use crate::{app, constants, utils::error};
use std::cmp::Ordering;
use tui::{
	backend,
	layout::{Alignment, Constraint, Direction, Layout},
	style::{Color, Modifier, Style},
	widgets::{Axis, Block, Borders, Chart, Dataset, Marker, Paragraph, Row, Table, Text, Widget},
	Terminal,
};

const TEXT_COLOUR: Color = Color::Gray;
const GRAPH_COLOUR: Color = Color::Gray;
const BORDER_STYLE_COLOUR: Color = Color::Gray;
const HIGHLIGHTED_BORDER_STYLE_COLOUR: Color = Color::LightBlue;
const GOLDEN_RATIO: f32 = 0.618_034;

lazy_static! {
	static ref HELP_TEXT: [Text<'static>; 14] = [
		Text::raw("\nGeneral Keybindings\n"),
		Text::raw("q, Ctrl-c to quit.\n"),
		Text::raw("Ctrl-r to reset all data.\n"),
		Text::raw("f to toggle freezing and unfreezing the display.\n"),
		Text::raw("Ctrl+Up/k, Ctrl+Down/j, Ctrl+Left/h, Ctrl+Right/l to navigate between panels.\n"),
		Text::raw("Up and Down scrolls through a list.\n"),
		Text::raw("Esc to close a dialog window (help or dd confirmation).\n"),
		Text::raw("? to get this help screen.\n"),
		Text::raw("\n Process Panel Keybindings\n"),
		Text::raw("dd to kill the selected process.\n"),
		Text::raw("c to sort by CPU usage.\n"),
		Text::raw("m to sort by memory usage.\n"),
		Text::raw("p to sort by PID.\n"),
		Text::raw("n to sort by process name.\n"),
	];
	static ref COLOUR_LIST: Vec<Color> = gen_n_colours(constants::NUM_COLOURS);
}

#[derive(Default)]
pub struct CanvasData {
	pub rx_display: String,
	pub tx_display: String,
	pub network_data_rx: Vec<(f64, f64)>,
	pub network_data_tx: Vec<(f64, f64)>,
	pub disk_data: Vec<Vec<String>>,
	pub temp_sensor_data: Vec<Vec<String>>,
	pub process_data: Vec<Vec<String>>,
	pub mem_data: Vec<(f64, f64)>,
	pub mem_values: Vec<(u64, u64)>,
	pub swap_data: Vec<(f64, f64)>,
	pub cpu_data: Vec<(String, Vec<(f64, f64)>)>,
}

/// Generates random colours.
/// Strategy found from https://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/
fn gen_n_colours(num_to_gen: i32) -> Vec<Color> {
	let mut colour_vec: Vec<Color> = vec![
		Color::LightBlue,
		Color::LightYellow,
		Color::Red,
		Color::Green,
		Color::LightCyan,
		Color::LightMagenta,
	];

	let mut h: f32 = 0.4; // We don't need random colours... right?
	for _i in 0..num_to_gen {
		h = gen_hsv(h);
		let result = hsv_to_rgb(h, 0.5, 0.95);
		colour_vec.push(Color::Rgb(result.0, result.1, result.2));
	}

	colour_vec
}

fn gen_hsv(h: f32) -> f32 {
	let new_val = h + GOLDEN_RATIO;

	if new_val > 1.0 {
		new_val.fract()
	} else {
		new_val
	}
}

fn float_min(a: f32, b: f32) -> f32 {
	match a.partial_cmp(&b) {
		Some(x) => match x {
			Ordering::Greater => b,
			Ordering::Less => a,
			Ordering::Equal => a,
		},
		None => a,
	}
}

fn float_max(a: f32, b: f32) -> f32 {
	match a.partial_cmp(&b) {
		Some(x) => match x {
			Ordering::Greater => a,
			Ordering::Less => b,
			Ordering::Equal => a,
		},
		None => a,
	}
}

/// This takes in an h, s, and v value of range [0, 1]
/// For explanation of what this does, see
/// https://en.wikipedia.org/wiki/HSL_and_HSV#HSV_to_RGB_alternative
fn hsv_to_rgb(hue: f32, saturation: f32, value: f32) -> (u8, u8, u8) {
	fn hsv_helper(num: u32, hu: f32, sat: f32, val: f32) -> f32 {
		let k = (num as f32 + hu * 6.0) % 6.0;
		val - val * sat * float_max(float_min(k, float_min(4.1 - k, 1.1)), 0.0)
	}

	(
		(hsv_helper(5, hue, saturation, value) * 255.0) as u8,
		(hsv_helper(3, hue, saturation, value) * 255.0) as u8,
		(hsv_helper(1, hue, saturation, value) * 255.0) as u8,
	)
}

pub fn draw_data<B: backend::Backend>(terminal: &mut Terminal<B>, app_state: &mut app::App, canvas_data: &CanvasData) -> error::Result<()> {
	let border_style: Style = Style::default().fg(BORDER_STYLE_COLOUR);
	let highlighted_border_style: Style = Style::default().fg(HIGHLIGHTED_BORDER_STYLE_COLOUR);

	terminal.autoresize()?;
	terminal.draw(|mut f| {
		if app_state.show_help {
			// Only for the dialog (help, dd) menus
			let vertical_dialog_chunk = Layout::default()
				.direction(Direction::Vertical)
				.margin(1)
				.constraints([Constraint::Percentage(32), Constraint::Percentage(40), Constraint::Percentage(28)].as_ref())
				.split(f.size());

			let middle_dialog_chunk = Layout::default()
				.direction(Direction::Horizontal)
				.margin(0)
				.constraints([Constraint::Percentage(30), Constraint::Percentage(40), Constraint::Percentage(30)].as_ref())
				.split(vertical_dialog_chunk[1]);

			Paragraph::new(HELP_TEXT.iter())
				.block(Block::default().title("Help (Press Esc to close)").borders(Borders::ALL))
				.style(Style::default().fg(Color::Gray))
				.alignment(Alignment::Left)
				.wrap(true)
				.render(&mut f, middle_dialog_chunk[1]);
		} else {
			let vertical_chunks = Layout::default()
				.direction(Direction::Vertical)
				.margin(1)
				.constraints([Constraint::Percentage(33), Constraint::Percentage(34), Constraint::Percentage(34)].as_ref())
				.split(f.size());

			let middle_chunks = Layout::default()
				.direction(Direction::Horizontal)
				.margin(0)
				.constraints([Constraint::Percentage(60), Constraint::Percentage(40)].as_ref())
				.split(vertical_chunks[1]);

			let middle_divided_chunk_2 = Layout::default()
				.direction(Direction::Vertical)
				.margin(0)
				.constraints([Constraint::Percentage(50), Constraint::Percentage(50)].as_ref())
				.split(middle_chunks[1]);

			let bottom_chunks = Layout::default()
				.direction(Direction::Horizontal)
				.margin(0)
				.constraints([Constraint::Percentage(50), Constraint::Percentage(50)].as_ref())
				.split(vertical_chunks[2]);

			// Component specific chunks
			let _cpu_chunk = Layout::default()
				.direction(Direction::Horizontal)
				.margin(0)
				.constraints([Constraint::Percentage(90), Constraint::Percentage(10)].as_ref())
				.split(vertical_chunks[0]);

			let _mem_chunk = Layout::default()
				.direction(Direction::Horizontal)
				.margin(0)
				.constraints([Constraint::Percentage(90), Constraint::Percentage(10)].as_ref())
				.split(middle_chunks[0]);

			let _network_chunk = Layout::default()
				.direction(Direction::Horizontal)
				.margin(0)
				.constraints([Constraint::Percentage(90), Constraint::Percentage(10)].as_ref())
				.split(bottom_chunks[0]);

			// Set up blocks and their components
			// CPU usage graph
			{
				let x_axis: Axis<String> = Axis::default()
					.style(Style::default().fg(GRAPH_COLOUR))
					.bounds([0.0, constants::TIME_STARTS_FROM as f64 * 10.0]);
				let y_axis = Axis::default()
					.style(Style::default().fg(GRAPH_COLOUR))
					.bounds([-0.5, 100.5])
					.labels(&["0%", "100%"]);

				let mut dataset_vector: Vec<Dataset> = Vec::new();

				for (i, cpu) in canvas_data.cpu_data.iter().enumerate() {
					let mut avg_cpu_exist_offset = 0;
					if app_state.show_average_cpu {
						if i == 0 {
							// Skip, we want to render the average cpu last!
							continue;
						} else {
							avg_cpu_exist_offset = 1;
						}
					}

					dataset_vector.push(
						Dataset::default()
							.name(&cpu.0)
							.marker(if app_state.use_dot { Marker::Dot } else { Marker::Braille })
							.style(Style::default().fg(COLOUR_LIST[(i - avg_cpu_exist_offset) % COLOUR_LIST.len()]))
							.data(&(cpu.1)),
					);
				}

				if !canvas_data.cpu_data.is_empty() && app_state.show_average_cpu {
					// Unwrap should be safe here, this assumes that the cpu_data vector is populated...
					dataset_vector.push(
						Dataset::default()
							.name(&canvas_data.cpu_data.first().unwrap().0)
							.marker(if app_state.use_dot { Marker::Dot } else { Marker::Braille })
							.style(Style::default().fg(COLOUR_LIST[(canvas_data.cpu_data.len() - 1) % COLOUR_LIST.len()]))
							.data(&(canvas_data.cpu_data.first().unwrap().1)),
					);
				}

				Chart::default()
					.block(
						Block::default()
							.title("CPU Usage")
							.borders(Borders::ALL)
							.border_style(match app_state.current_application_position {
								app::ApplicationPosition::CPU => highlighted_border_style,
								_ => border_style,
							}),
					)
					.x_axis(x_axis)
					.y_axis(y_axis)
					.datasets(&dataset_vector)
					.render(&mut f, vertical_chunks[0]);
			}

			//Memory usage graph
			{
				let x_axis: Axis<String> = Axis::default()
					.style(Style::default().fg(GRAPH_COLOUR))
					.bounds([0.0, constants::TIME_STARTS_FROM as f64 * 10.0]);
				let y_axis = Axis::default()
					.style(Style::default().fg(GRAPH_COLOUR))
					.bounds([-0.5, 100.5]) // Offset as the zero value isn't drawn otherwise...
					.labels(&["0%", "100%"]);

				let mem_name = "RAM:".to_string()
					+ &format!("{:3}%", (canvas_data.mem_data.last().unwrap_or(&(0_f64, 0_f64)).1.round() as u64))
					+ &format!(
						"   {:.1}GB/{:.1}GB",
						canvas_data.mem_values.first().unwrap_or(&(0, 0)).0 as f64 / 1024.0,
						canvas_data.mem_values.first().unwrap_or(&(0, 0)).1 as f64 / 1024.0
					);
				let swap_name: String;

				let mut mem_canvas_vec: Vec<Dataset> = vec![Dataset::default()
					.name(&mem_name)
					.marker(if app_state.use_dot { Marker::Dot } else { Marker::Braille })
					.style(Style::default().fg(COLOUR_LIST[0]))
					.data(&canvas_data.mem_data)];

				if !(&canvas_data.swap_data).is_empty() {
					if let Some(last_canvas_result) = (&canvas_data.swap_data).last() {
						if last_canvas_result.1 >= 0.0 {
							swap_name = "SWP:".to_string()
								+ &format!("{:3}%", (canvas_data.swap_data.last().unwrap_or(&(0_f64, 0_f64)).1.round() as u64))
								+ &format!(
									"   {:.1}GB/{:.1}GB",
									canvas_data.mem_values[1].0 as f64 / 1024.0,
									canvas_data.mem_values[1].1 as f64 / 1024.0
								);
							mem_canvas_vec.push(
								Dataset::default()
									.name(&swap_name)
									.marker(if app_state.use_dot { Marker::Dot } else { Marker::Braille })
									.style(Style::default().fg(COLOUR_LIST[1]))
									.data(&canvas_data.swap_data),
							);
						}
					}
				}

				Chart::default()
					.block(
						Block::default()
							.title("Memory Usage")
							.borders(Borders::ALL)
							.border_style(match app_state.current_application_position {
								app::ApplicationPosition::MEM => highlighted_border_style,
								_ => border_style,
							}),
					)
					.x_axis(x_axis)
					.y_axis(y_axis)
					.datasets(&mem_canvas_vec)
					.render(&mut f, middle_chunks[0]);
			}

			// Temperature table
			{
				let num_rows = i64::from(middle_divided_chunk_2[0].height) - 4;
				let start_position = get_start_position(
					num_rows,
					&(app_state.scroll_direction),
					&mut app_state.previous_temp_position,
					&mut app_state.currently_selected_temperature_position,
				);

				let sliced_vec: Vec<Vec<String>> = (&canvas_data.temp_sensor_data[start_position as usize..]).to_vec();
				let mut disk_counter = 0;

				let temperature_rows = sliced_vec.iter().map(|disk| {
					Row::StyledData(
						disk.iter(),
						if disk_counter == app_state.currently_selected_temperature_position - start_position {
							disk_counter = -1;
							Style::default().fg(Color::Black).bg(Color::Cyan)
						} else {
							if disk_counter >= 0 {
								disk_counter += 1;
							}
							Style::default().fg(TEXT_COLOUR)
						},
					)
				});

				let width = f64::from(middle_divided_chunk_2[0].width);
				Table::new(["Sensor", "Temp"].iter(), temperature_rows)
					.block(
						Block::default()
							.title("Temperatures")
							.borders(Borders::ALL)
							.border_style(match app_state.current_application_position {
								app::ApplicationPosition::TEMP => highlighted_border_style,
								_ => border_style,
							}),
					)
					.header_style(Style::default().fg(Color::LightBlue))
					.widths(&[Constraint::Length((width * 0.45) as u16), Constraint::Length((width * 0.4) as u16)])
					.render(&mut f, middle_divided_chunk_2[0]);
			}

			// Disk usage table
			{
				let num_rows = i64::from(middle_divided_chunk_2[1].height) - 4;
				let start_position = get_start_position(
					num_rows,
					&(app_state.scroll_direction),
					&mut app_state.previous_disk_position,
					&mut app_state.currently_selected_disk_position,
				);

				let sliced_vec: Vec<Vec<String>> = (&canvas_data.disk_data[start_position as usize..]).to_vec();
				let mut disk_counter = 0;

				let disk_rows = sliced_vec.iter().map(|disk| {
					Row::StyledData(
						disk.iter(),
						if disk_counter == app_state.currently_selected_disk_position - start_position {
							disk_counter = -1;
							Style::default().fg(Color::Black).bg(Color::Cyan)
						} else {
							if disk_counter >= 0 {
								disk_counter += 1;
							}
							Style::default().fg(TEXT_COLOUR)
						},
					)
				});

				// TODO: We may have to dynamically remove some of these table elements based on size...
				let width = f64::from(middle_divided_chunk_2[1].width);
				Table::new(["Disk", "Mount", "Used", "Total", "Free", "R/s", "W/s"].iter(), disk_rows)
					.block(
						Block::default()
							.title("Disk Usage")
							.borders(Borders::ALL)
							.border_style(match app_state.current_application_position {
								app::ApplicationPosition::DISK => highlighted_border_style,
								_ => border_style,
							}),
					)
					.header_style(Style::default().fg(Color::LightBlue).modifier(Modifier::BOLD))
					.widths(&[
						Constraint::Length((width * 0.18).floor() as u16),
						Constraint::Length((width * 0.14).floor() as u16),
						Constraint::Length((width * 0.11).floor() as u16),
						Constraint::Length((width * 0.11).floor() as u16),
						Constraint::Length((width * 0.11).floor() as u16),
						Constraint::Length((width * 0.11).floor() as u16),
						Constraint::Length((width * 0.11).floor() as u16),
					])
					.render(&mut f, middle_divided_chunk_2[1]);
			}

			// Network graph
			{
				let x_axis: Axis<String> = Axis::default().style(Style::default().fg(GRAPH_COLOUR)).bounds([0.0, 600_000.0]);
				let y_axis = Axis::default()
					.style(Style::default().fg(GRAPH_COLOUR))
					.bounds([-0.5, 30_f64])
					.labels(&["0B", "1KiB", "1MiB", "1GiB"]);
				Chart::default()
					.block(
						Block::default()
							.title("Network")
							.borders(Borders::ALL)
							.border_style(match app_state.current_application_position {
								app::ApplicationPosition::NETWORK => highlighted_border_style,
								_ => border_style,
							}),
					)
					.x_axis(x_axis)
					.y_axis(y_axis)
					.datasets(&[
						Dataset::default()
							.name(&(canvas_data.rx_display))
							.marker(if app_state.use_dot { Marker::Dot } else { Marker::Braille })
							.style(Style::default().fg(COLOUR_LIST[0]))
							.data(&canvas_data.network_data_rx),
						Dataset::default()
							.name(&(canvas_data.tx_display))
							.marker(if app_state.use_dot { Marker::Dot } else { Marker::Braille })
							.style(Style::default().fg(COLOUR_LIST[1]))
							.data(&canvas_data.network_data_tx),
					])
					.render(&mut f, bottom_chunks[0]);
			}

			// Processes table
			{
				let width = f64::from(bottom_chunks[1].width);

				// Admittedly this is kinda a hack... but we need to:
				// * Scroll
				// * Show/hide elements based on scroll position
				// As such, we use a process_counter to know when we've hit the process we've currently scrolled to.  We also need to move the list - we can
				// do so by hiding some elements!
				let num_rows = i64::from(bottom_chunks[1].height) - 4;

				let start_position = get_start_position(
					num_rows,
					&(app_state.scroll_direction),
					&mut app_state.previous_process_position,
					&mut app_state.currently_selected_process_position,
				);

				let sliced_vec: Vec<Vec<String>> = (&canvas_data.process_data[start_position as usize..]).to_vec();
				let mut process_counter = 0;

				let process_rows = sliced_vec.iter().map(|process| {
					Row::StyledData(
						process.iter(),
						if process_counter == app_state.currently_selected_process_position - start_position {
							process_counter = -1;
							Style::default().fg(Color::Black).bg(Color::Cyan)
						} else {
							if process_counter >= 0 {
								process_counter += 1;
							}
							Style::default().fg(TEXT_COLOUR)
						},
					)
				});

				{
					use app::data_collection::processes::ProcessSorting;
					let mut pid = "PID(p)".to_string();
					let mut name = "Name(n)".to_string();
					let mut cpu = "CPU%(c)".to_string();
					let mut mem = "Mem%(m)".to_string();

					let direction_val = if app_state.process_sorting_reverse {
						"⯆".to_string()
					} else {
						"⯅".to_string()
					};

					match app_state.process_sorting_type {
						ProcessSorting::CPU => cpu += &direction_val,
						ProcessSorting::MEM => mem += &direction_val,
						ProcessSorting::PID => pid += &direction_val,
						ProcessSorting::NAME => name += &direction_val,
					};

					Table::new([pid, name, cpu, mem].iter(), process_rows)
						.block(
							Block::default()
								.title("Processes")
								.borders(Borders::ALL)
								.border_style(match app_state.current_application_position {
									app::ApplicationPosition::PROCESS => highlighted_border_style,
									_ => border_style,
								}),
						)
						.header_style(Style::default().fg(Color::LightBlue))
						.widths(&[
							Constraint::Length((width * 0.2) as u16),
							Constraint::Length((width * 0.35) as u16),
							Constraint::Length((width * 0.2) as u16),
							Constraint::Length((width * 0.2) as u16),
						])
						.render(&mut f, bottom_chunks[1]);
				}
			}
		}
	})?;

	Ok(())
}

fn get_start_position(
	num_rows: i64, scroll_direction: &app::ScrollDirection, previous_position: &mut i64, currently_selected_position: &mut i64,
) -> i64 {
	match scroll_direction {
		app::ScrollDirection::DOWN => {
			if *currently_selected_position < num_rows {
				0
			} else if *currently_selected_position - num_rows < *previous_position {
				*previous_position
			} else {
				*previous_position = *currently_selected_position - num_rows + 1;
				*previous_position
			}
		}
		app::ScrollDirection::UP => {
			if *currently_selected_position == *previous_position - 1 {
				*previous_position = if *previous_position > 0 { *previous_position - 1 } else { 0 };
				*previous_position
			} else {
				*previous_position
			}
		}
	}
}