||||
It's possible that your graphs won't look great out of the box due to the reliance on braille fonts to draw them. One
|
||||
example of this is seeing a bunch of missing font characters, caused when the terminal isn't configured properly to
|
||||
render braille fonts.
|
||||
It's possible that your graphs don't look great out of the box due to the reliance on
|
||||
[braille characters](https://en.wikipedia.org/wiki/Braille_Patterns) to draw them. This could cause problems if
|
||||
your terminal's font does not support them, or your terminal is not configured properly to draw them.
|
||||
|
||||
<figure>
|
||||
<img src="../assets/screenshots/troubleshooting/no_braille.webp" alt="Example of a terminal with no braille font."/>
|
||||
<figcaption><sub>An example of missing braille fonts in Powershell</sub></figcaption>
|
||||
</figure>
|
||||
|
||||
Some possible solutions are included below.
|
||||
|
||||
### Use dot markers instead
|
||||
|
||||
One alternative is to use the `--dot_marker` option to render graph charts using dots instead of the braille characters,
|
||||
which generally seems better supported out of the box, at the expense of looking less intricate:
|
||||
|
||||
@ -19,28 +23,29 @@ which generally seems better supported out of the box, at the expense of looking
|
||||
<figcaption><sub>Example using <code>btm --dot_marker</code></sub></figcaption>
|
||||
</figure>
|
||||
|
||||
Another (better) alternative is to install a font that supports braille fonts, and configure your terminal emulator to use it.
|
||||
For example, installing something like [UBraille](https://yudit.org/download/fonts/UBraille/) or [Iosevka](https://github.com/be5invis/Iosevka)
|
||||
and ensuring your terminal uses it should work.
|
||||
### Use a font that supports braille fonts
|
||||
|
||||
### Linux/macOS/Unix
|
||||
Another (better) alternative is to install a font that supports braille fonts, and configure your terminal emulator to
|
||||
use it. For example, installing something like [UBraille](https://yudit.org/download/fonts/UBraille/) or
|
||||
[Iosevka](https://github.com/be5invis/Iosevka) and ensuring your terminal uses it should work.
|
||||
|
||||
If you're on a Unix-like system, generally, the problem comes down to you either not having a font that supports the
|
||||
braille markers, or your terminal emulator is not using the correct font for the braille markers.
|
||||
#### Linux/macOS/Unix
|
||||
|
||||
Some possible solutions include:
|
||||
Solutions mostly depend on what terminal emulator you are using, so unfortunately, I can't give specific instructions.
|
||||
Here are some possible solutions:
|
||||
|
||||
- Uninstalling `gnu-free-fonts` if installed, as that is known to cause problems with braille markers
|
||||
- Installing a font like `ttf-symbola` or `ttf-ubraille` for your terminal emulator to try and automatically fall back to
|
||||
- Configuring your terminal emulator to use specific fonts for the `U+2800` to `U+28FF` range.
|
||||
- For example for kitty, do `symbol_map U+2800-U+28FF Symbola`.
|
||||
|
||||
See [this issue](https://github.com/cjbassi/gotop/issues/18) for more possible fixes.
|
||||
For some more possible solutions:
|
||||
|
||||
If you're still having issues, feel free to open a [discussion](https://github.com/ClementTsang/bottom/discussions/new/)
|
||||
question about it.
|
||||
- Check out [this issue](https://github.com/cjbassi/gotop/issues/18) from gotop about the same issue.
|
||||
- See ratatui's [FAQ](https://ratatui.rs/faq/#some-characters-appear-to-be-missing--look-weird) (ratatui is the underlying
|
||||
library bottom uses to draw things).
|
||||
|
||||
### Windows/Powershell
|
||||
#### Windows and Powershell
|
||||
|
||||
**Note: I would advise backing up your registry beforehand if you aren't sure what you are doing!**
|
||||
|
||||
@ -73,6 +78,11 @@ Let's say you're installing [Iosevka](https://github.com/be5invis/Iosevka). The
|
||||
<img src="../assets/screenshots/troubleshooting/cmd_prompt_font.webp" alt="Setting a new font in Command Prompt/PowerShell"/>
|
||||
</figure>
|
||||
|
||||
### Still having issues?
|
||||
|
||||
If you're still having issues, feel free to open a [discussion](https://github.com/ClementTsang/bottom/discussions/new/)
|
||||
question about it, and I (or others) can try to help.
|
||||
|
||||
## Why can't I see all my temperature sensors on Windows?
|
||||
|
||||
This is a [known limitation](./support/official.md#windows), some sensors may require admin privileges to get sensor data.
|
||||
|
@ -5,6 +5,7 @@
|
||||
//! the specializations are factored out to `time_chart/points.rs`.
|
||||
|
||||
mod canvas;
|
||||
mod grid;
|
||||
mod points;
|
||||
|
||||
use std::{cmp::max, str::FromStr, time::Instant};
|
||||
@ -302,7 +303,7 @@ impl<'a> Dataset<'a> {
|
||||
|
||||
/// Sets the data points of this dataset
|
||||
///
|
||||
/// Points will then either be rendered as scrattered points or with lines
|
||||
/// Points will then either be rendered as scattered points or with lines
|
||||
/// between them depending on [`Dataset::graph_type`].
|
||||
///
|
||||
/// Data consist in an array of `f64` tuples (`(f64, f64)`), the first
|
||||
@ -1111,7 +1112,7 @@ mod tests {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn datasets_without_name_dont_contribute_to_legend_height() {
|
||||
fn datasets_without_name_do_not_contribute_to_legend_height() {
|
||||
let data_named_1 = Dataset::default().name("data1"); // must occupy a row in legend
|
||||
let data_named_2 = Dataset::default().name(""); // must occupy a row in legend, even if name is empty
|
||||
let data_unnamed = Dataset::default(); // must not occupy a row in legend
|
||||
|
@ -12,9 +12,6 @@
|
||||
//! See <https://github.com/ClementTsang/bottom/pull/918> and <https://github.com/ClementTsang/bottom/pull/937> for the
|
||||
//! original motivation.
|
||||
|
||||
use std::{fmt::Debug, iter::zip};
|
||||
|
||||
use itertools::Itertools;
|
||||
use tui::{
|
||||
buffer::Buffer,
|
||||
layout::Rect,
|
||||
@ -27,6 +24,8 @@ use tui::{
|
||||
},
|
||||
};
|
||||
|
||||
use super::grid::{BrailleGrid, CharGrid, Grid, HalfBlockGrid};
|
||||
|
||||
/// Interface for all shapes that may be drawn on a Canvas widget.
|
||||
pub trait Shape {
|
||||
fn draw(&self, painter: &mut Painter<'_, '_>);
|
||||
@ -135,265 +134,27 @@ pub struct Label<'a> {
|
||||
spans: Line<'a>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Layer {
|
||||
string: String,
|
||||
colors: Vec<(Color, Color)>,
|
||||
}
|
||||
|
||||
trait Grid: Debug {
|
||||
// fn width(&self) -> u16;
|
||||
// fn height(&self) -> u16;
|
||||
fn resolution(&self) -> (f64, f64);
|
||||
fn paint(&mut self, x: usize, y: usize, color: Color);
|
||||
fn save(&self) -> Layer;
|
||||
fn reset(&mut self);
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct BrailleGrid {
|
||||
width: u16,
|
||||
height: u16,
|
||||
cells: Vec<u16>, // FIXME: (points_rework_v1) isn't this really inefficient to go u16 -> String from utf16?
|
||||
colors: Vec<Color>,
|
||||
}
|
||||
|
||||
impl BrailleGrid {
|
||||
fn new(width: u16, height: u16) -> BrailleGrid {
|
||||
let length = usize::from(width * height);
|
||||
BrailleGrid {
|
||||
width,
|
||||
height,
|
||||
cells: vec![symbols::braille::BLANK; length],
|
||||
colors: vec![Color::Reset; length],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Grid for BrailleGrid {
|
||||
fn resolution(&self) -> (f64, f64) {
|
||||
(
|
||||
f64::from(self.width) * 2.0 - 1.0,
|
||||
f64::from(self.height) * 4.0 - 1.0,
|
||||
)
|
||||
}
|
||||
|
||||
fn save(&self) -> Layer {
|
||||
Layer {
|
||||
string: String::from_utf16(&self.cells).unwrap(),
|
||||
colors: self.colors.iter().map(|c| (*c, Color::Reset)).collect(),
|
||||
}
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
for c in &mut self.cells {
|
||||
*c = symbols::braille::BLANK;
|
||||
}
|
||||
for c in &mut self.colors {
|
||||
*c = Color::Reset;
|
||||
}
|
||||
}
|
||||
|
||||
fn paint(&mut self, x: usize, y: usize, color: Color) {
|
||||
let index = y / 4 * self.width as usize + x / 2;
|
||||
if let Some(curr_color) = self.colors.get_mut(index) {
|
||||
if *curr_color != color {
|
||||
*curr_color = color;
|
||||
if let Some(cell) = self.cells.get_mut(index) {
|
||||
*cell = symbols::braille::BLANK;
|
||||
|
||||
*cell |= symbols::braille::DOTS[y % 4][x % 2];
|
||||
}
|
||||
} else if let Some(c) = self.cells.get_mut(index) {
|
||||
*c |= symbols::braille::DOTS[y % 4][x % 2];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct CharGrid {
|
||||
width: u16,
|
||||
height: u16,
|
||||
cells: Vec<char>,
|
||||
colors: Vec<Color>,
|
||||
cell_char: char,
|
||||
}
|
||||
|
||||
impl CharGrid {
|
||||
fn new(width: u16, height: u16, cell_char: char) -> CharGrid {
|
||||
let length = usize::from(width * height);
|
||||
CharGrid {
|
||||
width,
|
||||
height,
|
||||
cells: vec![' '; length],
|
||||
colors: vec![Color::Reset; length],
|
||||
cell_char,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Grid for CharGrid {
|
||||
fn resolution(&self) -> (f64, f64) {
|
||||
(f64::from(self.width) - 1.0, f64::from(self.height) - 1.0)
|
||||
}
|
||||
|
||||
fn save(&self) -> Layer {
|
||||
Layer {
|
||||
string: self.cells.iter().collect(),
|
||||
colors: self.colors.iter().map(|c| (*c, Color::Reset)).collect(),
|
||||
}
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
for c in &mut self.cells {
|
||||
*c = ' ';
|
||||
}
|
||||
for c in &mut self.colors {
|
||||
*c = Color::Reset;
|
||||
}
|
||||
}
|
||||
|
||||
fn paint(&mut self, x: usize, y: usize, color: Color) {
|
||||
let index = y * self.width as usize + x;
|
||||
if let Some(c) = self.cells.get_mut(index) {
|
||||
*c = self.cell_char;
|
||||
}
|
||||
if let Some(c) = self.colors.get_mut(index) {
|
||||
*c = color;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Painter<'a, 'b> {
|
||||
context: &'a mut Context<'b>,
|
||||
resolution: (f64, f64),
|
||||
}
|
||||
|
||||
/// The HalfBlockGrid is a grid made up of cells each containing a half block
|
||||
/// character.
|
||||
///
|
||||
/// In terminals, each character is usually twice as tall as it is wide. Unicode
|
||||
/// has a couple of vertical half block characters, the upper half block '▀' and
|
||||
/// lower half block '▄' which take up half the height of a normal character but
|
||||
/// the full width. Together with an empty space ' ' and a full block '█', we
|
||||
/// can effectively double the resolution of a single cell. In addition, because
|
||||
/// each character can have a foreground and background color, we can control
|
||||
/// the color of the upper and lower half of each cell. This allows us to draw
|
||||
/// shapes with a resolution of 1x2 "pixels" per cell.
|
||||
///
|
||||
/// This allows for more flexibility than the BrailleGrid which only supports a
|
||||
/// single foreground color for each 2x4 dots cell, and the CharGrid which only
|
||||
/// supports a single character for each cell.
|
||||
#[derive(Debug, Default, Clone, Eq, PartialEq, Hash)]
|
||||
struct HalfBlockGrid {
|
||||
/// width of the grid in number of terminal columns
|
||||
width: u16,
|
||||
/// height of the grid in number of terminal rows
|
||||
height: u16,
|
||||
/// represents a single color for each "pixel" arranged in column, row order
|
||||
pixels: Vec<Vec<Color>>,
|
||||
}
|
||||
|
||||
impl HalfBlockGrid {
|
||||
/// Create a new [`HalfBlockGrid`] with the given width and height measured
|
||||
/// in terminal columns and rows respectively.
|
||||
fn new(width: u16, height: u16) -> HalfBlockGrid {
|
||||
HalfBlockGrid {
|
||||
width,
|
||||
height,
|
||||
pixels: vec![vec![Color::Reset; width as usize]; height as usize * 2],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Grid for HalfBlockGrid {
|
||||
fn resolution(&self) -> (f64, f64) {
|
||||
(f64::from(self.width), f64::from(self.height) * 2.0)
|
||||
}
|
||||
|
||||
fn save(&self) -> Layer {
|
||||
// Given that we store the pixels in a grid, and that we want to use 2 pixels
|
||||
// arranged vertically to form a single terminal cell, which can be
|
||||
// either empty, upper half block, lower half block or full block, we
|
||||
// need examine the pixels in vertical pairs to decide what character to
|
||||
// print in each cell. So these are the 4 states we use to represent each
|
||||
// cell:
|
||||
//
|
||||
// 1. upper: reset, lower: reset => ' ' fg: reset / bg: reset
|
||||
// 2. upper: reset, lower: color => '▄' fg: lower color / bg: reset
|
||||
// 3. upper: color, lower: reset => '▀' fg: upper color / bg: reset
|
||||
// 4. upper: color, lower: color => '▀' fg: upper color / bg: lower color
|
||||
//
|
||||
// Note that because the foreground reset color (i.e. default foreground color)
|
||||
// is usually not the same as the background reset color (i.e. default
|
||||
// background color), we need to swap around the colors for that state
|
||||
// (2 reset/color).
|
||||
//
|
||||
// When the upper and lower colors are the same, we could continue to use an
|
||||
// upper half block, but we choose to use a full block instead. This
|
||||
// allows us to write unit tests that treat the cell as a single
|
||||
// character instead of two half block characters.
|
||||
|
||||
// Note we implement this slightly differently to what is done in ratatui's
|
||||
// repo, since their version doesn't seem to compile for me...
|
||||
//
|
||||
// TODO: Whenever I add this as a valid marker, make sure this works fine with
|
||||
// the overridden time_chart drawing-layer-thing.
|
||||
|
||||
// Join the upper and lower rows, and emit a tuple vector of strings to print,
|
||||
// and their colours.
|
||||
let (string, colors) = self
|
||||
.pixels
|
||||
.iter()
|
||||
.tuples()
|
||||
.flat_map(|(upper_row, lower_row)| zip(upper_row, lower_row))
|
||||
.map(|(upper, lower)| match (upper, lower) {
|
||||
(Color::Reset, Color::Reset) => (' ', (Color::Reset, Color::Reset)),
|
||||
(Color::Reset, &lower) => (symbols::half_block::LOWER, (Color::Reset, lower)),
|
||||
(&upper, Color::Reset) => (symbols::half_block::UPPER, (upper, Color::Reset)),
|
||||
(&upper, &lower) => {
|
||||
let c = if lower == upper {
|
||||
symbols::half_block::FULL
|
||||
} else {
|
||||
symbols::half_block::UPPER
|
||||
};
|
||||
|
||||
(c, (upper, lower))
|
||||
}
|
||||
})
|
||||
.unzip();
|
||||
|
||||
Layer { string, colors }
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.pixels.fill(vec![Color::Reset; self.width as usize]);
|
||||
}
|
||||
|
||||
fn paint(&mut self, x: usize, y: usize, color: Color) {
|
||||
self.pixels[y][x] = color;
|
||||
}
|
||||
}
|
||||
|
||||
impl Painter<'_, '_> {
|
||||
/// Convert the (x, y) coordinates to location of a point on the grid.
|
||||
pub fn get_point(&self, x: f64, y: f64) -> Option<(usize, usize)> {
|
||||
let left = self.context.x_bounds[0];
|
||||
let right = self.context.x_bounds[1];
|
||||
let top = self.context.y_bounds[1];
|
||||
let bottom = self.context.y_bounds[0];
|
||||
let [left, right] = self.context.x_bounds;
|
||||
let [bottom, top] = self.context.y_bounds;
|
||||
if x < left || x > right || y < bottom || y > top {
|
||||
return None;
|
||||
}
|
||||
let width = (self.context.x_bounds[1] - self.context.x_bounds[0]).abs();
|
||||
let height = (self.context.y_bounds[1] - self.context.y_bounds[0]).abs();
|
||||
if width == 0.0 || height == 0.0 {
|
||||
let width = right - left;
|
||||
let height = top - bottom;
|
||||
if width <= 0.0 || height <= 0.0 {
|
||||
return None;
|
||||
}
|
||||
let x = ((x - left) * self.resolution.0 / width) as usize;
|
||||
let y = ((top - y) * self.resolution.1 / height) as usize;
|
||||
let x = ((x - left) * (self.resolution.0 - 1.0) / width).round() as usize;
|
||||
let y = ((top - y) * (self.resolution.1 - 1.0) / height).round() as usize;
|
||||
Some((x, y))
|
||||
}
|
||||
|
||||
|
296
src/canvas/components/time_graph/time_chart/grid.rs
Normal file
296
src/canvas/components/time_graph/time_chart/grid.rs
Normal file
@ -0,0 +1,296 @@
|
||||
use std::{fmt::Debug, iter::zip};
|
||||
|
||||
use itertools::Itertools;
|
||||
use tui::{style::Color, symbols};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub(super) struct Layer {
|
||||
pub(super) string: String,
|
||||
pub(super) colors: Vec<(Color, Color)>,
|
||||
}
|
||||
|
||||
/// A [`Grid`] is a trait that represents a grid of cells, drawn in a
|
||||
/// specific way.
|
||||
pub(super) trait Grid: Debug {
|
||||
/// Get the resolution of the grid in number of dots.
|
||||
///
|
||||
/// This doesn't have to be the same as the number of rows and columns of the grid. For example,
|
||||
/// a grid of Braille patterns will have a resolution of 2x4 dots per cell. This means that a
|
||||
/// grid of 10x10 cells will have a resolution of 20x40 dots.
|
||||
fn resolution(&self) -> (f64, f64);
|
||||
/// Paint a point of the grid.
|
||||
///
|
||||
/// The point is expressed in number of dots starting at the origin of the grid in the top left
|
||||
/// corner. Note that this is not the same as the `(x, y)` coordinates of the canvas.
|
||||
fn paint(&mut self, x: usize, y: usize, color: Color);
|
||||
/// Save the current state of the [`Grid`] as a layer to be rendered
|
||||
fn save(&self) -> Layer;
|
||||
/// Reset the grid to its initial state
|
||||
fn reset(&mut self);
|
||||
}
|
||||
|
||||
/// The `BrailleGrid` is a grid made up of cells each containing a Braille pattern.
|
||||
///
|
||||
/// This makes it possible to draw shapes with a resolution of 2x4 dots per cell. This is useful
|
||||
/// when you want to draw shapes with a high resolution. Font support for Braille patterns is
|
||||
/// required to see the dots. If your terminal or font does not support this unicode block, you
|
||||
/// will see unicode replacement characters (<28>) instead of braille dots.
|
||||
///
|
||||
/// This grid type only supports a single foreground color for each 2x4 dots cell. There is no way
|
||||
/// to set the individual color of each dot in the braille pattern.
|
||||
#[derive(Debug)]
|
||||
pub(super) struct BrailleGrid {
|
||||
/// Width of the grid in number of terminal columns
|
||||
width: u16,
|
||||
/// Height of the grid in number of terminal rows
|
||||
height: u16,
|
||||
/// Represents the unicode braille patterns. Will take a value between `0x2800` and `0x28FF`;
|
||||
/// this is converted to an utf16 string when converting to a layer. See
|
||||
/// <https://en.wikipedia.org/wiki/Braille_Patterns> for more info.
|
||||
///
|
||||
/// FIXME: (points_rework_v1) isn't this really inefficient to go u16 -> String from utf16?
|
||||
utf16_code_points: Vec<u16>,
|
||||
/// The color of each cell only supports foreground colors for now as there's no way to
|
||||
/// individually set the background color of each dot in the braille pattern.
|
||||
colors: Vec<Color>,
|
||||
}
|
||||
|
||||
impl BrailleGrid {
|
||||
/// Create a new `BrailleGrid` with the given width and height measured in terminal columns and
|
||||
/// rows respectively.
|
||||
pub(super) fn new(width: u16, height: u16) -> Self {
|
||||
let length = usize::from(width * height);
|
||||
Self {
|
||||
width,
|
||||
height,
|
||||
utf16_code_points: vec![symbols::braille::BLANK; length],
|
||||
colors: vec![Color::Reset; length],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Grid for BrailleGrid {
|
||||
fn resolution(&self) -> (f64, f64) {
|
||||
(f64::from(self.width) * 2.0, f64::from(self.height) * 4.0)
|
||||
}
|
||||
|
||||
fn save(&self) -> Layer {
|
||||
let string = String::from_utf16(&self.utf16_code_points).unwrap();
|
||||
// the background color is always reset for braille patterns
|
||||
let colors = self.colors.iter().map(|c| (*c, Color::Reset)).collect();
|
||||
Layer { string, colors }
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.utf16_code_points.fill(symbols::braille::BLANK);
|
||||
self.colors.fill(Color::Reset);
|
||||
}
|
||||
|
||||
fn paint(&mut self, x: usize, y: usize, color: Color) {
|
||||
// Note the braille array corresponds to:
|
||||
// ⠁⠈
|
||||
// ⠂⠐
|
||||
// ⠄⠠
|
||||
// ⡀⢀
|
||||
|
||||
let index = y / 4 * self.width as usize + x / 2;
|
||||
|
||||
// The ratatui/tui-rs implementation; this gives a more merged
|
||||
// look but it also makes it a bit harder to read in some cases.
|
||||
|
||||
// if let Some(c) = self.utf16_code_points.get_mut(index) {
|
||||
// *c |= symbols::braille::DOTS[y % 4][x % 2];
|
||||
// }
|
||||
// if let Some(c) = self.colors.get_mut(index) {
|
||||
// *c = color;
|
||||
// }
|
||||
|
||||
// Custom implementation to distinguish between lines better.
|
||||
if let Some(curr_color) = self.colors.get_mut(index) {
|
||||
if *curr_color != color {
|
||||
*curr_color = color;
|
||||
if let Some(cell) = self.utf16_code_points.get_mut(index) {
|
||||
*cell = symbols::braille::BLANK | symbols::braille::DOTS[y % 4][x % 2];
|
||||
}
|
||||
} else if let Some(cell) = self.utf16_code_points.get_mut(index) {
|
||||
*cell |= symbols::braille::DOTS[y % 4][x % 2];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The `CharGrid` is a grid made up of cells each containing a single character.
|
||||
///
|
||||
/// This makes it possible to draw shapes with a resolution of 1x1 dots per cell. This is useful
|
||||
/// when you want to draw shapes with a low resolution.
|
||||
#[derive(Debug)]
|
||||
pub(super) struct CharGrid {
|
||||
/// Width of the grid in number of terminal columns
|
||||
width: u16,
|
||||
/// Height of the grid in number of terminal rows
|
||||
height: u16,
|
||||
/// Represents a single character for each cell
|
||||
cells: Vec<char>,
|
||||
/// The color of each cell
|
||||
colors: Vec<Color>,
|
||||
/// The character to use for every cell - e.g. a block, dot, etc.
|
||||
cell_char: char,
|
||||
}
|
||||
|
||||
impl CharGrid {
|
||||
/// Create a new `CharGrid` with the given width and height measured in terminal columns and
|
||||
/// rows respectively.
|
||||
pub(super) fn new(width: u16, height: u16, cell_char: char) -> Self {
|
||||
let length = usize::from(width * height);
|
||||
Self {
|
||||
width,
|
||||
height,
|
||||
cells: vec![' '; length],
|
||||
colors: vec![Color::Reset; length],
|
||||
cell_char,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Grid for CharGrid {
|
||||
fn resolution(&self) -> (f64, f64) {
|
||||
(f64::from(self.width), f64::from(self.height))
|
||||
}
|
||||
|
||||
fn save(&self) -> Layer {
|
||||
Layer {
|
||||
string: self.cells.iter().collect(),
|
||||
colors: self.colors.iter().map(|c| (*c, Color::Reset)).collect(),
|
||||
}
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.cells.fill(' ');
|
||||
self.colors.fill(Color::Reset);
|
||||
}
|
||||
|
||||
fn paint(&mut self, x: usize, y: usize, color: Color) {
|
||||
let index = y * self.width as usize + x;
|
||||
// using get_mut here because we are indexing the vector with usize values
|
||||
// and we want to make sure we don't panic if the index is out of bounds
|
||||
if let Some(c) = self.cells.get_mut(index) {
|
||||
*c = self.cell_char;
|
||||
}
|
||||
if let Some(c) = self.colors.get_mut(index) {
|
||||
*c = color;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The `HalfBlockGrid` is a grid made up of cells each containing a half block character.
|
||||
///
|
||||
/// In terminals, each character is usually twice as tall as it is wide. Unicode has a couple of
|
||||
/// vertical half block characters, the upper half block '▀' and lower half block '▄' which take up
|
||||
/// half the height of a normal character but the full width. Together with an empty space ' ' and a
|
||||
/// full block '█', we can effectively double the resolution of a single cell. In addition, because
|
||||
/// each character can have a foreground and background color, we can control the color of the upper
|
||||
/// and lower half of each cell. This allows us to draw shapes with a resolution of 1x2 "pixels" per
|
||||
/// cell.
|
||||
///
|
||||
/// This allows for more flexibility than the `BrailleGrid` which only supports a single
|
||||
/// foreground color for each 2x4 dots cell, and the `CharGrid` which only supports a single
|
||||
/// character for each cell.
|
||||
#[derive(Debug)]
|
||||
pub(super) struct HalfBlockGrid {
|
||||
/// Width of the grid in number of terminal columns
|
||||
width: u16,
|
||||
/// Height of the grid in number of terminal rows
|
||||
height: u16,
|
||||
/// Represents a single color for each "pixel" arranged in column, row order
|
||||
pixels: Vec<Vec<Color>>,
|
||||
}
|
||||
|
||||
impl HalfBlockGrid {
|
||||
/// Create a new `HalfBlockGrid` with the given width and height measured in terminal columns
|
||||
/// and rows respectively.
|
||||
pub(super) fn new(width: u16, height: u16) -> Self {
|
||||
Self {
|
||||
width,
|
||||
height,
|
||||
pixels: vec![vec![Color::Reset; width as usize]; height as usize * 2],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Grid for HalfBlockGrid {
|
||||
fn resolution(&self) -> (f64, f64) {
|
||||
(f64::from(self.width), f64::from(self.height) * 2.0)
|
||||
}
|
||||
|
||||
fn save(&self) -> Layer {
|
||||
// Given that we store the pixels in a grid, and that we want to use 2 pixels arranged
|
||||
// vertically to form a single terminal cell, which can be either empty, upper half block,
|
||||
// lower half block or full block, we need examine the pixels in vertical pairs to decide
|
||||
// what character to print in each cell. So these are the 4 states we use to represent each
|
||||
// cell:
|
||||
//
|
||||
// 1. upper: reset, lower: reset => ' ' fg: reset / bg: reset
|
||||
// 2. upper: reset, lower: color => '▄' fg: lower color / bg: reset
|
||||
// 3. upper: color, lower: reset => '▀' fg: upper color / bg: reset
|
||||
// 4. upper: color, lower: color => '▀' fg: upper color / bg: lower color
|
||||
//
|
||||
// Note that because the foreground reset color (i.e. default foreground color) is usually
|
||||
// not the same as the background reset color (i.e. default background color), we need to
|
||||
// swap around the colors for that state (2 reset/color).
|
||||
//
|
||||
// When the upper and lower colors are the same, we could continue to use an upper half
|
||||
// block, but we choose to use a full block instead. This allows us to write unit tests that
|
||||
// treat the cell as a single character instead of two half block characters.
|
||||
|
||||
// first we join each adjacent row together to get an iterator that contains vertical pairs
|
||||
// of pixels, with the lower row being the first element in the pair
|
||||
//
|
||||
// TODO: Whenever I add this as a valid marker, make sure this works fine with
|
||||
// the overridden time_chart drawing-layer-thing.
|
||||
let vertical_color_pairs = self
|
||||
.pixels
|
||||
.iter()
|
||||
.tuples()
|
||||
.flat_map(|(upper_row, lower_row)| zip(upper_row, lower_row));
|
||||
|
||||
// then we work out what character to print for each pair of pixels
|
||||
let string = vertical_color_pairs
|
||||
.clone()
|
||||
.map(|(upper, lower)| match (upper, lower) {
|
||||
(Color::Reset, Color::Reset) => ' ',
|
||||
(Color::Reset, _) => symbols::half_block::LOWER,
|
||||
(_, Color::Reset) => symbols::half_block::UPPER,
|
||||
(&lower, &upper) => {
|
||||
if lower == upper {
|
||||
symbols::half_block::FULL
|
||||
} else {
|
||||
symbols::half_block::UPPER
|
||||
}
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
|
||||
// then we convert these each vertical pair of pixels into a foreground and background color
|
||||
let colors = vertical_color_pairs
|
||||
.map(|(upper, lower)| {
|
||||
let (fg, bg) = match (upper, lower) {
|
||||
(Color::Reset, Color::Reset) => (Color::Reset, Color::Reset),
|
||||
(Color::Reset, &lower) => (lower, Color::Reset),
|
||||
(&upper, Color::Reset) => (upper, Color::Reset),
|
||||
(&upper, &lower) => (upper, lower),
|
||||
};
|
||||
(fg, bg)
|
||||
})
|
||||
.collect();
|
||||
|
||||
Layer { string, colors }
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.pixels.fill(vec![Color::Reset; self.width as usize]);
|
||||
}
|
||||
|
||||
fn paint(&mut self, x: usize, y: usize, color: Color) {
|
||||
self.pixels[y][x] = color;
|
||||
}
|
||||
}
|
@ -46,12 +46,11 @@ impl TimeChart<'_> {
|
||||
.iter_along_base(times)
|
||||
.rev()
|
||||
.map(|(&time, &val)| {
|
||||
let from_start: f64 =
|
||||
(current_time.duration_since(time).as_millis() as f64).floor();
|
||||
let from_start = current_time.duration_since(time).as_millis() as f64 * -1.0;
|
||||
|
||||
// XXX: Should this be generic over dataset.graph_type instead? That would allow us to move
|
||||
// transformations behind a type - however, that also means that there's some complexity added.
|
||||
(-from_start, self.scaling.scale(val))
|
||||
(from_start, self.scaling.scale(val))
|
||||
})
|
||||
.tuple_windows()
|
||||
{
|
||||
|
@ -67,7 +67,7 @@ impl Painter {
|
||||
let rx_points = &(shared_data.timeseries_data.rx);
|
||||
let tx_points = &(shared_data.timeseries_data.tx);
|
||||
let time = &(shared_data.timeseries_data.time);
|
||||
let time_start = -(network_widget_state.current_display_time as f64);
|
||||
let time_start = -(network_widget_state.current_display_time as f64) / 1000.0;
|
||||
|
||||
let border_style = self.get_border_style(widget_id, app_state.current_widget.widget_id);
|
||||
let hide_x_labels = should_hide_x_label(
|
||||
|
@ -10,9 +10,8 @@ use std::{
|
||||
|
||||
use hashbrown::{HashMap, HashSet};
|
||||
|
||||
use crate::{app::layout_manager::UsedWidgets, collection::memory::MemData};
|
||||
|
||||
use super::linux::utils::is_device_awake;
|
||||
use crate::{app::layout_manager::UsedWidgets, collection::memory::MemData};
|
||||
|
||||
// TODO: May be able to clean up some of these, Option<Vec> for example is a bit redundant.
|
||||
pub struct AmdGpuData {
|
||||
|
@ -9,10 +9,9 @@ use anyhow::Result;
|
||||
use hashbrown::{HashMap, HashSet};
|
||||
|
||||
use super::TempSensorData;
|
||||
use crate::{app::filter::Filter, collection::linux::utils::is_device_awake};
|
||||
|
||||
#[cfg(feature = "gpu")]
|
||||
use crate::collection::amd::get_amd_name;
|
||||
use crate::{app::filter::Filter, collection::linux::utils::is_device_awake};
|
||||
|
||||
const EMPTY_NAME: &str = "Unknown";
|
||||
|
||||
|
@ -49,7 +49,7 @@ macro_rules! error {
|
||||
($($x:tt)*) => {
|
||||
#[cfg(feature = "logging")]
|
||||
{
|
||||
log::error!($($x)*)
|
||||
log::error!($($x)*);
|
||||
}
|
||||
};
|
||||
}
|
||||
@ -59,7 +59,7 @@ macro_rules! warn {
|
||||
($($x:tt)*) => {
|
||||
#[cfg(feature = "logging")]
|
||||
{
|
||||
log::warn!($($x)*)
|
||||
log::warn!($($x)*);
|
||||
}
|
||||
};
|
||||
}
|
||||
@ -69,7 +69,7 @@ macro_rules! info {
|
||||
($($x:tt)*) => {
|
||||
#[cfg(feature = "logging")]
|
||||
{
|
||||
log::info!($($x)*)
|
||||
log::info!($($x)*);
|
||||
}
|
||||
};
|
||||
}
|
||||
@ -79,7 +79,7 @@ macro_rules! debug {
|
||||
($($x:tt)*) => {
|
||||
#[cfg(feature = "logging")]
|
||||
{
|
||||
log::debug!($($x)*)
|
||||
log::debug!($($x)*);
|
||||
}
|
||||
};
|
||||
}
|
||||
@ -89,7 +89,7 @@ macro_rules! trace {
|
||||
($($x:tt)*) => {
|
||||
#[cfg(feature = "logging")]
|
||||
{
|
||||
log::trace!($($x)*)
|
||||
log::trace!($($x)*);
|
||||
}
|
||||
};
|
||||
}
|
||||
@ -99,25 +99,70 @@ macro_rules! log {
|
||||
($($x:tt)*) => {
|
||||
#[cfg(feature = "logging")]
|
||||
{
|
||||
log::log!(log::Level::Trace, $($x)*)
|
||||
log::log!(log::Level::Trace, $($x)*);
|
||||
}
|
||||
};
|
||||
($level:expr, $($x:tt)*) => {
|
||||
#[cfg(feature = "logging")]
|
||||
{
|
||||
log::log!($level, $($x)*)
|
||||
log::log!($level, $($x)*);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! info_every_n_secs {
|
||||
($n:expr, $($x:tt)*) => {
|
||||
#[cfg(feature = "logging")]
|
||||
{
|
||||
$crate::log_every_n_secs!(log::Level::Info, $n, $($x)*);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! log_every_n_secs {
|
||||
($level:expr, $n:expr, $($x:tt)*) => {
|
||||
#[cfg(feature = "logging")]
|
||||
{
|
||||
static LAST_LOG: std::sync::atomic::AtomicU64 = std::sync::atomic::AtomicU64::new(0);
|
||||
let since_last_log = LAST_LOG.load(std::sync::atomic::Ordering::Relaxed);
|
||||
let now = std::time::SystemTime::now().duration_since(std::time::UNIX_EPOCH).expect("should be valid").as_secs();
|
||||
|
||||
if now - since_last_log > $n {
|
||||
LAST_LOG.store(now, std::sync::atomic::Ordering::Relaxed);
|
||||
log::log!($level, $($x)*);
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
#[cfg(feature = "logging")]
|
||||
/// We do this to ensure that the test logger is only initialized _once_ for
|
||||
/// things like the default test runner that run tests in the same process.
|
||||
///
|
||||
/// This doesn't do anything if you use something like nextest, which runs
|
||||
/// a test-per-process, but that's fine.
|
||||
fn init_test_logger() {
|
||||
use std::sync::atomic::{AtomicBool, Ordering};
|
||||
|
||||
static LOG_INIT: AtomicBool = AtomicBool::new(false);
|
||||
|
||||
if LOG_INIT.load(Ordering::SeqCst) {
|
||||
return;
|
||||
}
|
||||
|
||||
LOG_INIT.store(true, Ordering::SeqCst);
|
||||
super::init_logger(log::LevelFilter::Trace, None)
|
||||
.expect("initializing the logger should succeed");
|
||||
}
|
||||
|
||||
#[cfg(feature = "logging")]
|
||||
#[test]
|
||||
fn test_logging_macros() {
|
||||
super::init_logger(log::LevelFilter::Trace, None)
|
||||
.expect("initializing the logger should succeed");
|
||||
init_test_logger();
|
||||
|
||||
error!("This is an error.");
|
||||
warn!("This is a warning.");
|
||||
@ -125,4 +170,12 @@ mod test {
|
||||
debug!("This is a debug.");
|
||||
info!("This is a trace.");
|
||||
}
|
||||
|
||||
#[cfg(feature = "logging")]
|
||||
#[test]
|
||||
fn test_log_every_macros() {
|
||||
init_test_logger();
|
||||
|
||||
info_every_n_secs!(10, "This is an info every 10 seconds.");
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user